A Novel Composite Material UiO-66@HNT/Pebax Mixed Matrix Membranes for Enhanced CO2/N2 Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of UiO-66@HNT Composite Materials
2.3. Fabrication of MMMs
2.4. Characterization
2.5. Permeability Experiment
2.6. Maxwell Model
3. Results
3.1. FTIR of UiO-66@HNT and the UiO-66@HNT/Pebax Membrane
3.2. XRD of UiO-66@HNT and the UiO-66@HNT/Pebax Membrane
3.3. The Characterization of UiO-66@HNT and the UiO-66@HNT/Pebax Membrane
3.4. TGA of the Composite Material
3.5. BET Characterization of the Material
3.6. Gas Permeation Measurements
3.6.1. Effect of Filler Type and Content on Gas Separation Performance
3.6.2. Effect of Feed Pressure on Gas Separation Performance
3.6.3. Comparison with Robeson’s Upper Bound
3.6.4. The Mechanism of UiO-66@HNT
3.6.5. Long-Term Stability of MMMs with UiO-66@HNT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Riahi, K.; IPCC. 2007 Climate Change 2007 Synthesis Report; IPCC: Valencia, Spain, 2008.
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Aroon, M.A.; Ismail, A.F.; Matsuura, T.; Montazer-Rahmati, M.M. Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol. 2010, 75, 229–242. [Google Scholar] [CrossRef]
- Chawla, M.; Saulat, H.; Masood Khan, M.; Mahmood Khan, M.; Rafiq, S.; Cheng, L.; Iqbal, T.; Rasheed, M.I.; Farooq, M.Z.; Saeed, M.; et al. Membranes for CO2/CH4 and CO2/N2 Gas Separation. Chem. Eng. Technol. 2019, 43, 184–199. [Google Scholar] [CrossRef]
- Dong, G.; Li, H.; Chen, V. Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A 2013, 1, 4610–4630. [Google Scholar] [CrossRef]
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Thanakkasaranee, S.; Seo, J. Effect of halloysite nanotubes on shape stabilities of polyethylene glycol-based composite phase change materials. Int. J. Heat Mass Transf. 2019, 132, 154–161. [Google Scholar] [CrossRef]
- Hossain, M.I.; Cunningham, J.D.; Becker, T.M.; Grabicka, B.E.; Walton, K.S.; Rabideau, B.D.; Glover, T.G. Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66. Chem. Eng. Sci. 2019, 203, 346–357. [Google Scholar] [CrossRef]
- Øien, S.; Wragg, D.; Reinsch, H.; Svelle, S.; Bordiga, S.; Lamberti, C.; Lillerud, K.P. Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Cryst. Growth Des. 2014, 14, 5370–5372. [Google Scholar] [CrossRef]
- Trickett, C.A.; Gagnon, K.J.; Lee, S.; Gandara, F.; Burgi, H.B.; Yaghi, O.M. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem. Int. Ed. Engl. 2015, 54, 11162–11167. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Song, J.; Bae, T.H. CO2/N2 Separation Properties of Polyimide-Based Mixed-Matrix Membranes Comprising UiO-66 with Various Functionalities. Membranes 2020, 10, 154. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Hou, J.; Zulkifli, M.Y.; Li, H.; Zhang, Y.; Liang, W.; D’Alessandro, D.M.; Chen, V. Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. J. Mater. Chem. A 2018, 6, 918–931. [Google Scholar] [CrossRef]
- Venna, S.R.; Lartey, M.; Li, T.; Spore, A.; Kumar, S.; Nulwala, H.B.; Luebke, D.R.; Rosi, N.L.; Albenze, E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J. Mater. Chem. A 2015, 3, 5014–5022. [Google Scholar] [CrossRef]
- Afshoun, H.R.; Pourafshari Chenar, M.; Moradi, M.R.; Ismail, A.F.; Matsuura, T. Effects of halloysite nanotubes on the morphology and CO2/CH4 separation performance of Pebax/polyetherimide thin-film composite membranes. J. Appl. Polym. Sci. 2019, 137, 48860. [Google Scholar] [CrossRef]
- Luo, H.; Liu, G.; Chen, Y.; Niu, Y.; Li, G. Effect of Halloysite Nanotubes on the Rheological and Phase Separation Behaviors in a Poly(ethylene oxide)/Ionic Liquid Mixture. Macromol. Chem. Phys. 2020, 221, 2000108. [Google Scholar] [CrossRef]
- Shi, F.; Sun, J.; Wang, J.; Liu, M.; Wang, S.; Cao, X.; Yan, Z.; Li, Y.; Nunes, S.P. Exploration of the Synergy Between 2D Nanosheets and a Non-2D Filler in Mixed Matrix Membranes for Gas Separation. Front. Chem. 2020, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, Y.; Hou, J.; Zhang, Y.; Fam, W.; Liu, J.; Bennett, T.D.; Chen, V. Ultraselective Pebax Membranes Enabled by Templated Microphase Separation. ACS Appl. Mater. Interfaces 2018, 10, 20006–20013. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Hu, L.; Ji, C.; Zhou, J.; Cen, K. Porous ceramic hollow fiber-supported Pebax/PEGDME composite membrane for CO2 separation from biohythane. RSC Adv. 2015, 5, 60453–60459. [Google Scholar] [CrossRef]
- Chen, B.; Liang, C.; Yang, J.; Contreras, D.S.; Clancy, Y.L.; Lobkovsky, E.B.; Yaghi, O.M.; Dai, S. A Microporous Metal–Organic Framework for Gas-Chromatographic Separation of Alkanes. Angew. Chem. 2006, 118, 1418–1421. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Meng, X.; Liu, G.; Hu, S.; Pan, F.; Wu, H.; Jiang, Z.; Wang, B.; Li, Z.; et al. Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. J. Mater. Chem. A 2013, 1, 3713–3723. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Zhang, S.; Hu, L.; Jin, J. Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance. Adv. Mater. 2016, 28, 3399–3405. [Google Scholar] [CrossRef]
- Park, H.B.; Han, S.H.; Jung, C.H.; Lee, Y.M.; Hill, A.J. Thermally rearranged (TR) polymer membranes for CO2 separation. J. Membr. Sci. 2010, 359, 11–24. [Google Scholar] [CrossRef]
- Smith, Z.P.; Sanders, D.F.; Ribeiro, C.P.; Guo, R.; Freeman, B.D.; Paul, D.R.; McGrath, J.E.; Swinnea, S. Gas sorption and characterization of thermally rearranged polyimides based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). J. Membr. Sci. 2012, 415–416, 558–567. [Google Scholar] [CrossRef]
- Barrer, R.M.; Rideal, E.K. Permeation, diffusion and solution of gases in organic polymers. Trans. Faraday Soc. 1939, 35, 628–643. [Google Scholar] [CrossRef]
- Daynes, H.A. The Process of Diffusion through a Rubber Membrane. Proc. R. Soc. Lond. Ser. A. 1920, 97, 286–307. [Google Scholar]
- Zhang, C.; Dai, Y.; Johnson, J.R.; Karvan, O.; Koros, W.J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 2012, 389, 34–42. [Google Scholar] [CrossRef]
- Liu, J.; Bae, T.-H.; Qiu, W.; Husain, S.; Nair, S.; Jones, C.W.; Chance, R.R.; Koros, W.J. Butane isomer transport properties of 6FDA–DAM and MFI–6FDA–DAM mixed matrix membranes. J. Membr. Sci. 2009, 343, 157–163. [Google Scholar] [CrossRef]
- Song, Q.; Nataraj, S.K.; Roussenova, M.V.; Tan, J.C.; Hughes, D.J.; Li, W.; Bourgoin, P.; Alam, M.A.; Cheetham, A.K.; Al-Muhtaseb, S.A.; et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5, 8359–8369. [Google Scholar] [CrossRef]
- Mao, H.; Li, S.-H.; Zhang, A.-S.; Xu, L.-H.; Lu, J.-J.; Zhao, Z.-P. Novel MOF-capped halloysite nanotubes/PDMS mixed matrix membranes for enhanced n-butanol permselective pervaporation. J. Membr. Sci. 2020, 595, 117543. [Google Scholar] [CrossRef]
- Tang, P.H.; So, P.B.; Li, W.H.; Hui, Z.Y.; Hu, C.C.; Lin, C.H. Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation. Membranes 2021, 11, 404. [Google Scholar] [CrossRef]
- Casadei, R.; Giacinti Baschetti, M.; Yoo, M.J.; Park, H.B.; Giorgini, L. Pebax((R)) 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture. Membranes 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liu, G.; Huang, K.; Li, Q.; Guan, K.; Li, Y.; Jin, W. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J. Membr. Sci. 2016, 513, 155–165. [Google Scholar] [CrossRef]
- Dixon, D.; Boyd, A. Degradation and accelerated ageing of poly(ether block amide) thermoplastic elastomers. Polym. Eng. Sci. 2011, 51, 2203–2209. [Google Scholar] [CrossRef]
- Muller, J.; Peinemann, K.V.; Muller, J. Development of facilitated transport membranes for the separation of olefins from gas streams. Desalination 2002, 145, 339–345. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Zhang, X.; Zhang, Y. MoS2 Nanosheets Functionalized Composite Mixed Matrix Membrane for Enhanced CO2 Capture via Surface Drop-Coating Method. ACS Appl. Mater. Interfaces 2016, 8, 23371–23378. [Google Scholar] [CrossRef]
- Zou, C.; Li, Q.; Hua, Y.; Zhou, B.; Duan, J.; Jin, W. Mechanical Synthesis of COF Nanosheet Cluster and Its Mixed Matrix Membrane for Efficient CO2 Removal. ACS Appl. Mater. Interfaces 2017, 9, 29093–29100. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Liu, J.; Zhang, Y. Enhanced Performance of a Novel Polyvinyl Amine/Chitosan/Graphene Oxide Mixed Matrix Membrane for CO2 Capture. ACS Sustain. Chem. Eng. 2015, 3, 1819–1829. [Google Scholar] [CrossRef]
Sample | HNT | UiO-66@HNT |
---|---|---|
BET surface/m2∙g−1 | 62.56 | 395.06 |
Pore volume/cm3∙g−1 | 0.201 | 0.413 |
Average pore size/nm | 3.83 | 3.82 |
UiO-66@HNT Loading (wt.%) | D(CO2) a | S(CO2) b | D(N2) a | S(N2) b |
---|---|---|---|---|
0 | 10.43 ± 0.03 | 7.76 ± 0.03 | 7.61 ± 0.04 | 0.20 ± 0.01 |
5 | 12.51 ± 0.02 | 8.14 ± 0.02 | 6.69 ± 0.03 | 0.21 ± 0.02 |
10 | 12.94 ± 0.04 | 8.22 ± 0.05 | 6.38 ± 0.05 | 0.24 ± 0.01 |
15 | 13.32 ± 0.06 | 8.29 ± 0.02 | 5.98 ± 0.03 | 0.25 ± 0.01 |
20 | 13.84 ± 0.03 | 8.26 ± 0.04 | 5.77 ± 0.06 | 0.26 ± 0.02 |
Materials | Conditions | CO2 Permeability (Barrer) | CO2/N2 Selectivity | Refs. |
---|---|---|---|---|
Pebax-1657 | 5 bar, 25 °C | 78.6 | 48.7 | This work |
HNT/Pebax-1657 | 2 bar, 30 °C | 171 | 43 | [17] |
ZIF-8/Pebax-1657 | - | 199.57 | 53.88 | [31] |
pGO/Pebax-2533 | 1 bar, 35 °C | 380.44 | 24.19 | [32] |
UiO-66/PEBA | 3 bar, 20 °C | 96.3 | 56.6 | [33] |
UiO-66-NH2/PEBA | 3 bar, 20 °C | 87.0 | 66.1 | [33] |
UiO-66@HNT/Pebax-1657 | 5 bar, 25 °C | 119.08 | 76.26 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Li, B.; Ding, R.; Li, D.; Jiang, X.; He, G.; Xiao, W. A Novel Composite Material UiO-66@HNT/Pebax Mixed Matrix Membranes for Enhanced CO2/N2 Separation. Membranes 2021, 11, 693. https://doi.org/10.3390/membranes11090693
Guo F, Li B, Ding R, Li D, Jiang X, He G, Xiao W. A Novel Composite Material UiO-66@HNT/Pebax Mixed Matrix Membranes for Enhanced CO2/N2 Separation. Membranes. 2021; 11(9):693. https://doi.org/10.3390/membranes11090693
Chicago/Turabian StyleGuo, Fei, Bingzhang Li, Rui Ding, Dongsheng Li, Xiaobin Jiang, Gaohong He, and Wu Xiao. 2021. "A Novel Composite Material UiO-66@HNT/Pebax Mixed Matrix Membranes for Enhanced CO2/N2 Separation" Membranes 11, no. 9: 693. https://doi.org/10.3390/membranes11090693
APA StyleGuo, F., Li, B., Ding, R., Li, D., Jiang, X., He, G., & Xiao, W. (2021). A Novel Composite Material UiO-66@HNT/Pebax Mixed Matrix Membranes for Enhanced CO2/N2 Separation. Membranes, 11(9), 693. https://doi.org/10.3390/membranes11090693