Densification and Proton Conductivity of La1-xBaxScO3-δ Electrolyte Membranes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Materials Characterization
3.2. Dense Ceramic Formation Strategies
3.3. Dense Ceramics Characterization
3.4. Thermal Expansion
3.5. Water Uptake
3.6. Conductivity
3.6.1. Total Conductivity
3.6.2. Proton, Oxygen Ion, and Hole Partial Conductivities
3.6.3. Bulk and GB Conductivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 1981, 3, 359–363. [Google Scholar] [CrossRef]
- Bonanos, N.; Knight, K.; Ellis, B. Perovskite solid electrolytes: Structure, transport properties and fuel cell application. Solid State Ion. 1995, 79, 161–170. [Google Scholar] [CrossRef]
- Iwahara, H.; Asakura, Y.; Katahira, K.; Tanaka, M. Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ion. 2004, 168, 299–310. [Google Scholar] [CrossRef]
- Okuyama, Y.; Nagamine, S.; Nakajima, A.; Sakai, G.; Matsunaga, N.; Takahashi, F.; Kimata, K.; Oshima, T.; Tsuneyoshi, K. Proton-conducting oxide with redox protonation and its application to a hydrogen sensor with a self-standard electrode. RSC Adv. 2016, 6, 34019–34026. [Google Scholar] [CrossRef]
- Sakai, T.; Isa, K.; Matsuka, M.; Kozai, T.; Okuyama, Y.; Ishihara, T.; Matsumoto, H. Electrochemical hydrogen pumps using Ba doped LaYbO3 type proton conducting electrolyte. Int. J. Hydrogen Energy 2013, 38, 6842–6847. [Google Scholar] [CrossRef]
- Duan, C.; Huang, J.; Sullivan, N.; O’Hayre, R. Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 2020, 7, 011314. [Google Scholar] [CrossRef]
- Medvedev, D.A. Current drawbacks of proton-conducting ceramic materials: How to overcome them for real electrochemical purposes. Curr. Opin. Green Sustain. Chem. 2021, 32, 100549. [Google Scholar] [CrossRef]
- Kuzmin, A.V.; Lesnichyova, A.S.; Tropin, E.S.; Stroeva, A.Y.; Vorotnikov, V.A.; Solodyankina, D.M.; Belyakov, S.A.; Plekhanov, M.S.; Farlenkov, A.S.; Osinkin, D.A.; et al. LaScO3-based electrolyte for protonic ceramic fuel cells: Influence of sintering additives on the transport properties and electrochemical performance. J. Power Sources 2020, 446, 228255. [Google Scholar] [CrossRef]
- Nomura, K.; Tanase, S. Electrical behavior in (La0.9Sr0.1)MO3-δ (M = Al, Ga, Sc, In, and Lu) perovskite. Solid State Ion. 1997, 98, 229–236. [Google Scholar] [CrossRef]
- Fujii, H.; Katayama, Y.; Shimura, T.; Iwahara, H. Protonic Conduction in perovskite-type Oxide Ceramics Based on LnScO3 (Ln = La, Nd, Sm or Gd) at High Temperature. J. Electroceram. 1998, 2, 119–125. [Google Scholar] [CrossRef]
- Lybye, D.; Poulsen, F.-W.; Mogensen, M. Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ion. 2000, 128, 91–103. [Google Scholar] [CrossRef]
- Nomura, K.; Takeuchi, T.; Tanase, S.; Kageyama, H.; Tanimoto, K.; Miyazaki, Y. Proton conduction in (La0.9Sr0.1)MIIIO3-δ (MIII= Sc, In, and Lu) perovskites. Solid State Ion. 2002, 154, 647–652. [Google Scholar] [CrossRef]
- Kato, H.; Kudo, T.; Naito, H.; Yugami, H. Electrical conductivity of Al-doped La1-xSrxScO3 perovskite-type oxides as electrolyte materials for low-temperature SOFC. Solid State Ion. 2003, 159, 217–222. [Google Scholar] [CrossRef]
- Nomura, K.; Takeuchi, T.; Kamo, S.; Kageyama, H.; Miyazaki, Y. Proton conduction in doped LaScO3 perovskites. Solid State Ion. 2004, 175, 553–555. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, H.L.; Kim, S.; Lee, H.L. Phase formation and electrical conductivity of Ba-doped LaScO3. Jpn. J. Appl. Phys. 2005, 44, 5025–5029. [Google Scholar] [CrossRef]
- Gorelov, V.P.; Stroeva, A.Y. Solid proton conducting electrolytes based on LaScO3. Russ. J. Electrochem. 2012, 48, 949–960. [Google Scholar] [CrossRef]
- Okuyama, Y.; Kozai, T.; Sakai, T.; Matsuka, M.; Matsumoto, H. Proton transport properties of La0.9M0.1YbO3−δ (M = Ba, Sr, Ca, Mg). Electrochim. Acta 2013, 95, 54–59. [Google Scholar] [CrossRef]
- Okuyama, Y.; Kozai, T.; Ikeda, S.; Matsuka, M.; Sakaid, T.; Matsumoto, H. Incorporation and conduction of proton in Sr-doped LaMO3 (M = Al, Sc, In, Yb, Y). Electrochim. Acta 2014, 125, 443–449. [Google Scholar] [CrossRef]
- Farlenkov, A.S.; Smolnikov, A.G.; Ananyev, M.V.; Khodimchuk, A.V.; Buzlukov, A.L.; Kuzmin, A.V.; Porotnikova, N.M. Local disorder and water uptake in La1–xSrxScO3–δ. Solid State Ion. 2017, 306, 82–88. [Google Scholar] [CrossRef]
- Kuzmin, A.V.; Stroeva, A.Y.; Gorelov, V.P.; Novikova, Y.V.; Lesnichyova, A.S.; Farlenkov, A.S.; Khodimchuk, A.V. Synthesis and characterization of dense proton-conducting La1-xSrxScO3-a ceramics. Int. J. Hydrogen Energy 2019, 44, 1130–1138. [Google Scholar] [CrossRef]
- Lesnichyova, A.; Stroeva, A.; Belyakov, S.; Farlenkov, A.; Shevyrev, N.; Plekhanov, M.; Khromushin, I.; Aksenova, T.; Ananyev, M.; Kuzmin, A. Water Uptake and Transport Properties of La1-xCaxScO3-α Proton-Conducting Oxides. Materials 2019, 12, 2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farlenkov, A.S.; Khodimchuk, A.V.; Shevyrev, N.A.; Stroeva, A.Y.; Fetisov, A.V.; Ananyev, M.V. Oxygen isotope exchange in proton-conducting oxides based on lanthanum scandates. Int. J. Hydrogen Energy 2019, 44, 26577–26588. [Google Scholar] [CrossRef]
- Farlenkov, A.S.; Zhuravlev, N.A.; Denisova, T.A.; Ananyev, M.V. Interaction of O2, H2O and H2 with proton-conducting oxides based on lanthanum scandates. Int. J. Hydrogen Energy 2019, 44, 26419–26427. [Google Scholar] [CrossRef]
- Lesnichyova, A.S.; Belyakov, S.A.; Stroeva, A.Y.; Kuzmin, A.V. Proton conductivity and mobility in Sr-doped LaScO3 perovskites. Ceram. Int. 2021, 47, 6105–6113. [Google Scholar] [CrossRef]
- Hyodo, J.; Kato, S.; Ida, S.; Ishihara, T.; Okuyama, Y.; Sakai, T. Determination of Oxide Ion Conductivity in Ba-Doped LaYbO3 Proton-Conducting Perovskites via an Oxygen Isotope Exchange Method. J. Phys. Chem. C 2021, 125, 1703–1713. [Google Scholar] [CrossRef]
- Kasyanova, A.V.; Lyagaeva, J.G.; Farlenkov, A.S.; Vylkov, A.I.; Plaksin, S.V.; Medvedev, D.A.; Demin, A.K. Densification, morphological and transport properties of functional La1-xBaxYbO3-δ ceramic materials. J. Eur. Ceram. Soc. 2020, 40, 78–84. [Google Scholar] [CrossRef]
- Obukuro, Y.; Okuyama, Y.; Sakai, G.; Matsushima, S. Experimental and theoretical approaches for the investigation of proton conductive characteristics of La1-xBaxYbO3-δ. J. Alloys Compd. 2019, 770, 294–300. [Google Scholar] [CrossRef]
- Iwahara, H.; Uchida, H.; Ono, K.; Ogaki, K. Proton Conduction in Sintered Oxides Based on BaCeO3. J. Electrochem. Soc. 1988, 135, 529–533. [Google Scholar] [CrossRef]
- Iwahara, H.; Yajima, T.; Hibino, T.; Ozaki, K.; Suzuki, H. Protonic conduction in calcium, strontium and barium zirconates. Solid State Ion. 1993, 61, 65–69. [Google Scholar] [CrossRef]
- Kochetova, N.; Animitsa, I.; Medvedev, D.; Demin, A.; Tsiakaras, P. Recent activity in the development of proton conducting oxides for high-temperature applications. RSC Adv. 2016, 6, 73222–73268. [Google Scholar] [CrossRef]
- Kendrick, E.; Knight, K.S.; Islam, M.S.; Slater, P.R. Structural studies of the proton conducting perovskite ‘La0.6Ba0.4ScO2.8′. Solid State Ion. 2007, 178, 943–949. [Google Scholar] [CrossRef]
- Loureiro, F.J.A.; Nasani, N.; Srinivas Reddy, G.; Munirathnam, N.R.; Fagg, D.P. A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for Protonic Ceramic Fuel Cells. J. Power Sources 2019, 438, 226991. [Google Scholar] [CrossRef]
- Han, D.; Otani, Y.; Goto, K.; Uemura, S.; Majima, M.; Uda, T. Electrochemical and structural influence on BaZr0.8-xCexY0.2O3-δ from manganese, cobalt, and iron oxide additives. J. Am. Ceram. Soc. 2020, 103, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Goto, K.; Majima, M.; Uda, T. Proton Conductive BaZr0.8-xCexY0.2O3-δ: Influence of NiO Sintering Additive on Crystal Structure, Hydration Behavior, and Conduction Properties. ChemSusChem 2021, 14, 614–623. [Google Scholar] [CrossRef]
- Huang, Y.; Merkle, R.; Maier, J. Effect of NiO addition on proton uptake of BaZr1-xYxO3-x/2 and BaZr1-xScxO3-x/2 electrolytes. Solid State Ion. 2020, 347, 115256. [Google Scholar] [CrossRef]
- Huang, Y.; Merkle, R.; Maier, J. Effects of NiO addition on sintering and proton uptake of Ba(Zr,Ce,Y)O3-δ. J. Mater. Chem. A 2021, 9, 14775–14785. [Google Scholar] [CrossRef]
- Kuroha, T.; Niina, Y.; Shudo, M.; Sakai, G.; Matsunaga, N.; Goto, T.; Yamauchi, K.; Mikami, Y.; Okuyama, Y. Optimum dopant of barium zirconate electrolyte for manufacturing of protonic ceramic fuel cells. J. Power Sources 2021, 506, 230134. [Google Scholar] [CrossRef]
- DIFFRACPlus: Eva Bruker AXS GmbH, Ostliche; Rheinbruckenstraße 50, D-76187: Karlsruhe, Germany. 2008. Available online: https://www.bruker.com/en/products-and-solutions/diffractometers-and-scattering-systems/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html (accessed on 15 September 2022).
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef] [Green Version]
- LMGP-Suite of Programs for the Interpretation of X-ray Experiments, by Jean Laugier and Bernard Bochu, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d’Hères, France. Available online: http://www.inpg.fr/LMGP; http://www.ccp14.ac.uk/tutorial/lmgp/ (accessed on 24 June 2022).
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Frade, J.R. Theoretical behavior of concentration cells based on ABO3 perovskite materials with protonic and oxygen-ion conduction. Solid State Ion. 1995, 78, 87–97. [Google Scholar] [CrossRef]
- Baek, H.D. Modeling of electrical conductivity in high-temperature proton-conducting oxides. Solid State Ion. 1998, 110, 255–262. [Google Scholar] [CrossRef]
- Guo, X.; Maier, J. Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis. J. Electrochem. Soc. 2001, 148, E121–E126. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Marrocchelli, D.; Perry, N.H.; Bishop, S.R. Understanding chemical expansion in perovskite-structured oxides. Phys. Chem. Chem. Phys. 2015, 17, 10028–10039. [Google Scholar] [CrossRef]
- Omata, T.; Fuke, T.; Otsuka-Yao-Matsuo, S. Hydration behavior of Ba2Sc2O5 with an oxygen-deficient perovskite structure. Solid State Ion. 2006, 177, 2447–2451. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Ginnaram, S.; Jana, S.; Wu, Z.Y.; Singh, K.; Roy, A.; Kumar, P.; Maikap, S.; Qiu, J.T.; Cheng, H.M.; et al. Negative voltage modulated multi-level resistive switching by using a Cr/BaTiOx/TiN structure and quantum conductance through evidence of H2O2 sensing mechanism. Sci. Rep. 2017, 7, 4735. [Google Scholar] [CrossRef] [Green Version]
- Alema, F.; Pokhodnya, K. Dielectric properties of BaMg1/3Nb2/3O3 doped Ba0.45Sr0.55TiO3 thin films for tunable microwave applications. J. Adv. Dielectr. 2016, 05, 1550030. [Google Scholar] [CrossRef] [Green Version]
- Khassin, A.A.; Yurieva, T.M.; Kaichev, V.V.; Bukhtiyarov, V.I.; Budneva, A.A.; Paukshtis, E.A.; Parmon, V.N. Metal–support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J. Mol. Catal. A Chem. 2001, 175, 189–204. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Venezia, A.M.; Murania, R.; Pantaleo, G.; Deganello, G. Nature of cobalt active species in hydrodesulfurization catalysts: Combined support and preparation method effects. J. Mol. Catal. A Chem. 2007, 271, 238–245. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, M.; Zhou, M.; Cao, D.; Liu, P.; Wang, W.; Liu, M.; Huang, J.; Shao, J.; Liu, J. Multiple Effects of Iron and Nickel Additives on the Properties of Proton Conducting Yttrium-Doped Barium Cerate-Zirconate Electrolytes for High-Performance Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2020, 12, 50433–50445. [Google Scholar] [CrossRef] [PubMed]
- Shakel, Z.; Loureiro, F.J.A.; Antunes, I.; Mikhalev, S.M.; Fagg, D.P. Tailoring the properties of dense yttrium-doped barium zirconate ceramics with nickel oxide additives by manipulation of the sintering profile. Int. J. Energy Res. 2022, 1–12. [Google Scholar] [CrossRef]
- Jennings, D.; Ricote, S.; Caicedo, J.M.; Santiso, J.; Reimanis, I. The effect of Ni and Fe on the decomposition of yttrium doped barium zirconate thin films. Scr. Mater. 2021, 201, 113948. [Google Scholar] [CrossRef]
- Graça, V.C.D.; Loureiro, F.J.A.; Holz, L.I.V.; Mikhalev, S.M.; Fagg, D.P. Toward improved chemical stability of yttrium-doped barium cerate by the introduction of nickel oxide. J. Am. Ceram. Soc. 2022, 105, 6271–6283. [Google Scholar] [CrossRef]
- Plekhanov, M.S.; Thomä, S.L.J.; Zobel, M.; Cuello, G.J.; Fischer, H.E.; Raskovalov, A.A.; Kuzmin, A.V. Correlating Proton Diffusion in Perovskite Triple-Conducting Oxides with Local and Defect Structure. Chem. Mater. 2022, 34, 4785–4794. [Google Scholar] [CrossRef]
- Raimondi, G.; Giannici, F.; Longo, A.; Merkle, R.; Chiara, A.; Hoedl, M.F.; Martorana, A.; Maier, J. X-ray Spectroscopy of (Ba,Sr,La)(Fe,Zn,Y)O3−δ Identifies Structural and Electronic Features Favoring Proton Uptake. Chem. Mater. 2020, 32, 8502–8511. [Google Scholar] [CrossRef]
- Kim, E.; Yamazaki, Y.; Haile, S.M.; Yoo, H.-I. Effect of NiO sintering-aid on hydration kinetics and defect-chemical parameters of BaZr0.8Y0.2O3−Δ. Solid State Ion. 2015, 275, 23–28. [Google Scholar] [CrossRef]
- Shimura, T.; Tanaka, H.I.; Matsumoto, H.; Yogo, T. Influence of the transition-metal doping on conductivity of a BaCeO3-based protonic conductor. Solid State Ion. 2005, 176, 2945–2950. [Google Scholar] [CrossRef]
- Medvedev, D.A.; Murashkina, A.A.; Demin, A.K. Formation of dense electrolytes based on BaCeO3 and BaZrO3 for application in solid oxide fuel cells: The role of solid-state reactive sintering. Rev. J. Chem. 2015, 5, 193–214. [Google Scholar] [CrossRef]
- Vdovin, G.K.; Rudenko, A.O.; Antonov, B.D.; Malkov, V.B.; Demin, A.K.; Medvedev, D.A. Manipulating the grain boundary properties of BaCeO3-based ceramic materials through sintering additives introduction. Chim. Technol. Acta 2019, 6, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Heras-Juaristi, G.; Perez-Coll, D.; Mather, G.C. Effect of sintering conditions on the electrical-transport properties of the SrZrO3-based protonic ceramic electrolyser membrane. J. Power Sources 2016, 331, 435–444. [Google Scholar] [CrossRef]
- Nasani, N.; Shakel, Z.; Loureiro, F.J.A.; Panigrahi, B.B.; Kale, B.B.; Fagg, D.P. Exploring the impact of sintering additives on the densification and conductivity of BaCe0.3Zr0.55Y0.15O3-δ electrolyte for protonic ceramic fuel cells. J. Alloys Compd. 2021, 862, 158640. [Google Scholar] [CrossRef]
- Ricote, S.; Bonanos, N.; Manerbino, A.; Sullivan, N.P.; Coors, W.G. Effects of the fabrication process on the grainboundary resistance in BaZr0.9Y0.1O3-δ. J. Mater. Chem. A 2014, 2, 16107–16115. [Google Scholar] [CrossRef]
Sample | A, Å | B, Å | C, Å | Volume, Å3 |
---|---|---|---|---|
La0.95Ba0.05ScO3-δ standard sintering | 5.780 | 8.110 | 5.697 | 267.1 |
La0.95Ba0.05ScO3-δ vacuum 1800 °C | 5.784 | 8.105 | 5.692 | 266.9 |
La0.95Ba0.05ScO3-δ + 0.5 wt% Co3O4 | 5.778 | 8.106 | 5.693 | 266.7 |
Sample | La | Ba | Sc | Co | [Ba]/[La] |
---|---|---|---|---|---|
La0.95Ba0.05ScO3-δ vacuum 1800 °C | 47.25 | 2.42 | 50.33 | - | 0.05 |
La0.95Ba0.05ScO3-δ + 0.5 wt% Co3O4 | 46.87 | 2.27 | 49.98 | 0.88 | 0.048 |
Conductivity | LBS | LBS + Co |
---|---|---|
Bulk | 0.62 eV | 0.89 eV |
GB | 0.98 eV | 0.95 eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesnichyova, A.; Belyakov, S.; Stroeva, A.; Petrova, S.; Kaichev, V.; Kuzmin, A. Densification and Proton Conductivity of La1-xBaxScO3-δ Electrolyte Membranes. Membranes 2022, 12, 1084. https://doi.org/10.3390/membranes12111084
Lesnichyova A, Belyakov S, Stroeva A, Petrova S, Kaichev V, Kuzmin A. Densification and Proton Conductivity of La1-xBaxScO3-δ Electrolyte Membranes. Membranes. 2022; 12(11):1084. https://doi.org/10.3390/membranes12111084
Chicago/Turabian StyleLesnichyova, Alyona, Semyon Belyakov, Anna Stroeva, Sofia Petrova, Vasiliy Kaichev, and Anton Kuzmin. 2022. "Densification and Proton Conductivity of La1-xBaxScO3-δ Electrolyte Membranes" Membranes 12, no. 11: 1084. https://doi.org/10.3390/membranes12111084