Research and Development Journey and Future Trends of Hollow Fiber Membranes for Purification Applications (1970–2020): A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Methodology
2.2. Analytical Tools and Procedure
3. Results and Discussions
3.1. Scientometric Analysis of Publication Output
3.2. Distribution of Articles by Leading Journals and Citations
3.3. Co-Authorship for Leading Countries, Top Institutions and International Collaboration
3.4. Prominent Authors
3.5. Analysis of Time-Frequency of Author Keywords
3.5.1. Terminology and Concept
3.5.2. Clusters Analysis and Topics of Interest
3.5.3. Research Hotspots and Future Trends
4. Limitation of Study
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mckinney, R., Jr. An experimental approach to the preparation of hollow fiber membranes. Desalination 1987, 62, 37–47. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Galiano, F.; Figoli, A. Recent advances in pervaporation hollow fiber membranes for dehydration of organics. Chem. Eng. Res. Des. 2020, 164, 68–85. [Google Scholar] [CrossRef]
- Ho, W.S.W. Recent developments and applications for hollow-fiber membranes. J. Chin. Inst. Chem. Eng. 2003, 34, 75–89. [Google Scholar] [CrossRef]
- Feng, C.Y.; Khulbe, K.C.; Matsuura, T.; Ismail, A.F. Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications. Sep. Purif. Technol. 2013, 111, 43–71. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, C.; Huang, Q.; Liu, H.; Zhao, J. Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development. Chem. Eng. J. 2021, 403, 126295. [Google Scholar] [CrossRef]
- Matsuyama, H.; Rajabzadeh, S.; Karkhanechi, H.; Jeon, S. 1.7 PVDF Hollow Fibers Membranes, 2nd ed.; Drioli, E., Giorno, L., Fontananova, E.B.T.-C.M.S., Eds.; Elsevier: Oxford, UK, 2017; pp. 137–189. ISBN 9780444637963. [Google Scholar]
- Ren, J.; McCutcheon, J.R. A new commercial biomimetic hollow fiber membrane for forward osmosis. Desalination 2018, 442, 44–50. [Google Scholar] [CrossRef]
- Saeedi-Jurkuyeh, A.; Jafari, A.J.; Kalantary, R.R.; Esrafili, A. A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. React. Funct. Polym. 2020, 146, 104397. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Othman, M.H.D.; Harun, Z.; Ismail, A.F.; Rahman, M.A.; Jaafar, J. A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal. Ceram. Int. 2017, 43, 4716–4720. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10–29. [Google Scholar] [CrossRef]
- Xu, Y.; Goh, K.; Wang, R.; Bae, T.-H. A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction. Sep. Purif. Technol. 2019, 229, 115791. [Google Scholar] [CrossRef]
- Monsalve-Bravo, G.M.; Bhatia, S.K. Comparison of hollow fiber and flat mixed-matrix membranes: Theory and simulation. Chem. Eng. Sci. 2018, 187, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Buekenhoudt, A.; Bisignano, F.; De Luca, G.; Vandezande, P.; Wouters, M.; Verhulst, K. Unravelling the solvent flux behaviour of ceramic nanofiltration and ultrafiltration membranes. J. Memb. Sci. 2013, 439, 36–47. [Google Scholar] [CrossRef]
- Mericq, J.-P.; Laborie, S.; Cabassud, C. Vacuum membrane distillation for an integrated seawater desalination process. Desalin. Water Treat. 2009, 9, 287–296. [Google Scholar] [CrossRef]
- Dashti, A.; Asghari, M. Recent Progresses in Ceramic Hollow-Fiber Membranes. ChemBioEng Rev. 2015, 2, 54–70. [Google Scholar] [CrossRef]
- Ye, S.H.; Watanabe, J.; Iwasaki, Y.; Ishihara, K. In situ modification on cellulose acetate hollow fiber membrane modified with phospholipid polymer for biomedical application. J. Memb. Sci. 2005, 249, 133–141. [Google Scholar] [CrossRef]
- Modi, A.; Verma, S.K.; Bellare, J. Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: A potential membrane material for bioartificial liver application. Mater. Sci. Eng. C 2018, 91, 524–540. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019, 49, 1020–1045. [Google Scholar] [CrossRef]
- Kim, J.; McMillan, S.J. Evaluation of Internet Advertising Research: A Bibliometric Analysis of Citations from Key Sources. J. Advert. 2008, 37, 99–112. [Google Scholar] [CrossRef]
- Nederhof, A.J. Bibliometric monitoring of research performance in the Social Sciences and the Humanities: A Review. Scientometrics 2006, 66, 81–100. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Zhang, Z.; Gu, Z.; Zhong, H.; Zha, Q.; Yang, L.; Zhu, C.; Chen, E. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 2020, 8, 816. [Google Scholar] [CrossRef]
- Md Khudzari, J.; Kurian, J.; Tartakovsky, B.; Raghavan, G.S.V. Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem. Eng. J. 2018, 136, 51–60. [Google Scholar] [CrossRef]
- de Miranda, D.M.V.; da Dutra, L.S.; Way, D.; Amaral, N.; Wegenast, F.; Scaldaferri, M.C.; Jesus, N.; Pinto, J.C. A bibliometric survey of Paraffin/Olefin separation using membranes. Membranes 2019, 9, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Song, Y.; Gao, H.; Wang, S.; Yuan, Y. Bibliometric analysis of research progress in membrane water treatment technology from 1985 to 2013. Scientometrics 2015, 105, 577–591. [Google Scholar] [CrossRef]
- Sousa, J.C.A.; Cesar, J.; Santos, M.; Rubio, A.J.; Paccola, E.A.S.; Yamaguchi, N.U. Bibliometric Analysis of the Research Progress on Graphene Inks from 2008 to 2018. Int. J. Chem. Mater. Eng. 2019, 13, 308–312. [Google Scholar]
- Fu, H.Z.; Wang, M.H.; Ho, Y.S. Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011. Sci. Total Environ. 2013, 443, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, Z.; Li, Y.; Yang, W.; Wang, W. Visualization analysis of graphene and its composites for heavy metal wastewater applications. Environ. Sci. Pollut. Res. 2019, 26, 27752–27760. [Google Scholar] [CrossRef] [PubMed]
- Scopus. Fact Sheet: Scopus Content Coverage by Subject Area. 2019. Available online: www.elsevier.com (accessed on 6 January 2021).
- Aghaei Chadegani, A.; Salehi, H.; Yunus, M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Han, M.Y.; Sui, X.; Huang, Z.L.; Wu, X.D.; Xia, X.H.; Hayat, T.; Alsaedi, A. Bibliometric indicators for sustainable hydropower development. Ecol. Indic. 2014, 47, 231–238. [Google Scholar] [CrossRef]
- Stephan, P.; Veugelers, R.; Wang, J. Reviewers are blinkered by bibliometrics. Nature 2017, 544, 411–412. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual; Leiden Univeristy: Leiden, The Netherlands, 2020; Volume 1, pp. 1–53. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Chowdhury, G.G.; Foo, S. Bibliometric cartography of information retrieval research by using co-word analysis. Inf. Process. Manag. 2001, 37, 817–842. [Google Scholar] [CrossRef] [Green Version]
- Cole, C.A.; Genetelli, E.J. Decarbonation and deaeration of water using selective hollow fibers. Environ. Sci. Technol. 1970, 4, 514–517. [Google Scholar] [CrossRef]
- Tai, Z.S.; Othman, M.H.D.; Hubadillah, S.K.; Ismail, A.F.; A Rahman, M.; Jaafar, J.; Koo, K.N.; Aziz, M.H.A. Low cost palm oil fuel ash based ceramic membranes for oily water separation. Malays. J. Fundam. Appl. Sci. 2018, 14, 419–424. [Google Scholar] [CrossRef]
- Bazhenov, S.D.; Bildyukevich, A.V.; Volkov, A. V Gas-liquid hollow fiber membrane contactors for different applications. Fibers 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Choi, D.-C.; Lee, J.; Chae, H.-R.; Jang, J.H.; Lee, C.-H.; Park, P.-K.; Won, Y.-J. Preparation and application of patterned hollow-fiber membranes to membrane bioreactor for wastewater treatment. J. Memb. Sci. 2015, 490, 190–196. [Google Scholar] [CrossRef]
- Prasad, R.; Sirkar, K.K. Dispersion-free solvent extraction with microporous hollow-fiber modules. AIChE J. 1988, 34, 177–188. [Google Scholar] [CrossRef]
- Wang, R.; Shi, L.; Tang, C.Y.; Chou, S.; Qiu, C.; Fane, A.G. Characterization of novel forward osmosis hollow fiber membranes. J. Memb. Sci. 2010, 355, 158–167. [Google Scholar] [CrossRef]
- Hong, S.P.; Bae, T.-H.; Tak, T.M.; Hong, S.; Randall, A. Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination 2002, 143, 219–228. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.Y.; Feron, P.H.M.; Liang, D.T. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep. Purif. Technol. 2005, 46, 33–40. [Google Scholar] [CrossRef]
- Karoor, S.; Sirkar, K.K. Gas absorption studies in microporous hollow fiber membrane modules. Ind. Eng. Chem. Res. 1993, 32, 674–684. [Google Scholar] [CrossRef]
- Xu, Z.; Chung, T.; Huang, Y.U. Effect of polyvinylpyrrolidone molecular weights on morphology, oil/water separation, mechanical and thermal properties of polyetherimide/polyvinylpyrrolidone hollow fiber membranes. J. Appl. Polym. Sci. 1999, 74, 2220–2233. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Niazi, Z.; Mirfendereski, M.; Shirazian, S.; Mohammadi, T.; Pak, A. CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem. Eng. J. 2011, 168, 1217–1226. [Google Scholar] [CrossRef]
- Wang, K.Y.; Chung, T.-S.; Gryta, M. Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chem. Eng. Sci. 2008, 63, 2587–2594. [Google Scholar] [CrossRef]
- Basheer, C.; Lee, H.K.; Obbard, J.P. Determination of organochlorine pesticides in seawater using liquid-phase hollow fibre membrane microextraction and gas chromatography–mass spectrometry. J. Chromatogr. A 2002, 968, 191–199. [Google Scholar] [CrossRef]
- World Bank, World Bank Country and Lending Groups – World Bank Data Help Desk. 2020. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 24 January 2021).
- QS University Rankings, QS World University Rankings 2021: Top Global Universities | Top Universities, www.topuniversities.com. 2021. Available online: https://www.topuniversities.com/university-rankings/world-university-rankings/2021 (accessed on 5 August 2021).
- Bornmann, L.; Haunschild, R.; Hug, S.E. Visualizing the context of citations referencing papers published by Eugene Garfield: A new type of keyword co-occurrence analysis. Scientometrics 2018, 114, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Behboudi, A.; Jafarzadeh, Y.; Yegani, R. Enhancement of antifouling and antibacterial properties of PVC hollow fiber ultrafiltration membranes using pristine and modified silver nanoparticles. J. Environ. Chem. Eng. 2018, 6, 1764–1773. [Google Scholar] [CrossRef]
- Wongchitphimon, S.; Rongwong, W.; Chuah, C.Y.; Wang, R.; Bae, T.-H. Polymer-fluorinated silica composite hollow fiber membranes for the recovery of biogas dissolved in anaerobic effluent. J. Memb. Sci. 2017, 540, 146–154. [Google Scholar] [CrossRef]
- Zhang, P.; Fang, C.; Rajabzadeh, S.; Liu, W.; Jia, Y.; Shen, Q.; Zhang, L.; Wang, S.; Kato, N.; Matsuyama, H. Effect of polymer molecular weight on structure and performance of PVDF hollow fiber membranes prepared via TIPS process with co-extrusion of solvent using triple orifice spinneret. J. Memb. Sci. 2020, 620, 118854. [Google Scholar] [CrossRef]
- Lund, L.W.; Hattler, B.G.; Federspiel, W.J. Is condensation the cause of plasma leakage in microporous hollow fiber membrane oxygenators. J. Memb. Sci. 1998, 147, 87–93. [Google Scholar] [CrossRef]
- Arazawa, D.T.; Oh, H.-I.; Ye, S.-H.; Johnson, C.A.; Woolley, J.R.; Wagner, W.R.; Federspiel, W.J. Immobilized carbonic anhydrase on hollow fiber membranes accelerates CO2 removal from blood. J. Memb. Sci. 2012, 403–404, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Pflaum, M.; Peredo, A.S.; Dipresa, D.; De, A.; Korossis, S. Chapter 3-Membrane Bioreactors for (Bio-) Artificial Lung; Basile, A., Annesini, M.C., Piemonte, V., Charcosset, C.B.T.-C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 45–75. ISBN 9780128142257. [Google Scholar]
- Khulbe, K.C.; Matsuura, T. Recent progress in polymeric hollow-fibre membrane preparation and applications. Membr. Technol. 2016, 2016, 7–13. [Google Scholar] [CrossRef]
- Cui, Z.; deMontigny, D. Part 7: A review of CO2 capture using hollow fiber membrane contactors. Carbon Manag. 2013, 4, 69–89. [Google Scholar] [CrossRef]
- Li, L.; Ma, G.; Pan, Z.; Zhang, N.; Zhang, Z. Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors. Membranes 2020, 10, 380. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, S.; Safdar, T.; Pallari, E.; Manos, G.; Aristodemou, E.; Zhang, Z.; Al-Salem, S.M.; Constantinou, A. CO2 capture using membrane contactors: A systematic literature review. Front. Chem. Sci. Eng. 2020, 15, 720–754. [Google Scholar] [CrossRef]
- Goh, K.; Setiawan, L.; Wei, L.; Si, R.; Fane, A.G.; Wang, R.; Chen, Y. Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. J. Memb. Sci. 2015, 474, 244–253. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; El-Naas, M.H.; Zhang, Z.; Van der Bruggen, B. CO2 Capture Using Hollow Fiber Membranes: A Review of Membrane Wetting. Energy Fuels 2018, 32, 963–978. [Google Scholar] [CrossRef]
- ter Beek, O.E.M.; Pavlenko, D.; Stamatialis, D. Hollow fiber membranes for long-term hemodialysis based on polyethersulfone-SlipSkinTM polymer blends. J. Memb. Sci. 2020, 604, 118068. [Google Scholar] [CrossRef]
- Salimi, E.; Ghaee, A.; Ismail, A.F.; Karimi, M. Anti-thrombogenicity and permeability of polyethersulfone hollow fiber membrane with sulfonated alginate toward blood purification. Int. J. Biol. Macromol. 2018, 116, 364–377. [Google Scholar] [CrossRef]
- Sueoka, A.; Takamura, K. Hollow Fiber Membrane Application for Blood Treatment. Polym. J. 1991, 23, 561–571. [Google Scholar] [CrossRef] [Green Version]
Rank | Journal Name (IF) | 1 TP | TP % | 2 TC | Most Cited Article | Times Cited | Publisher |
---|---|---|---|---|---|---|---|
1 | Journal of Membrane Science (7.158) | 1167 | 20.74% | 50,776 | Characterization of novel forward osmosis hollow fiber membranes [41] | 428 | Elsevier |
2 | Desalination (7.248) | 315 | 5.60% | 9125 | Fouling control in activated sludge submerged hollow fiber membrane bioreactors [42] | 241 | Elsevier |
3 | Separation and Purification Technology (5.257) | 282 | 5.01% | 7625 | Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors [43] | 292 | Elsevier |
4 | Industrial & Engineering Chemistry Research (3.684) | 140 | 2.49% | 4392 | Gas absorption studies in microporous hollow fiber membrane modules [44] | 281 | American Chemical Society |
5 | Journal of Applied Polymer Science (2.257) | 139 | 2.47% | 2421 | Effect of polyvinylpyrrolidone molecular weights on morphology, oil/water separation and mechanical and thermal properties of polyetherimide/polyvinylpyrrolidone hollow fiber membranes [45] | 106 | Wiley-Blackwell |
6 | Desalination and Water Treatment (1.324) | 121 | 2.15% | 820 | Vacuum membrane distillation for an integrated seawater desalination process [14] | 65 | Desalination Publications |
7 | AICHE Journal (3.625) | 103 | 1.83% | 3272 | Dispersion-free solvent extraction with microporous hollow-fiber modules [40] | 468 | Wiley-Blackwell |
8 | Chemical Engineering Journal (9.43) | 86 | 1.53% | 2212 | CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor [46] | 149 | Elsevier |
9 | Chemical Engineering Science (3.78) | 79 | 1.40% | 3074 | Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the freshwater production through membrane distillation [47] | 197 | Elsevier |
10 | Journal of Chromatography A (3.861) | 77 | 1.37% | 3218 | Determination of organochlorine pesticides in seawater using liquid-phase hollow fibre membrane microextraction and gas chromatography-mass spectrometry [48] | 134 | Elsevier |
Rank | Country/Territory | 1 TPC | TPC% | SCP | SCP % | Most Productive Academic Institution | TIP | QS Ranking 2021 |
---|---|---|---|---|---|---|---|---|
1 | China | 1260 | 22.40 | 890 | 70.63 | Tianjin Polytechnic University | 141 | 387 |
2 | United States | 945 | 16.80 | 680 | 71.96 | Georgia Institute of Technology | 64 | 80 |
3 | Singapore | 487 | 8.66 | 306 | 62.83 | National University of Singapore | 224 | 11 |
4 | Japan | 464 | 8.25 | 380 | 81.90 | Chiba University | 46 | 488 |
5 | Malaysia | 306 | 5.44 | 158 | 51.63 | Universiti Teknologi Malaysia | 117 | 187 |
6 | South Korea | 297 | 5.28 | 205 | 69.02 | Korea Institute of Energy Research | 35 | 39 |
7 | Iran | 282 | 5.01 | 186 | 65.96 | Iran University of Science and Technology | 31 | 601–650 |
8 | United Kingdom | 271 | 4.82 | 133 | 49.08 | Imperial College London | 50 | 8 |
9 | Germany | 269 | 4.78 | 150 | 55.76 | Rheinisch-Westfälische Technische Hochschule Aachen | 32 | 145 |
10 | Australia | 257 | 4.57 | 87 | 33.85 | University of New South Wales | 36 | 44 |
Rank | Author | Scopus Author ID | TP 1 | Year of 1st Publication | Document h-Index in the Specific Area of Hollow Fiber Membrane * | TC 2 | Current Affiliation | Country |
---|---|---|---|---|---|---|---|---|
1 | Chung, T.S. | 7401571059 | 218 | 1997 | 68 | 13,448 | National University of Singapore | Singapore |
2 | A.F., Ismail | 7201548542 | 175 | 1997 | 39 | 4578 | Universiti Teknologi Malaysia | Malaysia |
3 | Li, Kang | 6505451560 | 125 | 1994 | 51 | 6807 | Imperial College London | United Kingdom |
4 | Wang, Rong | 35081334000 | 100 | 2000 | 47 | 6191 | Nanyang Environment & Water Research Institute | Singapore |
5 | Tan, Xiaoyao | 7202120957 | 91 | 2000 | 31 | 3048 | Tianjin Polytechnic University | China |
6 | Matsuura, Takeshi | 36048717100 | 84 | 1991 | 33 | 3013 | University of Ottawa | Canada |
7 | Liu, Shaomin | 35242760200 | 79 | 2001 | 26 | 2409 | Curtin University, | Australia |
8 | Matsuyama, Hideto | 57201543303 | 70 | 2003 | 26 | 2043 | Kobe University | Japan |
9 | Koros, William J. | 7102165550 | 69 | 1990 | 30 | 3183 | Georgia Institute of Technology | United States |
10 | Saito, Kyouichi | 7406511537 | 65 | 1988 | 30 | 2163 | Chiba University | Japan |
No. | Keyword | Average Publication Year | No. of Occurrences |
---|---|---|---|
1 | Sweeping gas membrane distillation | 2018.44 | 23 |
2 | Graphene oxide | 2018.40 | 20 |
3 | CO2 resistance | 2018.20 | 5 |
4 | NIPS (Non-solvent induced phase separation) | 2018.17 | 6 |
5 | Nanofluid | 2018.00 | 6 |
6 | Nickel membrane | 2018.00 | 5 |
7 | Superhydrophobic | 2017.78 | 9 |
8 | Anaerobic membrane bioreactor | 2017.75 | 8 |
9 | Zeolite membrane | 2017.70 | 11 |
10 | Potassium carbonate | 2017.60 | 11 |
11 | Dye removal | 2017.60 | 10 |
12 | Water vapor separation | 2017.40 | 14 |
13 | Photocatalytic degradation | 2017.33 | 9 |
14 | Electrospinning | 2017.29 | 7 |
15 | Perovskite oxide | 2017.20 | 13 |
16 | Polydopamine | 2017.14 | 7 |
17 | Hydrogen production | 2016.71 | 7 |
18 | Antifouling | 2016.50 | 42 |
19 | Oil—water separation | 2016.38 | 21 |
20 | Irreversible fouling | 2016.17 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayub, M.; Othman, M.H.D.; Kadir, S.H.S.A.; Ali, A.; Khan, I.U.; Yusop, M.Z.M.; Matsuura, T.; Fauzi Ismail, A.; A. Rahman, M.; Jaafar, J. Research and Development Journey and Future Trends of Hollow Fiber Membranes for Purification Applications (1970–2020): A Bibliometric Analysis. Membranes 2021, 11, 600. https://doi.org/10.3390/membranes11080600
Ayub M, Othman MHD, Kadir SHSA, Ali A, Khan IU, Yusop MZM, Matsuura T, Fauzi Ismail A, A. Rahman M, Jaafar J. Research and Development Journey and Future Trends of Hollow Fiber Membranes for Purification Applications (1970–2020): A Bibliometric Analysis. Membranes. 2021; 11(8):600. https://doi.org/10.3390/membranes11080600
Chicago/Turabian StyleAyub, Muhammad, Mohd Hafiz Dzarfan Othman, Siti Hamimah Sheikh Abdul Kadir, Adnan Ali, Imran Ullah Khan, Mohd Zamri Mohd Yusop, Takeshi Matsuura, Ahmad Fauzi Ismail, Mukhlis A. Rahman, and Juhana Jaafar. 2021. "Research and Development Journey and Future Trends of Hollow Fiber Membranes for Purification Applications (1970–2020): A Bibliometric Analysis" Membranes 11, no. 8: 600. https://doi.org/10.3390/membranes11080600
APA StyleAyub, M., Othman, M. H. D., Kadir, S. H. S. A., Ali, A., Khan, I. U., Yusop, M. Z. M., Matsuura, T., Fauzi Ismail, A., A. Rahman, M., & Jaafar, J. (2021). Research and Development Journey and Future Trends of Hollow Fiber Membranes for Purification Applications (1970–2020): A Bibliometric Analysis. Membranes, 11(8), 600. https://doi.org/10.3390/membranes11080600