Separation of Neodymium (III) and Lanthanum (III) via a Flat Sheet-Supported Liquid Membrane with Different Extractant-Acid Systems
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Nd/La Separation in the 204P-H2SO4 System
3.2. Nd/La Separation in the TBP-HNO3 System
3.3. The Effect of Different Types of Strip Solution
3.4. The Effect of Auxiliary Agent
3.5. Stability of SLM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Omodara, L.; Pitkäaho, S.; Turpeinen, E.-M.; Saavalainen, P.; Oravisjärvi, K.; Keiski, R.L. Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications—A review. J. Clean. Prod. 2019, 236, 117573. [Google Scholar] [CrossRef]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Kim, D.; Powell, L.; Delmau, L.H.; Peterson, E.S.; Herchenroeder, J.; Bhave, R.R. A supported liquid membrane system for the selective recovery of rare earth elements from neodymium-based permanent magnets. Sep. Sci. Technol. 2016, 51, 1716–1726. [Google Scholar] [CrossRef]
- Ni’am, A.C.; Wang, Y.F.; Chen, S.W.; Chang, G.M.; You, S.J. Simultaneous recovery of rare earth elements from waste permanent magnets (WPMs) leach liquor by solvent extraction and hollow fiber supported liquid membrane. Chem. Eng. Process. Process Intensif. 2020, 148, 107831. [Google Scholar] [CrossRef]
- Kim, D.; Powell, L.E.; Delmau, L.H.; Peterson, E.S.; Herchenroeder, J.; Bhave, R.R. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction. Environ. Sci. Technol. 2015, 49, 9452–9459. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Friedrich, B. Development of a recycling process for nickel-metal hydride batteries. J. Power Sources 2006, 158, 1498–1509. [Google Scholar] [CrossRef]
- Vander Hoogerstraete, T.; Binnemans, K. Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl (tetradecyl) phosphonium nitrate: A process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride bat. Green Chem. 2014, 16, 1594–1606. [Google Scholar] [CrossRef] [Green Version]
- Yun, X.I.A.; Liansheng, X.; Jiying, T.; Zhaoyang, L.; Li, Z. Recovery of rare earths from acid leach solutions of spent nickel-metal hydride batteries using solvent extraction. J. Rare Earths 2015, 33, 1348–1354. [Google Scholar]
- Anitha, M.; Ambare, D.N.; Kotekar, M.K.; Singh, D.K.; Singh, H. Studies on Permeation of Nd (III) through Supported Liquid Membrane Using DNPPA + TOPO as Carrier. Sep. Sci. Technol. 2013, 48, 2196–2203. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Schreiner, B. Separation Hydrometallurgy of Rare Earth Elements; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319282350. [Google Scholar]
- Jiang, F.; Yin, S.; Srinivasakannan, C.; Li, S.; Peng, J. Separation of lanthanum and cerium from chloride medium in presence of complexing agent along with EHEHPA (P507) in a serpentine microreactor. Chem. Eng. J. 2018, 334, 2208–2214. [Google Scholar] [CrossRef]
- Gras, M.; Papaiconomou, N.; Chainet, E.; Tedjar, F.; Billard, I. Separation of cerium(III) from lanthanum(III), neodymium(III) and praseodymium(III) by oxidation and liquid-liquid extraction using ionic liquids. Sep. Purif. Technol. 2017, 178, 169–177. [Google Scholar] [CrossRef]
- Habibpour, R.; Dargahi, M.; Kashi, E.; Bagherpour, M. Comparative study on Ce (III) and la (III) solvent extraction and separation from a nitric acid medium by D2EHPA and Cyanex272. Metall. Res. Technol. 2018, 115, 2017083. [Google Scholar] [CrossRef]
- Huang, X.W.; Li, J.N.; Zhang, Y.Q.; Long, Z.Q.; Wang, C.M.; Xue, X.X. Synergistic extraction of Nd and Sm3+ from sulfuric acid medium with D2EHPA-HEHEHP in kerosine. Zhongguo Youse Jinshu Xuebao/Chin. J. Nonferrous Met. 2008, 18, 366–371. [Google Scholar] [CrossRef]
- Chang, H.; Li, M.; Liu, Z.; Hu, Y.; Zhang, F. Study on separation of rare earth elements in complex system. J. Rare Earths 2010, 28, 116–119. [Google Scholar] [CrossRef]
- Chen, K.; He, Y.; Srinivasakannan, C.; Li, S.; Yin, S.; Peng, J.; Guo, S.; Zhang, L. Characterization of the interaction of rare earth elements with P507 in a microfluidic extraction system using spectroscopic analysis. Chem. Eng. J. 2019, 356, 453–460. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, F.; Bian, X.; Xue, S.; Yin, S.; Zheng, Q. Effect of loaded organic phase containing mixtures of silicon and aluminum, single iron on extraction of lanthanum in saponification P507-HCl system. J. Rare Earths 2013, 31, 722–726. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.A.; Dreisinger, D.; Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014, 56, 10–28. [Google Scholar] [CrossRef]
- Banda, R.; Jeon, H.; Lee, M. Solvent extraction separation of Pr and Nd from chloride solution containing la using Cyanex 272 and its mixture with other extractants. Sep. Purif. Technol. 2012, 98, 481–487. [Google Scholar] [CrossRef]
- Smith, R.C.; Taggart, R.K.; Hower, J.C.; Wiesner, M.R.; Hsu-Kim, H. Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes. Environ. Sci. Technol. 2019, 53, 4490–4499. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Shah, Z.; Sun, G.; Peng, X.; Cui, Y. Recovery of rare earths from phosphate ores through supported liquid membrane using N,N,N′,N′-tetraoctyl diglycol amide. Miner. Eng. 2019, 139, 105861. [Google Scholar] [CrossRef]
- Kocherginsky, N.M.; Yang, Q.; Seelam, L. Recent advances in supported liquid membrane technology. Sep. Purif. Technol. 2007, 53, 171–177. [Google Scholar] [CrossRef]
- Juang, R.-S.; Huang, R.-H. Equilibrium studies on reactive extraction of lactic acid with an amine extractant. Chem. Eng. J. 1997, 65, 47–53. [Google Scholar] [CrossRef]
- Parthasarathy, N.; Pelletier, M.; Buffle, J. Hollow fiber based supported liquid membrane: A novel analytical system for trace metal analysis. Anal. Chim. Acta 1997, 350, 183–195. [Google Scholar] [CrossRef]
- Li, L.; Davis, K.; King, A.; Dal-Cin, M.; Nicalek, A.; Yu, B. Efficient Separation of Nd(III) and La(III) Via Supported Liquid Membrane Using EHEHPA (P507) as a Carrier. J. Sustain. Metall. 2022, 8, 1215–1224. [Google Scholar] [CrossRef]
- Li, K.; Chen, J.; Zou, D. Extraction and recovery of cerium from rare earth ore by solvent extraction. Cerium Oxide Appl. Attrib. 2019. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.-W.; Long, Z.-Q.; Wang, L.-S.; Feng, Z.-Y. Technology development for rare earth cleaner hydrometallurgy in China. Rare Met. 2015, 34, 215–222. [Google Scholar] [CrossRef]
- Riaño, S.; Foltova, S.S.; Binnemans, K. Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: Batch and mixer-settler experiments. RSC Adv. 2020, 10, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Guo, F.; Zhang, Z.; Li, D.; Wang, Z. A new hydrometallurgical process for extracting rare earths from apatite using solvent extraction with P350. J. Alloys Compd. 2006, 408, 995–998. [Google Scholar] [CrossRef]
- Fu, N.; Tanaka, M. Modeling of the equilibria of yttrium (III) and europium (III) solvent extraction from nitric acid with PC-88A. Mater. Trans. 2006, 47, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Ganesh, S.; Velavendan, P.; Pandey, N.K.; Mallika, C.; Mudali, U.K.; Natarajan, R. Thermodynamics of solubility of tri-n-butyl phosphate in nitric acid solutions. Adv. Chem. Eng. Res. 2013, 2, 55–60. [Google Scholar]
- Neplenbroek, A.M.; Bargeman, D.; Smolders, C.A. Supported liquid membranes: Instability effects. J. Memb. Sci. 1992, 67, 121–132. [Google Scholar] [CrossRef]
- Dozol, J.F.; Casas, J.; Sastre, A. Stability of flat sheet supported liquid membranes in the transport of radionuclides from reprocessing concentrate solutions. J. Memb. Sci. 1993, 82, 237–246. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Yu, B.; Davis, K.; King, A.; Dal-Cin, M.; Nicalek, A.; Du, N. Separation of Neodymium (III) and Lanthanum (III) via a Flat Sheet-Supported Liquid Membrane with Different Extractant-Acid Systems. Membranes 2022, 12, 1197. https://doi.org/10.3390/membranes12121197
Li L, Yu B, Davis K, King A, Dal-Cin M, Nicalek A, Du N. Separation of Neodymium (III) and Lanthanum (III) via a Flat Sheet-Supported Liquid Membrane with Different Extractant-Acid Systems. Membranes. 2022; 12(12):1197. https://doi.org/10.3390/membranes12121197
Chicago/Turabian StyleLi, Lin, Ben Yu, Krystal Davis, Aaron King, Mauro Dal-Cin, Andrzej Nicalek, and Naiying Du. 2022. "Separation of Neodymium (III) and Lanthanum (III) via a Flat Sheet-Supported Liquid Membrane with Different Extractant-Acid Systems" Membranes 12, no. 12: 1197. https://doi.org/10.3390/membranes12121197
APA StyleLi, L., Yu, B., Davis, K., King, A., Dal-Cin, M., Nicalek, A., & Du, N. (2022). Separation of Neodymium (III) and Lanthanum (III) via a Flat Sheet-Supported Liquid Membrane with Different Extractant-Acid Systems. Membranes, 12(12), 1197. https://doi.org/10.3390/membranes12121197