Reinforced Nafion Membrane with Ultrathin MWCNTs/Ceria Layers for Durable Proton-Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Surface-Modified MWCNTs and the Mixed Solution of MWCNTs/CeO2
2.2. Fabrication of the MWCNTs/CeO2-Coated Membranes and the MEAs
2.3. Fenton’s Test and Stress–Strain Measurements for the Prepared Membranes
2.4. Fuel Cell Performance Measurements and Electrochemical Analysis
2.5. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Lei, L.; Zhang, Z.; Chen, L.; Tao, W.-Q. Application of similarity theory in the study of proton exchange membrane fuel cells: A comprehensive review of recent developments and future research requirements. Energy Storage Sav. 2021, 1, 3–21. [Google Scholar] [CrossRef]
- Xiong, K.; Wu, W.; Wang, S.; Zhang, L. Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review. Appl. Energy 2021, 301, 117443. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H. Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System. ChemSusChem 2021, 15, e202101798. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, C.; He, Q.; Wu, Q.; Jackson, L.; Mao, L. Effectiveness of PEMFC historical state and operating mode in PEMFC prognosis. Int. J. Hydrogen Energy 2020, 45, 32355–32366. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Durability-Adjusted Fuel Cell System Cost. DOE Hydrogen Program Record #21001. 7 January 2021. Available online: https://www.hydrogen.energy.gov/pdfs/21001-durability-adjusted-fcs-cost.pdf (accessed on 29 September 2022).
- Ma, S.; Qin, Y.; Liu, Y.; Sun, L.; Guo, Q.; Yin, Y. Delamination evolution of PEM fuel cell membrane/CL interface under asymmetric RH cycling and CL crack location. Appl. Energy 2022, 310, 118551. [Google Scholar] [CrossRef]
- Park, H.; Tinh, V.D.C.; Kim, D. Surface hydrophilization toward the proton conductive porous PTFE substrate impregnating SPEEK for polymer electrolyte membranes. Prog. Org. Coat. 2021, 163, 106643. [Google Scholar] [CrossRef]
- Park, G.-C.; Kim, D. Porous PTFE reinforced SPEEK proton exchange membranes for enhanced mechanical, dimensional, and electrochemical stability. Polymer 2021, 218, 123506. [Google Scholar] [CrossRef]
- Ishikawa, H.; Fujita, Y.; Tsuji, J.; Kusakabe, M.; Miyake, J.; Sugawara, Y.; Miyatake, K.; Uchida, M. Durability of Sulfonated Phenylene Poly(Arylene Ether Ketone) Semiblock Copolymer Membrane in Wet-Dry Cycling for PEFCs. J. Electrochem. Soc. 2017, 164, F1204–F1210. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, M.; Shi, W.; Liu, W.; Liu, J.; Xing, D.; Yao, Y.; Hou, Z.; Ming, P.; Gu, J.; et al. The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests. Int. J. Hydrogen Energy 2014, 39, 14381–14390. [Google Scholar] [CrossRef]
- Lee, K.A.; Yoon, K.R.; Kwon, S.H.; Jo, S.; Lee, J.S.; Lee, K.-Y.; Lee, S.W.; Kim, J.Y. Post-assembly modification of polymeric composite membranes using spin drying for fuel cell applications. J. Mater. Chem. A 2019, 7, 7380–7388. [Google Scholar] [CrossRef]
- Choi, J.; Lee, C.; Hawkins, S.C.; Huynh, C.P.; Park, J.; Jeon, Y.; Truong, Y.B.; Kyratzis, I.L.; Shul, Y.-G.; Caruso, R.A. Direct spun aligned carbon nanotube web-reinforced proton exchange membranes for fuel cells. RSC Adv. 2014, 4, 32787–32790. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Wu, Z.; Wei, Z.; Zhang, W.; Wu, J.; Li, Y.; Li, J.; Qu, K.; Cai, W. Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell. Renew. Energy 2020, 153, 935–939. [Google Scholar] [CrossRef]
- Lee, C.; Park, J.; Jeon, Y.; Park, J.-I.; Einaga, H.; Truong, Y.B.; Kyratzis, I.L.; Mochida, I.; Choi, J.; Shul, Y.-G. Phosphate-Modified TiO2/ZrO2 Nanofibrous Web Composite Membrane for Enhanced Performance and Durability of High-Temperature Proton Exchange Membrane Fuel Cells. Energy Fuels 2017, 31, 7645–7652. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, R.; Tian, T.; Liu, H.; Zhang, H.; Tang, H. Self-Assembly-Cooperating in Situ Construction of MXene–CeO2 as Hybrid Membrane Coating for Durable and High-Performance Proton Exchange Membrane Fuel Cell. ACS Sustain. Chem. Eng. 2022, 10, 4269–4278. [Google Scholar] [CrossRef]
- Ibrahim, A.; Hossain, O.; Chaggar, J.; Steinberger-Wilckens, R.; El-Kharouf, A. GO-nafion composite membrane development for enabling intermediate temperature operation of polymer electrolyte fuel cell. Int. J. Hydrogen Energy 2020, 45, 5526–5534. [Google Scholar] [CrossRef]
- Gahlot, S.; Kulshrestha, V. Dramatic Improvement in Water Retention and Proton Conductivity in Electrically Aligned Functionalized CNT/SPEEK Nanohybrid PEM. ACS Appl. Mater. Interfaces 2015, 7, 264–272. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Qiao, R.; Xing, Y.; Li, H. Reinforced Composite Membranes Based on Expanded Polytetrafluoroethylene Skeletons Modified by a Surface Sol–Gel Process for Fuel Cell Applications. Energy Fuels 2021, 35, 12482–12494. [Google Scholar] [CrossRef]
- Huo, Y.; Li, Q.; Rui, Z.; Ding, R.; Liu, J.; Liu, J. A highly stable reinforced PEM assisted by resveratrol and polydopamine-treated PTFE. J. Membr. Sci. 2021, 635, 119453. [Google Scholar] [CrossRef]
- Baker, A.M.; Wang, L.; Johnson, W.B.; Prasad, A.K.; Advani, S.G. Nafion Membranes Reinforced with Ceria-Coated Multiwall Carbon Nanotubes for Improved Mechanical and Chemical Durability in Polymer Electrolyte Membrane Fuel Cells. J. Phys. Chem. C 2014, 118, 26796–26802. [Google Scholar] [CrossRef]
- Choi, E.; Kim, S.M.; Jang, S. Highly Durable Membrane Electrode Assembly with Multiwalled Carbon Nanotubes/CeO2-Reinforced Nafion Composite Membrane by Spraying Method for Fuel Cell Applications. Adv. Mater. Technol. 2022, 7, 2101360. [Google Scholar] [CrossRef]
- Steffy, N.J.; Parthiban, V.; Sahu, A.K. Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity. J. Membr. Sci. 2018, 563, 65–74. [Google Scholar] [CrossRef]
- Breitwieser, M.; Klose, C.; Klingele, M.; Hartmann, A.; Erben, J.; Cho, H.; Kerres, J.; Zengerle, R.; Thiele, S. Simple fabrication of 12 μm thin nanocomposite fuel cell membranes by direct electrospinning and printing. J. Power Sources 2017, 337, 137–144. [Google Scholar] [CrossRef]
- Klingele, M.; Britton, B.; Breitwieser, M.; Vierrath, S.; Zengerle, R.; Holdcroft, S.; Thiele, S. A completely spray-coated membrane electrode assembly. Electrochem. Commun. 2016, 70, 65–68. [Google Scholar] [CrossRef]
- Parnian, M.J.; Rowshanzamir, S.; Prasad, A.K.; Advani, S.G. High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications. J. Membr. Sci. 2018, 556, 12–22. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, J.; Zheng, Y.; Xiao, M.; Gao, R.; Zhang, Z.; Wen, G.; Dou, H.; Deng, Y.; Yu, A.; et al. Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells. Adv. Energy Mater. 2021, 12, 2102665. [Google Scholar] [CrossRef]
- Baker, A.; Mukundan, R.; Spernjak, D.; Judge, E.; Advani, S.; Prasad, A.K.; Borup, R.L. Cerium Migration during PEM Fuel Cell Accelerated Stress Testing. J. Electrochem. Soc. 2016, 163, F1023–F1031. [Google Scholar] [CrossRef]
- Akrout, A.; Delrue, A.; Zatoń, M.; Duquet, F.; Spanu, F.; Taillades-Jacquin, M.; Cavaliere, S.; Jones, D.; Rozière, J. Immobilisation and Release of Radical Scavengers on Nanoclays for Chemical Reinforcement of Proton Exchange Membranes. Membranes 2020, 10, 208. [Google Scholar] [CrossRef]
- Ngo, P.M.; Nakajima, H.; Karimata, T.; Saitou, T.; Ito, K. Investigation of in-situ catalytic combustion in polymer-electrolyte-membrane fuel cell during combined chemical and mechanical stress test. J. Power Sources 2022, 542, 231803. [Google Scholar] [CrossRef]
- Zatoń, M.; Prélot, B.; Donzel, N.; Rozière, J.; Jones, D.J. Migration of Ce and Mn Ions in PEMFC and Its Impact on PFSA Membrane Degradation. J. Electrochem. Soc. 2018, 165, F3281–F3289. [Google Scholar] [CrossRef]
- Schlick, S.; Danilczuk, M.; Drews, A.R.; Kukreja, R.S. Scavenging of Hydroxyl Radicals by Ceria Nanoparticles: Effect of Particle Size and Concentration. J. Phys. Chem. C 2016, 120, 6885–6890. [Google Scholar] [CrossRef]
- Baker, A.M.; Stewart, S.M.; Ramaiyan, K.P.; Banham, D.; Ye, S.; Garzon, F.; Mukundan, R.; Borup, R.L. Doped Ceria Nanoparticles with Reduced Solubility and Improved Peroxide Decomposition Activity for PEM Fuel Cells. J. Electrochem. Soc. 2021, 168, 024507. [Google Scholar] [CrossRef]
- Ahn, J.; Ali, M.; Lim, J.; Park, Y.; Park, I.; Duchesne, D.; Chen, L.; Kim, J.; Lee, C. Highly Dispersed CeOx Hybrid Nanoparticles for Perfluorinated Sulfonic Acid Ionomer–Poly(tetrafluoethylene) Reinforced Membranes with Improved Service Life. Membranes 2021, 11, 143. [Google Scholar] [CrossRef]
- Baker, A.M.; Crothers, A.R.; Chintam, K.; Luo, X.; Weber, A.Z.; Borup, R.L.; Kusoglu, A. Morphology and Transport of Multivalent Cation-Exchanged Ionomer Membranes Using Perfluorosulfonic Acid–CeZ+ as a Model System. ACS Appl. Polym. Mater. 2020, 2, 3642–3656. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Matian, M.; Van Herle, J. Poisoning Effects of Cerium Oxide (CeO2) on the Performance of Proton Exchange Membrane Fuel Cells (PEMFCs). ChemEngineering 2022, 6, 36. [Google Scholar] [CrossRef]
- Tinh, V.D.C.; Kim, D. Enhancement of oxidative stability of PEM fuel cell by introduction of HO• radical scavenger in Nafion ionomer. J. Membr. Sci. 2020, 613, 118517. [Google Scholar] [CrossRef]
- Kang, Y.S.; Jang, S.; Choi, E.; Jo, S.; Kim, S.M.; Yoo, S.J. Sandwich-like Nafion composite membrane with ultrathin ceria barriers for durable fuel cells. Int. J. Energy Res. 2021, 46, 6457–6470. [Google Scholar] [CrossRef]
- Lee, S.; Jang, W.; Kim, M.; Shin, J.E.; Park, H.B.; Jung, N.; Whang, D. Rational Design of Ultrathin Gas Barrier Layer via Reconstruction of Hexagonal Boron Nitride Nanoflakes to Enhance the Chemical Stability of Proton Exchange Membrane Fuel Cells. Small 2019, 15, e1903705. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Souza, L.P.; Martins, T.M.M.; Lopes, J.H.; Mattos, B.D.; Mariano, M.; Pinheiro, I.F.; Valverde, T.M.; Livi, S.; Camilli, J.A.; et al. Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. Nanoscale 2019, 11, 19842–19849. [Google Scholar] [CrossRef] [Green Version]
- Sezer, N.; Koç, M. Oxidative acid treatment of carbon nanotubes. Surf. Interfaces 2018, 14, 1–8. [Google Scholar] [CrossRef]
- Hoa, L.T.M. Characterization of Multi-Walled Carbon Nanotubes Functionalized by a Mixture of HNO3/H2SO4. Diam. Relat. Mater. 2018, 89, 43–51. [Google Scholar]
- Park, D.; Ju, H.; Oh, T.; Kim, J. A p-type multi-wall carbon nanotube/Te nanorod composite with enhanced thermoelectric performance. RSC Adv. 2018, 8, 8739–8746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siamaki, A.R.; Lin, Y.; Woodberry, K.; Connell, J.W.; Gupton, B.F. Palladium nanoparticles supported on carbon nanotubes from solventless preparations: Versatile catalysts for ligand-free Suzuki cross coupling reactions. J. Mater. Chem. A 2013, 1, 12909–12918. [Google Scholar] [CrossRef]
- Restivo, J.; Orge, C.A.; Santos, A.S.G.; Soares, O.S.G.; Pereira, M.F.R. Nano- and macro-structured cerium oxide—Carbon nanotubes composites for the catalytic ozonation of organic pollutants in water. Catal. Today 2022, 384–386, 187–196. [Google Scholar] [CrossRef]
- Choi, D. Electrochemical Analysis of Polymer Membrane with Inorganic Nanoparticles for High-Temperature PEM Fuel Cells. Membranes 2022, 12, 680. [Google Scholar] [CrossRef] [PubMed]
- Munusamy, P.; Sanghavi, S.; Varga, T.; Suntharampillai, T. Silica supported ceria nanoparticles: A hybrid nanostructure to increase stability and surface reactivity of nano-crystalline ceria. RSC Adv. 2014, 4, 8421–8430. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Gholami, M.R. Fabrication of Novel Ternary Au/CeO2@g-C3N4 Nanocomposite: Kinetics and Mechanism Investigation of 4-Nitrophenol Reduction, and Benzyl Alcohol Oxidation. Appl. Phys. A 2018, 124, 441. [Google Scholar] [CrossRef]
- Amadine, O.; Essamlali, Y.; Fihri, A.; Larzek, M.; Zahouily, M. Effect of calcination temperature on the structure and catalytic performance of copper–ceria mixed oxide catalysts in phenol hydroxylation. RSC Adv. 2017, 7, 12586–12597. [Google Scholar] [CrossRef] [Green Version]
- Jha, S.K.; Kumar, C.N.; Raj, R.P.; Jha, N.S.; Mohan, S. Synthesis of 3d Porous CeO2/Reduced Graphene Oxide Xerogel Composite and Low Level Detection of H2O2. Electrochim. Acta 2014, 120, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Bom, D.; Andrews, R.; Jacques, D.; Anthony, J.; Chen, B.; Meier, A.M.S.; Selegue, J.P. Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry. Nano Lett. 2002, 2, 615–619. [Google Scholar] [CrossRef]
- Cele, N.P.; Ray, S.S.; Pillai, S.K.; Ndwandwe, M.; Nonjola, S.; Sikhwivhilu, L.; Mathe, M.K. Carbon Nanotubes Based Nafion Composite Membranes for Fuel Cell Applications. Fuel Cells 2010, 10, 64–71. [Google Scholar] [CrossRef]
- Kim, A.R.; Vinothkannan, M.; Song, M.H.; Lee, J.-Y.; Lee, H.-K.; Yoo, D.J. Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly(ether ether ketone) membrane: Effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity. Compos. B Eng. 2020, 188, 107890. [Google Scholar] [CrossRef]
- Frühwirt, P.; Kregar, A.; Törring, J.T.; Katrašnik, T.; Gescheidt, G. Holistic approach to chemical degradation of Nafion membranes in fuel cells: Modelling and predictions. Phys. Chem. Chem. Phys. 2020, 22, 5647–5666. [Google Scholar] [CrossRef] [PubMed]
- Gubler, L.; Dockheer, S.M.; Koppenol, W.H. Radical (HO•, H• and HOO•) Formation and Ionomer Degradation in Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2011, 158, B755. [Google Scholar] [CrossRef]
- Sharma, P.P.; Kim, D. A Facile and Sustainable Enhancement of Anti-Oxidation Stability of Nafion Membrane. Membranes 2022, 12, 521. [Google Scholar] [CrossRef]
- Choi, J.; Yeon, J.H.; Yook, S.H.; Shin, S.; Kim, J.Y.; Choi, M.; Jang, S. Multifunctional Nafion/CeO2 Dendritic Structures for Enhanced Durability and Performance of Polymer Electrolyte Membrane Fuel Cells. ACS Appl. Mater. Interfaces 2021, 13, 806–815. [Google Scholar] [CrossRef]
- Park, Y.; Kim, D. Chemical Stability Enhancement of Nafion Membrane by Impregnation of a Novel Organic ·OH Radical Scavenger, 3,4-Dihydroxy-Cinnamic Acid. J. Membr. Sci. 2018, 566, 1–7. [Google Scholar] [CrossRef]
- Yuk, S.; Jung, J.; Song, K.-Y.; Lee, D.W.; Choi, S.; Doo, G.; Hyun, J.; Kwen, J.; Kim, J.Y.; Kim, H.-T. Addressing the detrimental effect of CeO2 radical scavenger on the durability of polymer electrolyte membrane fuel cells. Chem. Eng. J. 2023, 452, 139061. [Google Scholar] [CrossRef]
- Choi, S.R.; Kim, D.Y.; An, W.Y.; Choi, S.; Park, K.; Yim, S.-D.; Park, J.-Y. Assessing the degradation pattern and mechanism of membranes in polymer electrolyte membrane fuel cells using open-circuit voltage hold and humidity cycle test protocols. Mater. Sci. Energy Technol. 2022, 5, 66–73. [Google Scholar] [CrossRef]
Samples | Proton Conductivity | Dimensional Stability (%) | Water Uptake (%) | |||
---|---|---|---|---|---|---|
30 °C (S/cm) | 70 °C (S/cm) | X-Axis | Y-Axis | Z-Axis | ||
Reference NR211 | 0.1299 (-) | 0.2369 (-) | 11.0 | 12.5 | 12.0 | 20.0 |
NR211 with MWCNTs/CeO2 | 0.1265 (−2.6%) | 0.2289 (−3.4%) | 8.7 | 11.2 | 17.9 | 22.4 |
Tensile Strength (MPa) | Young’s Modulus (MPa) | Elongation at Break (%) | Accumulate Concentrate (ppm) | Fluorine Emission Rate (μmol h−1 g−1) | |
---|---|---|---|---|---|
Reference NR211 | 29.30 | 340.23 | 292 | 3.49 | 11.88 |
NR211 with MWCNTs/CeO2 | 28.34 | 408.29 | 268 | 1.03 | 3.26 |
Sample | OCV (V) | Current Density (A cm−2) | Peak Power Density (W cm−2) | Rohm (Ω cm2) | Rct (Ω cm2) |
---|---|---|---|---|---|
Before OCV test | |||||
Reference NR211 | 0.952 | 1.16 (-) | 0.783 (-) | 0.0508 (-) | 0.2248 (-) |
NR211 with MWCNTs/CeO2 | 0.960 | 1.08 (−6.90%) | 0.726 (−7.28%) | 0.0528 (+3.93%) | 0.2299 (+2.22%) |
After OCV test | |||||
Reference NR211 | 0.922 | 0.65 (-) | 0.537 (-) | 0.0531 (-) | 0.2174 (-) |
NR211 with MWCNTs/CeO2 | 0.953 | 0.89 (+36.92%) | 0.633 (+17.87%) | 0.0535 (+0.75%) | 0.1971 (−9.34%) |
Sample | Before OCV Test | After OCV Test | ||
---|---|---|---|---|
LSV (mA cm−2) | ECSA (m2 gpt−1) | LSV (mA cm−2) | ECSA (m2 gpt−1) | |
Reference NR211 | 2.25 | 46.95 | 3.00 | 41.44 |
NR211 with MWCNTs/CeO2 | 1.75 | 45.95 | 2.00 | 41.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Jang, Y.; Choi, E.; Chae, J.E.; Jang, S. Reinforced Nafion Membrane with Ultrathin MWCNTs/Ceria Layers for Durable Proton-Exchange Membrane Fuel Cells. Membranes 2022, 12, 1073. https://doi.org/10.3390/membranes12111073
Kim D, Jang Y, Choi E, Chae JE, Jang S. Reinforced Nafion Membrane with Ultrathin MWCNTs/Ceria Layers for Durable Proton-Exchange Membrane Fuel Cells. Membranes. 2022; 12(11):1073. https://doi.org/10.3390/membranes12111073
Chicago/Turabian StyleKim, Dongsu, Yeonghwan Jang, Eunho Choi, Ji Eon Chae, and Segeun Jang. 2022. "Reinforced Nafion Membrane with Ultrathin MWCNTs/Ceria Layers for Durable Proton-Exchange Membrane Fuel Cells" Membranes 12, no. 11: 1073. https://doi.org/10.3390/membranes12111073
APA StyleKim, D., Jang, Y., Choi, E., Chae, J. E., & Jang, S. (2022). Reinforced Nafion Membrane with Ultrathin MWCNTs/Ceria Layers for Durable Proton-Exchange Membrane Fuel Cells. Membranes, 12(11), 1073. https://doi.org/10.3390/membranes12111073