Comparison of the Possibilities of Environmental Usage of Sewage Sludge from Treatment Plants Operating with MBR and SBR Technology
Abstract
:1. Introduction
2. Characteristics of Wastewater Treatment Plants Using MBRs
Advantages of Biological Membrane Reactors
3. Materials and Methods
3.1. Characteristics of Wastewater Treatment Plants and Sites for Agricultural Use of Sludge
3.2. Sewage Sludge Analysis
3.3. Mobility of Heavy Metals
3.4. Risk Indicators for Accumulation of Heavy Metals
3.4.1. Geo-accumulation Index of Heavy Metals in Soil (Igeo)
- Cn—Heavy metal content of sewage sludge, mg/kg d.m.;
- Bn—Heavy metal content in soil, mg/kg d.m.
3.4.2. Risk Assessment Code (RAC)
- F1—heavy metal content of the FI fraction, mg/kg d.m.;
- HM—total heavy metal content, mg/kg d.m.
RAC Value | Level of Pollution |
---|---|
<1 | No pollution |
1–10 | Low pollution |
11–30 | Moderate pollution |
31–50 | High pollution |
>50 | Very high pollution |
3.4.3. Potential Environmental Risk Indicator (ER)
- —pollution factor;
- —concentration of the i-th element of heavy metals in sewage sludge, mg/kg d.m.;
- —concentration of the i-th element of heavy metals in soil, mg/kg d.m.
- —indicator of the potential ecological risk of the i-th element of heavy metals;
- —toxicity factor of the i-th element of heavy metals.
3.4.4. Environmental Risk Determinant (ERD)
- Fp1 = F1; F1—metal content in fraction FI on a scale of 0–1;
- Fp2 = F22; F2—metal content in fraction FII on a scale of 0–1;
- Fp3 = F33; F3—metal content in fraction FIII on a scale of 0–1.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Waste Management Plan. 2016. Available online: https://bip.mos.gov.pl/fileadmin/user_upload/bip/strategie_plany_programy/DGO/Krajowy_plan_gospodarki_odpadami_2022_____M.P._poz._784_.pdf (accessed on 30 May 2021).
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 30 May 2021).
- Durdevi´c, D.; Trstenjak, M.; Huleni´c, I. Sewage sludge thermal treatment technology selection by utilizing the analytical hierarchy process. Water 2020, 12, 1255. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Latosińska, J. Influence of temperature and time of sewage sludge incineration on the mobility of heavy metals. Environ. Prot. Eng. 2017, 43, 105–122. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Mijangos, I.; Epelde, L.; Garbisu, C. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Sci. Total Environ. 2019, 10, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Latosińska, J. Risk assessment of soil contamination with heavy metals from sewage sludge and ash after its incineration. Desalin. Water Treat. 2020, 199, 297–306. [Google Scholar] [CrossRef]
- Act on Waste of 14 December 2012 Journal of Laws. Item 21. 2013. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20130000021/T/D20130021L.pdf (accessed on 10 May 2021).
- Ministry of the Environment. Regulation of the Ministry of the Environment of 6 February 2015 on the Municipal Sewage Sludge (J. L. 2015, No. 0, Item. 257); Ministry of the Environment: Warsaw, Poland, 2015.
- Ministry of the Economy. Regulation of the Ministry of the Economy of 16 of 16 July 2015 on the Acceptance of Waste for Landfilling (J.L. 2015, No.0, Item. 1277); Ministry of the Economy: Warsaw, Poland, 2015.
- Ministry of Agriculture and Rural Development. Regulation of the Ministry of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (J.L. 2008, No. 119, item.765); Ministry of Agriculture and Rural Development: Warsaw, Poland, 2008.
- Andreoli, C.V.; Pegorini, E.S.; Fernandes, F.; Santos, H.F. Land Application of Sewage Sludge. In Sludge Treatment and Disposal; IWA Publishing: London, UK, 2007; pp. 162–206. [Google Scholar]
- European Commission. Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC); European Commission: Brussels, Belgium, 1986. [Google Scholar]
- Ministry of Environmental Protection of the People’s Republic of China. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2002.
- Code of Federal Regulations. Protection of Environment. Chapter I—Environmental Protection Agency (Continued), Subchapter O—Sewage Sludge, Part 503—Standards for The Use Or Disposal Of Sewage Sludge, Subpart B—Land Application, Section 503.13—Pollutant limits. July 1, 2010; Office of the Federal Register (United States): Washington, DC, USA, 2010.
- Water Research Commission. Guidelines for the Utilisation and Disposal of Wastewater Sludge. Vol. 2. Requirements for the Agricultural Use of Wastewater Sludge; WRC Report no: TT 262/06; WRC: Pretoria, South Africa, 2009. [Google Scholar]
- Siuta, J. Przyrodnicze Użytkowanie Odpadów; Instytut Ochrony Środowiska: Warsaw, Poland, 2002. [Google Scholar]
- Kowalik, R.; Latosińska, J.; Gawdzik, J. Risk Analysis of Heavy Metal Accumulation from Sewage Sludge of Selected Wastewater Treatment Plants in Poland. Water 2021, 13, 2070. [Google Scholar] [CrossRef]
- Bezak-Mazur, E. Specjacja w Ochronie i Inżynierii Środowiska; Polska Akademia Nauk: Kielce, Poland, 2014. [Google Scholar]
- Gonzalez, S.; Muller, J.; Petrovic, M.; Barcelo, D. Biodegradation studies of selected priority acidic pestcides and diclofenac in different bioreactors. Environ. Pollut. 2006, 144, 926–932. [Google Scholar] [CrossRef]
- Hermanowicz, S.W. Membrane Bioreactors: Past, Present and Future? In Water Resources Collections and Archives; University of California: Berkeley, CA, USA, 2011. [Google Scholar]
- Konieczny, K.; Ćwikła, J.; Szołtysek, M. The application of the membrane reactor to separation processes at a wastewater treatment plant. Monogr. Environ. Eng. 2014, 119, 79–92. [Google Scholar]
- Kimura, K.; Hara, H.; Watanabe, Y. Removal of pharmaceutical compounds by submerged membranę bioreactors (MBRs). Desalination 2007, 178, 134–138. [Google Scholar] [CrossRef]
- Szewczyk, K. Bioreaktory membranowe w ochronie środowiska. Wodociągi Kanaliz. 2007, 39, 61–63. [Google Scholar]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 2005, 39, 7698–7705. [Google Scholar] [CrossRef]
- Razavi, T.; Miri, A. Real petroleum refinery wastewater treatment using hollow fiber membrane bioreactor (HF-MBR). J. Water Proc. Eng. 2015, 8, 136–141. [Google Scholar] [CrossRef]
- Janus, M.; Mozia, S.; Bering, S.; Tarnowski, K.; Mazur, J.; Morawski, A. Application of MBR technology for laundry wastewater treatment. Desalin. Water Treat. 2017, 64, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Toshima, S.; Amy, G.; Watanabe, Y. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J. Membr. Sci. 2004, 245, 71–75. [Google Scholar] [CrossRef]
- Bodzek, M.; Dudziak, M.; Luks-Betlej, K. Application of membrane techniques to water purification. Removal of phthalates. Desalination 2004, 162, 121–128. [Google Scholar] [CrossRef]
- Fent, K.; Weston, A.; Caminada, D. Ecotoxicology of human pharmacceuticals. Aquat. Toxicol. 2006, 76, 122–142. [Google Scholar] [CrossRef] [PubMed]
- Łobos, E.; Bodzek, M. Wpływ zastosowania technik membranowych w bioreaktorach na zwiększoną biodegradację zanieczyszczeń. Monogr. Environ. Eng. 2004, 22, 623–629. [Google Scholar]
- Konieczny, K. Efektywność oczyszczania ścieków przy zastosowaniu reaktora membranowego. Rocz. Ochr. Sr. 2015, 17, 1034–1036. [Google Scholar]
- Cui, Z.; Chang, S.; Fane, A. Zastosowanie barbotażu gazu w celu usprawnienia procesów membranowych. J. Membr. Sci. 2003, 221, 1–35. [Google Scholar] [CrossRef]
- Meng, F.; Fenglin, Y.; Baoqiang, S.; Zhang, H. Kompleksowe badanie zanieczyszczenia membran w zanurzonych bioreaktorach membranowych pracujących przy różnych intensywnościach napowietrzania. Technol. Separacji Oczyszczania 2008, 59, 91–100. [Google Scholar]
- The Chief Inspectorate of Environmental Protection. Available online: http://www.gios.gov.pl/pl/stan-srodowiska/monitoring-jakosci-gleby-i-ziemi (accessed on 19 June 2021).
- Gawdzik, J. Mobility of heavy metals in sewage sludge on the example of a selected sewage treatment plan. Eng. Environ. Prot. 2012, 15, 5–15. [Google Scholar]
- Mizerna, K.; Król, A. Sequential extraction of heavy metals in mineral-organic composite. Ecol. Eng. Environ. Technol. 2018, 19, 23–29. [Google Scholar] [CrossRef]
- Karwowska, B.; Dąbrowska, L. Bioavailability of heavy metals in the municipal sewage sludge. Ecol. Chem. Eng. 2017, 24, 75–86. [Google Scholar]
- Jasińska, A. The importance of heavy metal speciation from the standpoint of the use of sewage sludge in nature. Eng. Environ. Prot. 2018, 21, 239–250. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1101. [Google Scholar] [CrossRef]
- Xiao, Z.; Yuan, X.; Leng, L.; Jiang, L.; Chen, X.; Zhibin, W.; Xin, P.; Jiachao, Z.; Zeng, G. Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge. Environ. Sci. Pollut. Res. 2016, 23, 3934–3942. [Google Scholar] [CrossRef]
- Czaplicka, A.; Ślusrczyk, Z.; Szarek-Gwiazda, E.; Bazan, S. Spatial distribution of iron and manganese in bottom sediments of the Goczałkowice Reservoir. Environ. Prot. 2017, 39, 47–54. [Google Scholar]
- Tytła, M.; Widzewicz, K.; Zielewicz, E. Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environ. Technol. 2016, 37, 899–908. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, H.; Zeng, G.; Li, H.; Wang, J.; Zhou, C.; Zhu, H.; Pei, X.; Liu, Z. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour. Technol. 2011, 102, 4104–4110. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Zhang, J.; Li, N.; Kong, L.; Yu, M.; Zuo, W. Distribution and risk assessment of heavy metals in sewage sludge after ozonation. Environ. Sci. Pollut. Res. 2017, 24, 5118–5125. [Google Scholar] [CrossRef]
- Latosińska, J.; Czapik, P. The ecological risk assessment and the chemical speciation of heavy metals in ash after the incineration of municipal sewage sludge. Sustainability 2020, 12, 6517. [Google Scholar] [CrossRef]
- Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Appl. Sci. 2021, 11, 548–561. [Google Scholar] [CrossRef]
- Shrivastava, S.K.; Banerjee, D.K. Speciation of metals in sewage sludge and sludge—Amended soils. Water. Air. Soil. Pollut. 2004, 152, 219–232. [Google Scholar] [CrossRef]
Region | Heavy Metals [mg/kg d.m.] | |||||
---|---|---|---|---|---|---|
Cd | Ni | Zn | Cu | Cr | Pb | |
Polish Regulation [9] | 20 | 300 | 2500 | 1000 | 500 | 750 |
EU Directive 86/278/EEC [13] | 20–40 | 300–400 | 2500–4000 | 1000–1750 | - | 750–1200 |
Chinese Regulation GB 18918-2002 pH > 6.5 [14] | 20 | 200 | 1000 | 500 | 1000 | 1000 |
USA Regulation 40 CFR Part 503, 503.13 [15] | 39 | 420 | 2800 | 1500 | - | 300 |
South African Guideline (Pollutant Class a) [16] | 40 | 42 | 2800 | 1500 | 1200 | 300 |
Type of WWTP | Membrane Biological Reactor (MBR) | Sequential Batch Reactor (SBR) | ||||
---|---|---|---|---|---|---|
Location of WWTP | S1-Święta Katarzyna | S2-Kunów | S3-Łomno | S4-Kostomłoty-Laskowa | S5-Sobków | S6-Daleszyce |
Equivalent Number of Residents | 2605 | 6687 | 3863 | 3333 | 3725 | 5000 |
Fraction | Form of Metal | Parameters of Fractionation | Time of Extraction, h |
---|---|---|---|
FI | Carbonate bound | 0.11 M CH3COOH, pH = 7.0, T = 20 °C | 16 |
FII | Fe/Mn oxides bound | 0.1 M NH2OH·HCl, pH = 2.0 | 16 |
FIII | Organic | 30% H2O2 + 8.8 M H2O2, pH = 2.0, T = 85 °C | 16 |
FIV | Residual | 10 M HNO3 + 10 M HCl, T = 100 °C | 3 |
Igeo Value | Level of Risk |
---|---|
<0 | No pollution |
0–1 | No pollution, moderate pollution |
1–2 | Moderate pollution |
2–3 | Moderate or high pollution |
3–4 | High pollution |
Value | Level of Risk |
---|---|
<40 | Low |
40–80 | Medium |
80–320 | High |
>320 | Very high |
Heavy Metal [mg/kg d.m.] | ||||||
---|---|---|---|---|---|---|
Fraction | Cu | Cr | Cd | Ni | Pb | Zn |
MBR WWTP Sewage sludge | ||||||
Sewage sludge Święta Katarzyna—S1 | ||||||
Fraction I | 7.53 ± 0.1 | 0.37 ± 0.1 | 1.19 ± 0.1 | 4.59 ± 0.2 | 7.97 ± 0.2 | 26.2 ± 1.2 |
Fraction II | 0.44 ± 0.1 | 0.21 ± 0.1 | 0.24 ± 0.1 | 0.31 ± 0.5 | 0.83 ± 0.1 | 8.45 ± 0.8 |
Fraction III | 101.92 ± 0.9 | 17.8 ± 0.9 | 3.48 ± 0.1 | 10.35 ± 0.1 | 17.05 ± 0.3 | 795.87 ± 9.8 |
Fraction IV | 15.14 ± 0.1 | 82.18 ± 2.8 | 33.55 ± 0.2 | 25.03 ± 0.3 | 62.15 ± 0.3 | 176.14 ± 2.0 |
ΣFI IV | 125.03 ± 0.9 | 100.56 ± 2.9 | 38.46 ± 0.2 | 40.28 ± 0.6 | 88.00 ± 0.05 | 1006.66 ± 10.1 |
Sewage sludge Kunów—S2 | ||||||
Fraction I | 2.72 ± 0.1 | 0.16 ± 0.1 | 0.07 ± 0.1 | 0.76 ± 0.5 | 0.4 ± 0.1 | 53.93 ± 1.1 |
Fraction II | 7.39 ± 0.6 | 0.09 ± 0.1 | 0.00 ± 0.1 | 0.54 ± 0.5 | 0.00 ± 0.2 | 29.13 ± 1.2 |
Fraction III | 298.64 ± 0.9 | 18.89 ± 0.9 | 2.04 ± 0.2 | 30.64 ± 0.1 | 12.57 ± 0.2 | 1544.97 ± 15 |
Fraction IV | 255.62 ± 0.2 | 79.71 ± 2.7 | 9.88 ± 0.1 | 75.60 ± 0.1 | 91.60 ± 1.3 | 835.44 ± 4.2 |
ΣFI IV | 564.36 ± 0.4 | 98.84 ± 2.8 | 11.99 ± 0.2 | 107.53 ± 0.7 | 104.57 ± 0.3 | 2463.46 ± 15.6 |
Sewage sludge Łomno—S3 | ||||||
Fraction I | 5.49 ± 0.1 | 0.44 ± 0.1 | 2.19 ± 0.1 | 3.91 ± 0.2 | 1.52 ± 0.1 | 242.04 ± 3.3 |
Fraction II | 14.38 ± 0.1 | 0.13 ± 0.1 | 0.28 ± 0.1 | 1.85 ± 0.1 | 4.01 ± 0.2 | 110.38 ± 9.1 |
Fraction III | 225.79 ± 0.6 | 17.88 ± 0.9 | 1.35 ± 0.4 | 9.04 ± 0.6 | 17.1 ± 0.1 | 296.01 ± 7.1 |
Fraction IV | 309.45 ± 0.1 | 61.85 ± 2.4 | 8.26 ± 0.1 | 66.22 ± 0.4 | 253.52 ± 9.3 | 108.22 ± 9.1 |
ΣFI IV | 555.11 ± 0.6 | 80.30 ± 2.6 | 12.08 ± 0.4 | 81.02 ± 0.6 | 22.65 ± 9.3 | 756.65 ± 15.1 |
SBR WWTP Sewage sludge | ||||||
Sewage sludge Kostomłoty—S4 | ||||||
Fraction I | 0.3 ± 0.1 | 20 ± 0.9 | 4.7 ± 0.4 | 1.1 ± 0.1 | 0.0 ± 0.2 | 111.5 ± 9.3 |
Fraction II | 0.0 ± 0.1 | 3.2 ± 0.2 | 0.9 ± 0.1 | 0.3 ± 0.5 | 0.0 ± 0.2 | 109.7 ± 9.1 |
Fraction III | 6.7 ± 0.6 | 1.5 ± 0.1 | 1.5 ± 0.2 | 1.4 ± 0.2 | 0.0 ± 0.2 | 143.4 ± 9.8 |
Fraction IV | 2.3 ± 0.1 | 3.7 ± 0.4 | 0.3 ± 0.1 | 2.9 ± 0.2 | 275.2 ± 9.5 | 231.5 ± 7.1 |
ΣFI IV | 9.3 ± 0.6 | 28.4 ± 1.0 | 7.3 ± 0.5 | 5.7 ± 0.6 | 275.2 ± 9.5 | 596.0 ± 17.8 |
Sewage sludge Sobków—S5 | ||||||
Fraction I | 1.5 ± 0.1 | 0.3 ± 0.1 | 0.0 ± 0.1 | 2.0 ± 0.3 | 5.7 ± 0.5 | 111.6 ± 2.0 |
Fraction II | 1.0 ± 0.1 | 0.0 ± 0.1 | 0.2 ± 0.1 | 1.4 ± 0.1 | 4.6 ± 0.4 | 215.2 ± 3.3 |
Fraction III | 79.5 ± 0.3 | 11.2 ± 0.1 | 1.0 ± 0.1 | 2.7 ± 0.1 | 4.3 ± 0.5 | 556.6 ± 4.2 |
Fraction IV | 23.0 ± 0.2 | 17.1 ± 0.5 | 1.5 ± 0.1 | 3.1 ± 0.2 | 49.8 ± 0.7 | 457.9 ± 4.1 |
ΣFI IV | 105.0 ± 0.4 | 28.6 ± 0.5 | 2.7 ± 0.2 | 9.2 ± 0.4 | 71.4 ± 1.1 | 1341.3 ± 7.0 |
Sewage sludge Daleszyce—S6 | ||||||
Fraction I | 0.0 ± 0.1 | 13.0 ± 0.9 | 1.2 ± 0.1 | 2.0 ± 0.2 | 2.5 ± 0.2 | 509.9 ± 9.0 |
Fraction II | 0.0 ± 0.1 | 4.2 ± 0.2 | 1.5 ± 0.1 | 0.9 ± 0.1 | 0.0 ± 0.1 | 447.3 ± 9.5 |
Fraction III | 14.6 ± 0.9 | 29.4 ± 1.6 | 3.7 ± 0.1 | 6.1 ± 0.5 | 16.2 ± 0.3 | 1119 ± 15 |
Fraction IV | 6.5 ± 0.4 | 59.1 ± 2.3 | 3.0 ± 0.1 | 7.7 ± 0.6 | 408.4 ± 9.1 | 693.2 ± 8.4 |
ΣFI IV | 21.1 ± 0.9 | 105.7 ± 2.9 | 9.4 ± 0.2 | 16.7 ± 0.8 | 417.1 ± 3.8 | 2769.4 ± 21,6 |
Indicator | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|
Igeo | Cu, Cr, Cd, Ni, Pb, Zn | Cu, Cr, Cd, Ni, Pb, Zn | Cu, Cr, Cd, Ni, Zn | Cr, Cd, Pb, Zn | Cu, Cr, Cd, Zn | Cu, Cr, Cd, Ni, Pb, Zn |
ER | Cu, Cr, Cd, Ni, Zn | Cu, Cr, Cd, Ni, Pb, Zn | Cu, Cd, Ni | Cd, Pb | Cu, Cd, Zn | Cd, Ni |
RAC | Zn | - | Cd, Zn | Cr, Cd, Ni, Zn | Ni | Cr, Cd, Ni, Zn |
ERD | Pb, Zn | - | Ni, Zn | Pb, Cd, Cr | Pb | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalik, R.; Latosińska, J.; Metryka-Telka, M.; Porowski, R.; Gawdzik, J. Comparison of the Possibilities of Environmental Usage of Sewage Sludge from Treatment Plants Operating with MBR and SBR Technology. Membranes 2021, 11, 722. https://doi.org/10.3390/membranes11090722
Kowalik R, Latosińska J, Metryka-Telka M, Porowski R, Gawdzik J. Comparison of the Possibilities of Environmental Usage of Sewage Sludge from Treatment Plants Operating with MBR and SBR Technology. Membranes. 2021; 11(9):722. https://doi.org/10.3390/membranes11090722
Chicago/Turabian StyleKowalik, Robert, Jolanta Latosińska, Monika Metryka-Telka, Rafał Porowski, and Jarosław Gawdzik. 2021. "Comparison of the Possibilities of Environmental Usage of Sewage Sludge from Treatment Plants Operating with MBR and SBR Technology" Membranes 11, no. 9: 722. https://doi.org/10.3390/membranes11090722
APA StyleKowalik, R., Latosińska, J., Metryka-Telka, M., Porowski, R., & Gawdzik, J. (2021). Comparison of the Possibilities of Environmental Usage of Sewage Sludge from Treatment Plants Operating with MBR and SBR Technology. Membranes, 11(9), 722. https://doi.org/10.3390/membranes11090722