Development of La1.7Ca0.3Ni1−yCuyO4+δ Materials for Oxygen Permeation Membranes and Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells
Abstract
:1. Introduction
x | y | Composition | Ref. | σ, S cm−1 | Rp, Ω cm2 | Electrolyte |
---|---|---|---|---|---|---|
0.0 | 0.1 | La2Ni0.9Cu0.1O4+δ | [32] | 58 | 0.16 | BaCe0.5Zr0.3Dy0.2O3−δ |
0.0 | 0.2 | La2Ni0.8Cu0.2O4+δ | [32] | 61 | 0.5 | BaCe0.5Zr0.3Dy0.2O3−δ |
0.0 | 0.2 | La2Ni0.8Cu0.2O4+δ | [33] | 28 | 4.95 | LSGM |
0.0 | 0.2 | La2Ni0.8Cu0.2O4+δ | [44] | 73 | 2.0 | LSGM |
0.0 | 0.2 | La2Ni0.8Cu0.2O4+δ | [44] | 73 | 3.2 | La10Si5AlO26.5 |
0.0 | 0.3 | La2Ni0.7Cu0.3O4+δ | [32] | 55 | 1.2 | BaCe0.5Zr0.3Dy0.2O3−δ |
0.0 | 0.4 | La2Ni0.6Cu0.4O4+δ | [33] | 70 | 2.23 | LSGM |
0.3 | 0.1 | La1.7Ca0.3Ni0.9Cu0.1O4+δ | [37] | 130 | 0.89 | LSGM |
0.3 | 0.2 | La1.7Ca0.3Ni0.8Cu0.2O4+δ | [37] | 145 | 0.79 | LSGM |
0.3 | 0.3 | La1.7Ca0.3Ni0.7Cu0.3O4+δ | [37] | 156 | 0.50 | LSGM |
0.3 | 0.25 | La1.7Ca0.3Ni0.75Cu0.25O4+δ | [45] | 0.50 | YSZ | |
0.3 | 0.25 | La1.7Ca0.3Ni0.75Cu0.25O4+δ | [43] | 0.07 | Ce0.8Gd0.2O1.9 | |
0.3 | 0.5 | La1.7Ca0.3Ni0.5Cu0.5O4+δ | [45] | 0.63 | YSZ | |
0.3 | 0.75 | La1.7Ca0.3Ni0.25Cu0.75O4+δ | [45] | 1.95 | YSZ | |
0.4 | 0.1 | La1.6Ca0.4Ni0.9Cu0.1O4+δ | [46] | 125 | ||
0.4 | 0.2 | La1.6Ca0.4Ni0.8Cu0.2O4+δ | [46] | 103 | ||
0.4 | 0.3 | La1.6Ca0.4Ni0.7Cu0.3O4+δ | [46] | 94 |
2. Materials and Methods
2.1. Synthesis of the Materials and Preparation of the Compact Samples
2.2. X-ray Diffraction Analysis and Crystal Structure Refinement
2.3. Oxygen Nonstoichiometry Study
2.4. Scanning Electron Microscopy
2.5. Investigation of the Electrical Properties and Oxygen Permeability
2.6. Dilatometric Studies
2.7. Electrode Polarization Resistance Experiments
3. Results and Discussion
3.1. Structure and Oxygen Content in the La1.7Ca0.3Ni1−yCuyO4+δ Materials
3.2. Electrical Conductivity
3.3. Oxygen Permeability and Ionic Transport
3.4. Thermomechanical Properties
3.5. Microstructure and Chemical Composition of the La1.7Ca0.3Ni1−yCuyO4+δ-Based Cathodes
3.6. Electrochemical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singla, M.K.; Nijhawan, P.; Oberoi, A.S. Hydrogen fuel and fuel cell technology for cleaner future: A review. Environ. Sci. Pollut. Res. 2021, 28, 15607–15626. [Google Scholar] [CrossRef] [PubMed]
- Sazali, N. Emerging technologies by hydrogen: A review. Int. J. Hydrogen Energy 2020, 45, 18753–18771. [Google Scholar] [CrossRef]
- Zeng, S.; Yan, Z.; Yang, J. Review and forecast of ground heat exchangers development: A bibliometric analysis from 2001 to 2020. Sustain. Energy Technol. Assess. 2021, 47, 101547. [Google Scholar] [CrossRef]
- Aqachmar, Z.; Ben Sassi, H.; Lahrech, K.; Barhdadi, A. Solar technologies for electricity production: An updated review. Int. J. Hydrogen Energy 2021, 46, 30790–30817. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.; Wang, H.; Wang, Y.; Zhang, Z. Knowledge structure and research progress in wind power generation (WPG) from 2005 to 2020 using CiteSpace based scientometric analysis. J. Clean. Prod. 2021, 295, 126496. [Google Scholar] [CrossRef]
- Surti, P.; Kailasa, S.K.; Mungray, A.K. Genetic engineering strategies for performance enhancement of bioelectrochemical systems: A review. Sustain. Energy Technol. Assess. 2021, 47, 101332. [Google Scholar] [CrossRef]
- Santoro, C.; Garcia, M.J.S.; Walter, X.A.; You, J.; Theodosiou, P.; Gajda, I.; Obata, O.; Winfield, J.; Greenman, J.; Ieropoulos, I. Urine in bioelectrochemical systems: An overall review. ChemElectroChem 2020, 7, 1312–1331. [Google Scholar] [CrossRef]
- Baykara, S.Z. Hydrogen: A brief overview on its sources, production and environmental impact. Int. J. Hydrogen Energy 2018, 43, 10605–10614. [Google Scholar] [CrossRef]
- Singh, M.; Zappa, D.; Comini, E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. Int. J. Hydrogen Energy 2021, 46, 27643–27674. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Petra, P.M.; Ghasemi, M.; Azad, A.K. Achievements and trends of solid oxide fuel cells in clean energy field: A perspective review. Front. Energy 2020, 14, 359–382. [Google Scholar] [CrossRef]
- Yang, B.; Guo, Z.; Wang, J.; Wang, J.; Zhu, T.; Shu, H.; Qiu, G.; Chen, J.; Zhang, J. Solid oxide fuel cell systems fault diagnosis: Critical summarization, classification, and perspectives. J. Energy Storage 2021, 34, 102153. [Google Scholar] [CrossRef]
- Zhu, P.; Yao, J.; Qian, C.; Yang, F.; Porpatham, E.; Zhang, Z.; Wu, Z. High-efficiency conversion of natural gas fuel to power by an integrated system of SOFC, HCCI engine, and waste heat recovery: Thermodynamic and thermo-economic analyses. Fuel 2020, 275, 117883. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, Y.; Li, D.; Xiong, Y. A review on recent advances in micro-tubular solid oxide fuel cells. J. Power Sources 2021, 506, 230135. [Google Scholar] [CrossRef]
- Su, H.; Hu, Y.H. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels. J. Chem. Eng. 2020, 402, 126235. [Google Scholar] [CrossRef]
- Radenahmad, N.; Azad, A.T.; Saghir, M.; Taweekun, J.; Bakar, M.S.A.; Reza, M.S.; Azad, A.K. A review on biomass derived syngas for SOFC based combined heat and power application. Renew. Sustain. Energy Rev. 2020, 119, 109560. [Google Scholar] [CrossRef]
- Saadabadi, S.A.; ThallamThattai, A.; Fan, L.; Lindeboom, R.E.F.; Spanjers, H.; Aravind, P.V. Solid oxide fuel cells fuelled with biogas: Potential and constraints. Renew. Energy 2019, 134, 194–214. [Google Scholar] [CrossRef]
- Sreedhar, I.; Agarwal, B.; Goyal, P.; Agarwal, A. An overview of degradation in solid oxide fuel cells-potential clean power sources. J. Solid State Electrochem. 2020, 24, 1239–1270. [Google Scholar] [CrossRef]
- Horita, T. Chromium poisoning for prolonged lifetime of electrodes in solid oxide fuel cells–review. Ceram. Intern. 2021, 47, 7293–7306. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, G.; Dai, R.; Lv, X.; Yang, D.; Geng, S. A review of the chemical compatibility between oxide electrodes and electrolytes in solid oxide fuel cells. J. Power Sources 2021, 492, 229630. [Google Scholar] [CrossRef]
- Bello, I.T.; Zhai, S.; He, Q.; Xu, Q.; Ni, M. Scientometric review of advancements in the development of high-performance cathode for low and intermediate temperature solid oxide fuel cells: Three decades in retrospect. Int. J. Hydrogen Energy 2021, 46, 26518–26536. [Google Scholar] [CrossRef]
- Richter, J.; Holtappels, P.; Graule, T.; Nakamura, T.; Gauckler, L.J. Materials design for perovskite SOFC cathodes. Monatsh. Chem. 2009, 140, 985–999. [Google Scholar] [CrossRef] [Green Version]
- Ding, P.; Li, W.; Zhao, H.; Wu, C.; Zhao, L.; Dong, B.; Wang, S. Review on Ruddlesden–Popper perovskites as cathode for solid oxide fuel cells. J. Phys. Mater. 2021, 4, 022002. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Sadovskaya, E.M.; Eremeev, N.F.; Yu Pikalova, E.; Bogdanovich, N.M.; Filonova, E.A.; Krieger, T.A.; Fedorova, Y.E.; Krasnov, A.V.; Skriabin, P.I.; et al. Novel materials for solid oxide fuel cells cathodes and oxygen separation membranes: Fundamentals of oxygen transport and performance. Carbon Resour. Convers. 2020, 3, 112–121. [Google Scholar] [CrossRef]
- Tarutin, A.P.; Lyagaeva, J.G.; Medvedev, D.A.; Bi, L.; Yaremchenko, A.A. Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. J. Mater. Chem. A 2021, 9, 154–195. [Google Scholar] [CrossRef]
- Wu, C.H.; Shi, Y.J.; Lu, F.; Jia, X.S.; Su, J.R.; He, H.; Cai, B. Ruddlesden–Popper-type La1.5–XEuxPr0.5Ni0.9Cu0.1O4+δ as a potential cathode material for H-SOFCs. Phys. Solid State 2021, 63, 775–784. [Google Scholar] [CrossRef]
- Ma, J.; Pan, Y.; Wang, Y.; Chen, Y. A Sr and Ni doped Ruddlesden−Popper perovskite oxide La1.6Sr0.4Cu0.6Ni0.4O4+δ as a promising cathode for protonic ceramic fuel cells. J. Power Sources 2021, 509, 230369. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Liu, Y.; Tian, Y.; Ma, B.; Li, J.; Pu, J.; Chi, B. Ruddlesden–Popper-structured (Pr0.9La0.1)2(Ni0.8Cu0.2)O4+δ: An effective oxygen electrode material for proton-conducting solid oxide electrolysis cells. ACS Sustain. Chem. Eng. 2021, 9, 10913–10919. [Google Scholar] [CrossRef]
- Geffroy, P.-M.; Reichmann, M.; Chartier, T.; Bassat, J.-M.; Grenier, J.-C. Evaluating oxygen diffusion, surface exchange and oxygen semi-permeation in Ln2NiO4+δ membranes (Ln=La, Pr and Nd). J. Membr. Sci. 2014, 451, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Flura, A.; Dru, S.; Nicollet, C.; Vibhu, V.; Fourcade, S.; Lebraud, E.; Rougier, A.; Bassat, J.-M.; Grenier, J.-C. Chemical and structural changes in Ln2NiO4 (Ln=La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature. J. Solid State Chem. 2015, 228, 189–198. [Google Scholar] [CrossRef]
- Aguadero, A.; Escudero, M.J.; Pérez, M.; Alonso, J.A.; Pomjakushin, V.; Daza, L. Effect of Sr content on the crystal structure and electrical properties of the system La2−xSrxNiO4+δ (0 ≤ x ≤ 1). Dalton Trans. 2006, 36, 4377–4383. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Sadovskaya, E.M.; Pikalova, E.Y.; Kolchugin, A.A.; Filonova, E.A.; Pikalov, S.M.; Eremeev, N.F.; Ishchenko, A.V.; Lukashevich, A.I.; Bassat, J.M. Transport features in layered nickelates: Correlation between structure, oxygen diffusion, electrical and electrochemical properties. Ionics 2018, 24, 1181–1193. [Google Scholar] [CrossRef]
- Tarutin, A.P.; Lyagaeva, J.G.; Farlenkov, A.S.; Vylkov, A.I.; Medvedev, D.M. Cu-Substituted La2NiO4+δ as oxygen electrodes for protonic ceramic electrochemical cells. Ceram. Intern. 2019, 45, 16105–16112. [Google Scholar] [CrossRef]
- Aguadero, A.; Alonso, J.; Escudero, M.; Daza, L. Evaluation of the La2Ni1−xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes. Solid State Ionics 2008, 179, 393–400. [Google Scholar] [CrossRef]
- Pikalova, E.Y.; Bogdanovich, N.M.; Kolchugin, A.A.; Osinkin, D.A.; Bronin, D.I. Electrical and electrochemical properties of La2NiO4+δ-based cathodes in contact with Ce0.8Sm0.2O2-δ electrolyte. Procedia Eng. 2014, 98, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Kol’chugin, A.A.; Pikalova, E.Y.; Bogdanovich, N.M.; Bronin, D.I.; Filonova, E.A. Electrochemical properties of doped lantanum–nickelate-based electrodes. Russ. J. Electrochem. 2017, 53, 826–833. [Google Scholar] [CrossRef]
- Pikalova, E.Y.; Kolchugin, A.A.; Sadykov, V.A.; Sadovskaya, E.M.; Filonova, E.A.; Eremeev, N.F.; Bogdanovich, N.M. Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium. Int. J. Hydrogen Energy 2018, 43, 17373–17386. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, H.; Świerczek, K.; Du, Z.; Xie, Z. Lattice structure, sintering behavior and electrochemical performance of La1.7Ca0.3Ni1−xCuxO4+δ as cathode material for intermediate-temperature solid oxide fuel cell. J. Power Sources 2013, 240, 759–765. [Google Scholar] [CrossRef]
- Wu, X.; Gu, C.; Cao, J.; Miao, L.; Fu, C.; Liu, W. Investigations on electrochemical performance of La2NiO4+δ cathode material doped at A site for solid oxide fuel cells. Mater. Res. Express 2020, 7, 065507. [Google Scholar] [CrossRef]
- Kravchenko, E.; Zakharchuk, K.; Viskup, A.; Grins, J.; Svensson, G.; Pankov, V.; Yaremchenko, A. Impact of oxygen deficiency on the electrochemical performance of K2NiF4 -type (La1−xSrx)2NiO4−δ oxygen electrodes. ChemSusChem 2017, 10, 600–611. [Google Scholar] [CrossRef]
- Lyagaeva, Y.G.; Danilov, N.A.; Gorshkov, M.Y.; Vdovin, G.K.; Antonov, B.D.; Demin, A.K.; Medvedev, D.A. Functionality of lanthanum, neodymium, and praseodymium nickelates as promising electrode systems for proton-conducting electrolytes. Russ. J. Appl. Chem. 2018, 91, 583–590. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Pikalova, E.Y.; Kolchugin, A.A.; Fetisov, A.V.; Sadovskaya, E.M.; Filonova, E.A.; Eremeev, N.F.; Goncharov, V.B.; Krasnov, A.V.; Skriabin, P.I.; et al. Transport properties of Ca-doped Ln2NiO4 for intermediate temperature solid oxide fuel cells cathodes and catalytic membranes for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 13625–13642. [Google Scholar] [CrossRef]
- Pikalova, E.; Sadykov, V.; Sadovskaya, E.; Yeremeev, N.; Kolchugin, A.; Shmakov, A.; Vinokurov, Z.; Mishchenko, D.; Filonova, E.; Belyaev, V. Correlation between structural and transport properties of Ca-doped La nickelates and their electrochemical performance. Crystals 2021, 11, 297. [Google Scholar] [CrossRef]
- Myung, J.; Shin, T.H.; Huang, X.; Savaniu, C.; Irvine, J. La1.7Ca0.3Ni0.75Cu0.25O4-δ-layered perovskite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3 or Ce0.8Gd0.2O2 electrolyte for intermediate temperature solid oxide fuel cells. Int. J. Appl. Ceram. Technol. 2016, 13, 269–273. [Google Scholar] [CrossRef]
- Tsipis, E.V.; Kharton, V.V.; Frade, J.R. Electrochemical behavior of mixed-conducting oxide cathodes in contact with apatite-type La10Si5AlO26.5 electrolyte. Electrochim. Acta 2007, 52, 4428–4435. [Google Scholar] [CrossRef]
- Huang, X.; Shin, T.H.; Zhou, J.; Irvine, J.T.S. Hierarchically nanoporous La1.7Ca0.3CuO4−δ and La1.7Ca0.3NixCu1−xO4−δ (0.25 ≤ x ≤ 0.75) as potential cathode materials for IT-SOFCs. J. Mater. Chem. A 2015, 3, 13468–13475. [Google Scholar] [CrossRef] [Green Version]
- Gilev, A.R.; Kiselev, E.A.; Zakharov, D.M.; Cherepanov, V.A. Effect of calcium and copper/iron co-doping on defect-induced properties of La2NiO4-based materials. J. Alloys Compd. 2018, 753, 491–501. [Google Scholar] [CrossRef]
- FullProf Suite. Crystallographic Tools for Rietveld, Profile Matching and Integrated-Intensity Refinements of X-ray and/or Neutron Data. Available online: https://www.ill.eu/sites/fullprof/ (accessed on 11 October 2022).
- Kovalevsky, A.V.; Yaremchenko, A.A.; Kolotygin, V.A.; Shaula, A.L.; Kharton, V.V.; Snijkers, F.M.M.; Buekenhoudt, A.; Frade, J.R.; Naumovich, E.N. Processing and oxygen permeation studies of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes. J. Membr. Sci. 2011, 380, 68–80. [Google Scholar] [CrossRef]
- Pikalova, E.Y.; Bogdanovich, N.M.; Kolchugin, A.A.; Ananyev, M.V.; Pankratov, A.A. Influence of the synthesis method on the electrochemical properties of bilayer electrodes based on La2NiO4+δ and LaNi0.6Fe0.4O3−δ. Solid State Ion. 2016, 288, 36–42. [Google Scholar] [CrossRef]
- Osinkin, D.; Gavrilyuk, A.L.; Bronin, D.I. The Use of Tikhonov Regularization Method for calculating the Distribution Function of Relaxation Times in impedance spectroscopy. Russ. J. Electrochem. 2017, 53, 575–588. [Google Scholar] [CrossRef]
- Wan, T.H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRT tools. Electrochim. Acta 2015, 184, 483–499. [Google Scholar] [CrossRef]
- Ganguly, P.; Rao, C.N.R. Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures. J. Solid State Chem. 1984, 53, 193–216. [Google Scholar] [CrossRef]
- Choisnet, J. Structure and bonding anisotropy in intergrowth oxides: A clue to the manifestation of bidimensionality in T-, T′-, and T*-type structures. J. Solid State Chem. 1999, 147, 379–389. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic Studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Wang, C.; Soga, H.; Okiba, T.; Niwa, E.; Hashimoto, T. Construction of structural phase diagram of Nd2Ni1-xCuxO4+δ and effect of crystal structure and phase transition on electrical conduction behavior. Mat. Res. Bull. 2019, 111, 61–69. [Google Scholar] [CrossRef]
- Khandale, A.P.; Bansod, M.G.; Bhoga, S.S. Improved electrical and electrochemical performance of co-doped Nd1.8Sr0.2Ni1−xCuxO4+δ. Solid State Ion. 2015, 276, 127–135. [Google Scholar] [CrossRef]
- Filonova, E.A.; Pikalova, E.Y.; Maksimchuk, T.Y.; Vylkov, A.I.; Pikalov, S.M.; Maignan, A. Crystal structure and functional properties of Nd1.6Ca0.4Ni1−yCuyO4+δ as prospective cathode materials for intermediate temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2021, 46, 17037–17050. [Google Scholar] [CrossRef]
- Bansod, M.B.; Khandale, A.P.; Kumar, R.V.; Bhoga, S.S. Crystal structure, electrical and electrochemical properties of Cu co-doped Pr1.3Sr0.7NiO4+δ mixed ionic-electronic conductors (MIECs). Int. J. Hydrogen Energy 2018, 43, 373–384. [Google Scholar] [CrossRef]
- Sakai, M.; Wang, C.; Okiba, T.; Soga, H.; Niwa, E.; Hashimoto, T. Thermal analysis of structural phase transition behavior of Ln2Ni1−xCuxO4+δ (Ln = Nd, Pr) under various oxygen partial pressures. J. Therm. Anal. Calorim. 2019, 135, 2765–2774. [Google Scholar] [CrossRef]
- Kanai, H.; Mizusaki, J.; Tagawa, H.; Hoshiyama, S.; Hirano, K.; Fujita, K.; Tezuka, M.; Hashimoto, T. Defect chemistry of La2−xSrxCuO4−δ: Oxygen nonstoichiometry and thermodynamic stability. J. Solid State Chem. 1997, 131, 150–159. [Google Scholar] [CrossRef]
- Naumovich, E.N.; Patrakeev, M.V.; Kharton, V.V.; Yaremchenko, A.A.; Logvinovich, D.I.; Marques, F.M.B. Oxygen nonstoichiometry in (M = Cu, Co) under oxidizing conditions. Solid State Sci. 2005, 7, 1353–1362. [Google Scholar] [CrossRef]
- Boehm, E.; Bassat, J.-M.; Steil, M.C.; Dordor, P.; Mauvy, F.; Grenier, J.-C. Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 2003, 5, 973–981. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Q.; Zhang, T.; Qu, L.; Yang, X.; Wei, T. Preparation and electrochemical properties of La1.5Pr0.5NiO4 and La1.5Pr0.5Ni0.9Cu0.1O4 cathode materials for intermediate-temperature solid oxide fuel cells. Mat. Res. Bull. 2019, 113, 25–30. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Q.; He, Y.; Zhao, C.; Qi, S.; Wang, M.; Wei, T.; An, D. Assessment of Nd1.5Pr0.5Ni1−xMxO4+δ (M = Cu, Co, Mo; x = 0, 0.05 and 0.1) as cathode materials for intermediate-temperature solid oxide fuel cell. J. Mater. Sci. Mater. Electron. 2020, 31, 949–958. [Google Scholar] [CrossRef]
- Zakharchuk, K.; Bamburov, A.; Naumovich, E.N.; Vieira, M.A.; Yaremchenko, A.A. Impact of silica additions on the phase composition and electrical transport properties of Ruddlesden-Popper La2NiO4+δ mixed conducting ceramics. Processes 2022, 10, 82. [Google Scholar] [CrossRef]
- Tsvinkinberg, V.A.; Tolkacheva, A.S.; Filonova, E.A.; Gyrdasova, O.I.; Pikalov, S.M.; Vorotnikov, V.A.; Vylkov, A.I.; Moskalenko, N.I.; Pikalova, E.Y. Structure, thermal expansion and electrical conductivity of La2–xGdxNiO4+δ (0.0 ≤ x ≤ 0.6) cathode materials for SOFC applications. J. Alloys Compd. 2021, 853, 156728. [Google Scholar] [CrossRef]
- Pikalova, E.; Kolchugin, A.; Zakharchuk, K.; Boiba, D.; Tsvinkinberg, V.; Filonova, E.; Khrustov, A.; Yaremchenko, A. Mixed ionic-electronic conductivity, phase stability and electrochemical activity of Gd-substituted La2NiO4+δ as oxygen electrode material for solid oxide fuel/electrolysis cells. Int. J. Hydrogen Energy 2021, 46, 16932–16946. [Google Scholar] [CrossRef]
- Filonova, E.A.; Russkikh, O.V.; Skutina, L.S.; Vylkov, A.I.; Maksimchuk, T.Y.; Ostroushko, A.A. Sr2Ni0.7Mg0.3MoO6-δ: Correlation between synthesis conditions and functional properties as anode material for intermediate-temperature SOFCs. Int. J. Hydrogen Energy 2021, 46, 35910–35922. [Google Scholar] [CrossRef]
- Martinson, K.D.; Belyak, V.E.; Sakhno, D.D.; Kiryanov, N.V.; Chebanenko, M.I.; Popkov, V.I. Effect of fuel type on solution combustion synthesis and photocatalytic activity of NiFe2O4 nanopowders. Nanosystems: Phys. Chem. Math. 2021, 12, 792–798. [Google Scholar] [CrossRef]
- Smirnova, M.N.; Kop’eva, M.A.; Beresnev, E.N.; Goeva, L.V.; Simonenko, N.P.; Nikiforova, G.E.; Ketsko, V.A. Synthesis of MgFe1.6Ga0.4O4 by gel combustion using glycine and hexamethylenetetramine. Russ. J. Inorg. Chem. 2018, 63, 439–443. [Google Scholar] [CrossRef]
- Khaliullin, S.M.; Koshkina, A.A. Influence of fuel on phase formation, morphology, electric and dielectric properties of iron oxides obtained by SCS method. Ceram. Int. 2021, 47, 11942–11950. [Google Scholar] [CrossRef]
- Baseri, J.; Naghizadeh, R.; Rezaie, H.R.; Golestanifard, F.; Golmohammad, M. A Comparative study on citrate sol-gel and combustion synthesis methods of CoAl2O4 spinel. Int. J. Appl. Ceram. Technol. 2020, 17, 2709–2715. [Google Scholar] [CrossRef]
- Nakamura, T.; Yashiro, K.; Sato, K.; Mizusaki, J. Oxygen nonstoichiometry and defect equilibrium in La2−xSrxNiO4+δ. Solid State Ion. 2009, 180, 368–376. [Google Scholar] [CrossRef]
- Tropin, E.S.; Ananyev, M.V.; Farlenkov, A.S.; Khodimchuk, A.V.; Berenov, A.V.; Fetisov, A.V.; Eremin, V.A.; Kolchugin, A.A. Surface defect chemistry and oxygen exchange kinetics in La2−xCaxNiO4+δ. J. Solid State Chem. 2018, 262, 199–213. [Google Scholar] [CrossRef]
- Kolchugin, A.A.; Pikalova, E.Y.; Bogdanovich, N.M.; Bronin, D.I.; Pikalov, S.M.; Plaksin, S.V.; Ananyev, M.V.; Eremin, V.A. Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate. Solid State Ion. 2016, 288, 48–53. [Google Scholar] [CrossRef]
- Kharton, V.V.; Kovalevsky, A.V.; Avdeev, M.; Tsipis, E.V.; Patrakeev, M.V.; Yaremchenko, A.A.; Naumovich, E.N.; Frade, J.R. Chemically induced expansion of La2NiO4+δ-based materials. Chem. Mater. 2007, 19, 2027–2033. [Google Scholar] [CrossRef]
- Pikalova, E.Y.; Maragou, V.I.; Demina, A.N.; Demin, A.K.; Tsiakaras, P.E. The effect of co-dopant addition on the properties of Ln0.2Ce0.8O2−δ (Ln=Gd, Sm, La) solid-state electrolyte. J. Power Sources 2008, 181, 199–206. [Google Scholar] [CrossRef]
- Boukamp, B.A.; Rolle, A. Analysis and application of Distribution of Relaxation Times in solid state ionics. Solid State Ion. 2017, 302, 12–18. [Google Scholar] [CrossRef]
- Dion, F.; Lasia, A. The use of Regularization Methods in the Deconvolution of Underlying Distributions in electrochemical processes. J. Electroanal. Chem. 1999, 475, 28–37. [Google Scholar] [CrossRef]
- Fleig, J. The grain boundary impedance of random microstructures: Numerical simulations and implications for the analysis of experimental data. Solid State Ion. 2002, 150, 181–193. [Google Scholar] [CrossRef]
- Baumann, F.; Fleig, J.; Habermeier, H.; Maier, J. Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes. Solid State Ion. 2006, 177, 1071–1081. [Google Scholar] [CrossRef]
- Escudero, M.J.; Aguadero, A.; Alonso, J.A.; Daza, L. A Kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J. Electroanal. Chem. 2007, 611, 107–116. [Google Scholar] [CrossRef]
- Antonova, E.P.; Khodimchuk, A.V.; Usov, G.R.; Tropin, E.S.; Farlenkov, A.S.; Khrustov, A.V.; Ananyev, M.V. EIS analysis of electrode kinetics for La2NiO4+δ cathode in contact with Ce0.8Sm0.2O1.9 electrolyte: From DRT analysis to physical model of the electrochemical process. J. Solid State Electrochem. 2019, 23, 1279–1287. [Google Scholar] [CrossRef]
- Adler, S.B.; Lane, J.A.; Steele, B.C.H. Electrode kinetics of porous mixed-conducting oxygen electrodes. J. Electrochem. Soc. 1996, 143, 3554–3564. [Google Scholar] [CrossRef]
- Gilev, A.R.; Kiselev, E.A.; Cherepanov, V.A. Oxygen transport phenomena in (La,Sr)2(Ni,Fe)O4 materials. J. Mater. Chem. A 2018, 6, 5304–5312. [Google Scholar] [CrossRef]
- Li, Z.; Haugsrud, R.; Norby, T. Oxygen bulk diffusion and surface exchange in Sr-substituted La2NiO4+δ. Solid State Ion. 2011, 184, 42–46. [Google Scholar] [CrossRef]
M | x | Composition | Ref. | σ, S cm−1 | Rp, Ω cm2 | Electrolyte/Collector |
---|---|---|---|---|---|---|
- | 0.0 | La2NiO4+δ | [30] | 65 | ||
- | 0.0 | La2NiO4+δ | [31] | 56 | 0.73 | Ce0.8Sm0.2O1.9/LNF |
- | 0.0 | La2NiO4+δ | [32] | 76 | 0.10 | BaCe0.5Zr0.3Dy0.2O3−δ |
- | 0.0 | La2NiO4+δ | [33] | 53 | 5.75 | LSGM |
Ca | 0.1 | La1.9Ca0.1NiO4+δ | [34] | 67 | 1.78 | Ce0.8Sm0.2O1.9/LNF |
Ca | 0.3 | La1.7Ca0.3NiO4+δ | [35] | 86 | 12.4 | Ce0.8Sm0.2O1.9 |
Ca | 0.3 | La1.7Ca0.3NiO4+δ | [36] | 86 | 4.01 | Ce0.8Sm0.2O1.9/LNF |
Ca | 0.3 | La1.7Ca0.3NiO4+δ | [37] | 1.4 | LSGM | |
Ca | 0.5 | La1.5Ca0.5NiO4+δ | [38] | 150 | 0.061 | BaZr0.1Ce0.7Y0.2O3-δ |
Sr | 0.3 | La1.7Sr0.3NiO4+δ | [35] | 69 | 12.8 | Ce0.8Sm0.2O1.9 |
Sr | 0.5 | La1.5Sr0.5NiO4+δ | [38] | 140 | 0.128 | BaZr0.1Ce0.7Y0.2O3-δ |
Sr | 0.75 | La1.25Sr0.75NiO4+δ | [30] | 253 | ||
Sr | 1.6 | La0.4Sr1.6NiO4+δ | [39] | 224 | 7.9 | Ce0.9Gd0.1O2-δ |
Ba | 0.05 | La1.95Ba0.05NiO4+δ | [40] | 73 | 1.11 | BaCe0.5Zr0.3Dy0.2O3−δ |
Ba | 0.3 | La1.7Ba0.3NiO4+δ | [35] | 70 | 16.1 | Ce0.8Sm0.2O1.9 |
Ba | 0.5 | La1.5Ba0.5NiO4+δ | [38] | 124 | 0.127 | BaZr0.1Ce0.7Y0.2O3-δ |
y | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | |
---|---|---|---|---|---|---|
t | 0.895 | 0.893 | 0.891 | 0.890 | 0.888 | |
a, Å | 3.829(1) | 3.824(1) | 3.820(1) | 3.810(1) | 3.803(1) | |
c, Å | 12.598(1) | 12.644(1) | 12.676(1) | 12.758(1) | 12.804(1) | |
V, Å3 | 184.689(9) | 184.863(9) | 184.975(9) | 185.236(9) | 185.206(7) | |
ρXRD, g·cm−3 | 6.682 | 6.673 | 6.678 | 6.677 | 6.690 | |
z(La/Ca) | 0.362(1) | 0.362(1) | 0.362(1) | 0.362(1) | 0.362(1) | |
z(O2) | 0.174(1) | 0.176(1) | 0.176(1) | 0.177(1) | 0.177(1) | |
L, Å | La/Ca-La/Ca | 3.480(2) | 3.491(2) | 3.502(2) | 3.519(2) | 3.534(2) |
Ni/Cu-La/Ca | 3.218(1) | 3.218(1) | 3.219(1) | 3.219(1) | 3.218(1) | |
Ni/Cu-Ni/Cu | 3.829(1) | 3.824(1) | 3.820(1) | 3.810(1) | 3.803(1) | |
Ni/Cu-O1x4 | 1.914(1) | 1.912(1) | 1.909(1) | 1.905(1) | 1.902(1) | |
Ni/Cu-O2x2 | 2.202(9) | 2.219(9) | 2.234(9) | 2.249(8) | 2.261(8) | |
La/Ca-O1x4 | 2.587(1) | 2.589(1) | 2.591(1) | 2.593(1) | 2.596(1) | |
La/Ca-O2x4 | 2.745(2) | 2.745(2) | 2.743(2) | 2.739(2) | 2.734(2) | |
La/Ca-O2x1 | 2.350(9) | 2.357(9) | 2.361(9) | 2.371(8) | 2.374(8) | |
RBr | 2.88 | 2.63 | 6.17 | 2.57 | 3.94 | |
Rf | 2.39 | 1.98 | 3.79 | 1.62 | 2.10 | |
Rexp | 4.27 | 4.28 | 4.82 | 5.36 | 5.35 | |
Rwp | 10.5 | 10.00 | 11.6 | 10.1 | 10.1 | |
Rp | 8.03 | 7.28 | 8.80 | 7.78 | 7.79 | |
χ2 | 6.01 | 5.55 | 5.79 | 3.53 | 3.56 | |
δTGA | 0.05(1) | 0.01(1) | 0.01(1) | 0.00(1) | 0.01(1) | |
Tsintering, °C | 1450 | 1415 | 1380 | 1340 | 1300 | |
ρ, g cm−3 | 6.44 | 6.52 | 6.57 | 6.39 | 6.51 | |
Relative density, % | 96.4 | 97.7 | 98.3 | 95.7 | 97.3 |
Sample | Ref. | T Range, °C | TEC × 106, K−1 | ||
---|---|---|---|---|---|
Heating | Average Value | ||||
Heating | Cooling | ||||
y = 0.0 | This work | 40–300 | 13.0(1) | ||
300–800 | 14.0(1) | ||||
800–1100 | 15.2(1) | ||||
40–1100 | 14.1(1) | 13.9(1) | |||
y = 0.1 | This work | 40–300 | 11.8(1) | ||
300–800 | 13.3(1) | ||||
800–1100 | 15.1(1) | ||||
40–1100 | 13.4(1) | 13.1(1) | |||
y = 0.2 | This work | 40–300 | 12.2(1) | ||
300–800 | 13.6(1) | ||||
800–1100 | 15.2(1) | ||||
40–1100 | 13.7(1) | 13.4(1) | |||
y = 0.3 | This work | 40–300 | 12.7(1) | ||
300–800 | 13.9(1) | ||||
800–1100 | 15.2(1) | ||||
40–1100 | 14.0(1) | 13.8(1) | |||
y = 0.4 | This work | 40–300 | 12.9(1) | ||
300–800 | 14.1(1) | ||||
800–1100 | 15.3(1) | ||||
40–1100 | 14.2(1) | 13.9(1) | |||
La2Ni0.8Cu0.2O4−δ | [33] | 50–1000 | 13.9 | ||
La2Ni0.8Cu0.2O4−δ | [76] | 100–980 | 14.2 | ||
La2Ni0.6Cu0.4O4−δ | [33] | 50–1000 | 13.0 | ||
La1.7Ca0.3Ni0.75Cu0.25O4−δ | [45] | 50–850 | 14.4 | ||
La1.6Ca0.4Ni0.9Cu0.1O4+δ | [46] | 25–1000 | 14.9 | ||
SDC | [77] | 350–900 | 12.3 |
y | Ehigh, eV | Emid, eV | Elow, eV | ES, eV | Ep, eV |
---|---|---|---|---|---|
0.0 | 0.99 ± 0.07 | 1.17 ± 0.08 | 1.81 ± 0.06 | 2.07 ± 0.05 | 1.68 ± 0.02 |
0.1 | 0.74 ± 0.1 | 1.02 ± 0.04 | 1.54 ± 0.01 | 1.90 ± 0.08 | 1.44 ± 0.01 |
0.2 | 0.76 ± 0.1 | 1.12 ± 0.08 | 1.76 ± 0.05 | 2.02 ± 0.09 | 1.55 ± 0.04 |
0.3 | 0.98 ± 0.03 | 1.02 ± 0.07 | 1.54 ± 0.04 | 1.82 ± 0.09 | 1.43 ± 0.03 |
0.4 | 0.97 ± 0.07 | 0.75 ± 0.09 | 1.65 ± 0.09 | 1.70 ± 0.1 | 1.38 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filonova, E.; Gilev, A.; Maksimchuk, T.; Pikalova, N.; Zakharchuk, K.; Pikalov, S.; Yaremchenko, A.; Pikalova, E. Development of La1.7Ca0.3Ni1−yCuyO4+δ Materials for Oxygen Permeation Membranes and Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. Membranes 2022, 12, 1222. https://doi.org/10.3390/membranes12121222
Filonova E, Gilev A, Maksimchuk T, Pikalova N, Zakharchuk K, Pikalov S, Yaremchenko A, Pikalova E. Development of La1.7Ca0.3Ni1−yCuyO4+δ Materials for Oxygen Permeation Membranes and Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. Membranes. 2022; 12(12):1222. https://doi.org/10.3390/membranes12121222
Chicago/Turabian StyleFilonova, Elena, Artem Gilev, Tatyana Maksimchuk, Nadezhda Pikalova, Kiryl Zakharchuk, Sergey Pikalov, Aleksey Yaremchenko, and Elena Pikalova. 2022. "Development of La1.7Ca0.3Ni1−yCuyO4+δ Materials for Oxygen Permeation Membranes and Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells" Membranes 12, no. 12: 1222. https://doi.org/10.3390/membranes12121222