Extracorporeal Support Prognostication—Time to Move the Goal Posts?
Abstract
:1. Introduction
2. Current ECMO Prognostication Tools
2.1. Neonatal Respiratory Failure
2.2. Neonatal Congenital Diaphragmatic Hernia
2.3. Pediatric Respiratory Failure
2.4. Adult Respiratory Failure
2.5. Adult Cardiac Failure
3. Limitations in Current Prognostic Scores
4. Future Directions
5. Changing the Outcome
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ELSO. ECLS Registry Report, International Summary; ELSO: Ann Arbor, MI, USA, 2020. [Google Scholar]
- Supady, A.; DellaVolpe, J.; Taccone, F.S.; Scharpf, D.; Ulmer, M.; Lepper, P.M.; Halbe, M.; Ziegeler, S.; Vogt, A.; Ramanan, R.; et al. Outcome Prediction in Patients with Severe COVID-19 Requiring Extracorporeal Membrane Oxygenation-A Retrospective International Multicenter Study. Membranes 2021, 11, 170. [Google Scholar] [CrossRef]
- Schmidt, M.; Schellongowski, P.; Patroniti, N.; Taccone, F.S.; Miranda, D.R.; Reuter, J.; Prodanovic, H.; Pierrot, M.; Dorget, A.; Park, S.; et al. follows: Six-Month Outcome of Immunocompromised Patients with Severe Acute Respiratory Distress Syndrome Rescued by Extracorporeal Membrane Oxygenation. An International Multicenter Retrospective Study. Am. J. Respir Crit. Care Med. 2018, 197, 1297–1307. [Google Scholar] [CrossRef] [PubMed]
- Goligher, E.C.; Tomlinson, G.; Hajage, D.; Wijeysundera, D.N.; Fan, E.; Juni, P.; Brodie, D.; Slutsky, A.S.; Combes, A. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial. JAMA 2018, 320, 2251–2259. [Google Scholar] [CrossRef]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoue, S.; Guervilly, C.; da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef]
- Abrams, D.; Lorusso, R.; Vincent, J.L.; Brodie, D. ECMO during the COVID-19 pandemic: When is it unjustified? Crit. Care 2020, 24, 507. [Google Scholar] [CrossRef]
- Alhazzani, W.; Moller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A.; et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit. Care Med. 2020, 48, e440–e469. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Heinsar, S.; Jeong, I.S.; Shekar, K.; Li Bassi, G.; Jung, J.S.; Suen, J.Y.; Fraser, J.F. ECMO use in COVID-19: Lessons from past respiratory virus outbreaks-a narrative review. Crit. Care 2020, 24, 301. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, K.; Antognini, D.; Combes, A.; Paden, M.; Zakhary, B.; Ogino, M.; MacLaren, G.; Brodie, D.; Shekar, K. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir. Med. 2020, 8, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Shekar, K.; Badulak, J.; Peek, G.; Boeken, U.; Dalton, H.J.; Arora, L.; Zakhary, B.; Ramanathan, K.; Starr, J.; Akkanti, B.; et al. Extracorporeal Life Support Organization Coronavirus Disease 2019 Interim Guidelines: A Consensus Document from an International Group of Interdisciplinary Extracorporeal Membrane Oxygenation Providers. ASAIO J. 2020, 66, 707–721. [Google Scholar] [CrossRef]
- Maul, T.M.; Kuch, B.A.; Wearden, P.D. Development of Risk Indices for Neonatal Respiratory Extracorporeal Membrane Oxygenation. ASAIO J. 2016, 62, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, R.P.; Bartlett, R.H.; Chapman, R.L.; Paden, M.L.; Roberts, L.A.; Gebremariam, A.; Annich, G.M.; Davis, M.M. Development and Validation of the Neonatal Risk Estimate Score for Children Using Extracorporeal Respiratory Support. J. Pediatr. 2016, 173, 56–61.e53. [Google Scholar] [CrossRef] [Green Version]
- Guner, Y.S.; Nguyen, D.V.; Zhang, L.; Chen, Y.; Harting, M.T.; Rycus, P.; Barbaro, R.; Di Nardo, M.; Brogan, T.V.; Cleary, J.P.; et al. Development and Validation of Extracorporeal Membrane Oxygenation Mortality-Risk Models for Congenital Diaphragmatic Hernia. ASAIO J. 2018, 64, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, R.P.; Boonstra, P.S.; Paden, M.L.; Roberts, L.A.; Annich, G.M.; Bartlett, R.H.; Moler, F.W.; Davis, M.M. Development and validation of the pediatric risk estimate score for children using extracorporeal respiratory support (Ped-RESCUERS). Intensive Care Med. 2016, 42, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Bailly, D.K.; Reeder, R.W.; Zabrocki, L.A.; Hubbard, A.M.; Wilkes, J.; Bratton, S.L.; Thiagarajan, R.R.; Extracorporeal Life Support Organization Member, C. Development and Validation of a Score to Predict Mortality in Children Undergoing Extracorporeal Membrane Oxygenation for Respiratory Failure: Pediatric Pulmonary Rescue With Extracorporeal Membrane Oxygenation Prediction Score. Crit. Care Med. 2017, 45, e58–e66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ELSO. ECLS Registry Form. Available online: https://www.elso.org/Portals/0/ELSOECLSRegistryForm5_0%202018-03-01.pdf (accessed on 12 June 2021).
- Pappalardo, F.; Pieri, M.; Greco, T.; Patroniti, N.; Pesenti, A.; Arcadipane, A.; Ranieri, V.M.; Gattinoni, L.; Landoni, G.; Holzgraefe, B.; et al. Predicting mortality risk in patients undergoing venovenous ECMO for ARDS due to influenza A (H1N1) pneumonia: The ECMOnet score. Intensive Care Med. 2013, 39, 275–281. [Google Scholar] [CrossRef]
- ECMOnet Mission and Values. Available online: https://www.internationalecmonetwork.org/mission-and-values (accessed on 12 June 2021).
- Schmidt, M.; Zogheib, E.; Roze, H.; Repesse, X.; Lebreton, G.; Luyt, C.E.; Trouillet, J.L.; Brechot, N.; Nieszkowska, A.; Dupont, H.; et al. The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Intensive Care Med. 2013, 39, 1704–1713. [Google Scholar] [CrossRef]
- Schmidt, M.; Bailey, M.; Sheldrake, J.; Hodgson, C.; Aubron, C.; Rycus, P.T.; Scheinkestel, C.; Cooper, D.J.; Brodie, D.; Pellegrino, V.; et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score. Am. J. Respir. Crit. Care Med. 2014, 189, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Man, M.; Shum, H.; Lam, S.; Yu, J.; KING, B.; Yan, W. An External Validation of Scoring Systems in Mortality Prediction in Veno-Venous Extracorporeal Membrane Oxygenation. ASAIO J. 2021. [Google Scholar] [CrossRef]
- Klinzing, S.; Wenger, U.; Steiger, P.; Starck, C.T.; Wilhelm, M.; Schuepbach, R.A.; Maggiorini, M. External validation of scores proposed for estimation of survival probability of patients with severe adult respiratory distress syndrome undergoing extracorporeal membrane oxygenation therapy: A retrospective study. Crit. Care 2015, 19, 142. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.R.; Kim, D.J.; Lee, J.; Cho, Y.J.; Kim, J.S.; Lee, S.M.; Lee, J.H.; Jheon, S.; Lee, C.T.; Lee, Y.J. A Comparative Analysis of Survival Prediction Using PRESERVE and RESP Scores. Ann. Thorac. Surg. 2017, 104, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Brunet, J.; Valette, X.; Buklas, D.; Lehoux, P.; Verrier, P.; Sauneuf, B.; Ivascau, C.; Dalibert, Y.; Seguin, A.; Terzi, N.; et al. Predicting Survival After Extracorporeal Membrane Oxygenation for ARDS: An External Validation of RESP and PRESERVE Scores. Respir. Care 2017, 62, 912–919. [Google Scholar] [CrossRef] [Green Version]
- Roch, A.; Hraiech, S.; Masson, E.; Grisoli, D.; Forel, J.M.; Boucekine, M.; Morera, P.; Guervilly, C.; Adda, M.; Dizier, S.; et al. Outcome of acute respiratory distress syndrome patients treated with extracorporeal membrane oxygenation and brought to a referral center. Intensive Care Med. 2014, 40, 74–83. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Wu, M.Y.; Chang, Y.S.; Huang, C.C.; Lin, P.J. Developing a simple preinterventional score to predict hospital mortality in adult venovenous extracorporeal membrane oxygenation: A pilot study. Medicine 2016, 95, e4380. [Google Scholar] [CrossRef]
- Montero, S.; Slutsky, A.S.; Schmidt, M. The PRESET-Score: The extrapulmonary predictive survival model for extracorporeal membrane oxygenation in severe acute respiratory distress syndrome. J. Thorac. Dis. 2018, 10, S2040–S2044. [Google Scholar] [CrossRef]
- Schmidt, M.; Burrell, A.; Roberts, L.; Bailey, M.; Sheldrake, J.; Rycus, P.T.; Hodgson, C.; Scheinkestel, C.; Cooper, D.J.; Thiagarajan, R.R.; et al. Predicting survival after ECMO for refractory cardiogenic shock: The survival after veno-arterial-ECMO (SAVE)-score. Eur. Heart J. 2015, 36, 2246–2256. [Google Scholar] [CrossRef]
- Muller, G.; Flecher, E.; Lebreton, G.; Luyt, C.E.; Trouillet, J.L.; Brechot, N.; Schmidt, M.; Mastroianni, C.; Chastre, J.; Leprince, P.; et al. The ENCOURAGE mortality risk score and analysis of long-term outcomes after VA-ECMO for acute myocardial infarction with cardiogenic shock. Intensive Care Med. 2016, 42, 370–378. [Google Scholar] [CrossRef]
- Wengenmayer, T.; Duerschmied, D.; Graf, E.; Chiabudini, M.; Benk, C.; Muhlschlegel, S.; Philipp, A.; Lubnow, M.; Bode, C.; Staudacher, D.L. Development and validation of a prognostic model for survival in patients treated with venoarterial extracorporeal membrane oxygenation: The PREDICT VA-ECMO score. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 350–359. [Google Scholar] [CrossRef]
- Amin, F.; Lombardi, J.; Alhussein, M.; Posada, J.D.; Suszko, A.; Koo, M.; Fan, E.; Ross, H.; Rao, V.; Alba, A.C.; et al. Predicting Survival After VA-ECMO for Refractory Cardiogenic Shock: Validating the SAVE Score. CJC Open 2021, 3, 71–81. [Google Scholar] [CrossRef]
- Biancari, F.; Mariscalco, G.; Dalen, M.; Settembre, N.; Welp, H.; Perrotti, A.; Wiebe, K.; Leo, E.; Loforte, A.; Chocron, S.; et al. Six-Month Survival After Extracorporeal Membrane Oxygenation for Severe COVID-19. J. Cardiothorac Vasc. Anesth. 2021, 35, 1999–2006. [Google Scholar] [CrossRef]
- Leisman, D.E.; Harhay, M.O.; Lederer, D.J.; Abramson, M.; Adjei, A.A.; Bakker, J.; Ballas, Z.K.; Barreiro, E.; Bell, S.C.; Bellomo, R.; et al. Development and Reporting of Prediction Models: Guidance for Authors From Editors of Respiratory, Sleep, and Critical Care Journals. Crit. Care Med. 2020, 48, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizov, F.; Merkle, J.; Fatullayev, J.; Eghbalzadeh, K.; Djordjevic, I.; Weber, C.; Saenko, S.; Kroener, A.; Zeriouh, M.; Sabashnikov, A.; et al. Outcomes and factors associated with early mortality in pediatric and neonatal patients requiring extracorporeal membrane oxygenation for heart and lung failure. J. Thorac. Dis. 2019, 11, S871–S888. [Google Scholar] [CrossRef]
- Kuraim, G.A.; Garros, D.; Ryerson, L.; Moradi, F.; Dinu, I.A.; Garcia Guerra, G.; Moddemann, D.; Bond, G.Y.; Robertson, C.M.T.; Joffe, A.R.; et al. Predictors and outcomes of early post-operative veno-arterial extracorporeal membrane oxygenation following infant cardiac surgery. J. Intensive Care 2018, 6, 56. [Google Scholar] [CrossRef]
- Mitra, S.; Ling, R.; Tan, C.; Shekar, K.; MacLaren, G.; Ramanathan, K. Concurrent Use of Renal Replacement Therapy during Extracorporeal Membrane Oxygenation Support: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 241. [Google Scholar] [CrossRef]
- Borasino, S.; Kalra, Y.; Elam, A.R.; Carlisle O’Meara, L.; Timpa, J.G.; Goldberg, K.G.; Collins Gaddis, J.L.; Alten, J.A. Impact of Hemolysis on Acute Kidney Injury and Mortality in Children Supported with Cardiac Extracorporeal Membrane Oxygenation. J. Extra Corpor. Technol. 2018, 50, 217–224. [Google Scholar]
- Murphy, D.A.; Hockings, L.E.; Andrews, R.K.; Aubron, C.; Gardiner, E.E.; Pellegrino, V.A.; Davis, A.K. Extracorporeal membrane oxygenation-hemostatic complications. Transfus. Med. Rev. 2015, 29, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Cavayas, Y.A.; Munshi, L.; Del Sorbo, L.; Fan, E. The Early Change in PaCO2 after Extracorporeal Membrane Oxygenation Initiation Is Associated with Neurological Complications. Am. J. Respir. Crit. Care Med. 2020, 201, 1525–1535. [Google Scholar] [CrossRef]
- Joram, N.; Beqiri, E.; Pezzato, S.; Andrea, M.; Robba, C.; Liet, J.M.; Chenouard, A.; Bourgoin, P.; Czosnyka, M.; Leger, P.L.; et al. Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study. Neurocrit. Care 2021, 34, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Joram, N.; Beqiri, E.; Pezzato, S.; Andrea, M.; Robba, C.; Liet, J.M.; Chenouard, A.; Bourgoin, P.; Czosnyka, M.; Leger, P.L.; et al. Impact of Arterial Carbon Dioxide and Oxygen Content on Cerebral Autoregulation Monitoring Among Children Supported by ECMO. Neurocrit. Care 2021. [Google Scholar] [CrossRef]
- Al-Kawaz, M.N.; Canner, J.; Caturegli, G.; Kannapadi, N.; Balucani, C.; Shelley, L.; Kim, B.S.; Choi, C.W.; Geocadin, R.G.; Whitman, G.; et al. Duration of Hyperoxia and Neurologic Outcomes in Patients Undergoing Extracorporeal Membrane Oxygenation. Crit. Care Med. 2021. [Google Scholar] [CrossRef]
- MacLaren, G.; Butt, W.; Best, D.; Donath, S. Central extracorporeal membrane oxygenation for refractory pediatric septic shock. Pediatr. Crit. Care Med. 2011, 12, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L.J.; Chiletti, R.; Straney, L.; Festa, M.; Alexander, D.; Butt, W.; MacLaren, G.; on behalf of the Australian & New Zealand Intensive Care Society (ANZICS) Centre for Outcomes & Resource Evaluation (CORE) and the Australian & New Zealand Intensive Care Society (ANZICS) Paediatric Study Group. Defining benefit threshold for extracorporeal membrane oxygenation in children with sepsis—A binational multicenter cohort study. Crit. Care 2019, 23, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, A.S.; Guilliams, K.P.; Bembea, M.M. Neurological Monitoring and Complications of Pediatric Extracorporeal Membrane Oxygenation Support. Pediatr. Neurol. 2020, 108, 31–39. [Google Scholar] [CrossRef] [PubMed]
Score | Variables | Year | Patient Cohort | AUC (95% CI) | External Validation |
---|---|---|---|---|---|
PIPER [11] | Prior to ECMO Demographics Apgar at 5 min <7 Birth weight <3 kg Age >10 days CDH Vitals MAP <49 mm Hg Laboratory Data pO2 <34 mm Hg Treatment Data Patient not on iNO | 2016 | Source ELSO registry Date 2000–2010 Age <30 days old # of Patients 5455 on VA ECMO | 0.74 (0.72–0.77) | No |
Neo-RESCUERS [12] | Prior to ECMO Demographics Birth Weight Gestational Age Age Gender Primary Diagnosis Comorbidity Renal Failure Laboratory Data pH PaO2/FiO2 Treatment Data iNO | 2016 | Source ELSO registry Date 2008–2013 Age <28 days # of Patients 4592 patients | 0.77 (0.75–0.80) | No |
Score | Variables | Year | Patient Cohort | AUC (95% CI) | External Validation |
---|---|---|---|---|---|
CDH Pre-ECMO [13] | Prior to ECMO Demographics Prior diaphragmatic hernia repair Critical congenital heart disease Perinatal infection Weight APGARs Side of hernia Pre ECMO-Arrest Laboratory Data pH Treatment Data Ventilator settings | 2018 | Source ELSO registry Date 2000–2015 # of Patients 4374 Neonates with CDH as primary diagnosis | 0.65 (0.62–0.68) | No |
CDH On-ECMO [13] | Prior to ECMO + On-ECMO Treatment Data ECMO settings (pump type) ECMO associated complications (hemorrhage, severe neurologic complication, elevated creatinine, dialysis, tamponade, CPR, sepsis) | 2018 | 0.73 (0.71–0.76) | No |
Score | Variables | Year | Patient Cohort | AUC (95% CI) | External Validation |
---|---|---|---|---|---|
PED-RESCUERS [14] | Prior to ECMO Demographics Comorbidities Primary diagnosis of Asthma, Bronchiolitis or Pertussis Laboratory Data pH PaCO2 Treatment Data Ventilator settings Duration of admission and MV prior to ECMO Milrinone | 2016 | Source ELSO registry Date 2009–2014 Age 29 days to 18 years # of Patients 2458 on ECMO for respiratory indications | 0.63 (0.60–0.65) | No |
P-PREP [15] | Prior to ECMO Demographics Gender Age >10 years Year of ECMO support Primary pulmonary diagnosis Comorbidities Laboratory Data PF ratio pH Treatment Data VV vs VA Mechanical ventilation >14 days HFOV iNO Neuromuscular blockade | 2017 | Source ELSO registry Date 2001–2013 Age >7 days to <18 years # of Patients 4352 patients needing ECMO for respiratory failure | 0.69 (0.67–0.71) | Yes (PHIS dataset—0.66 (0.63–0.69)) |
Score | Variables | Year | Patient Cohort | AUC (95% CI) | External Validation |
---|---|---|---|---|---|
ECMONet [17] | Prior to ECMO Demographics PreECMO hospital length of stay Vitals Mean Arterial pressure Laboratory Data Bilirubin Creatinine Hematocrit | 2013 | Source Prospective multicenter Date 2009 H1N1 Pandemic # of Patients 60 H1N1 influenza A patients with respiratory distress | 0.86 (0.75–0.96) | Yes—0.69 (0.56–0.83) |
PRESERVE [19] | Prior to ECMO Demographics Age BMI Immunocompromised SOFA > 13 Treatment Data MV > 6 days No prone positioning prior to ECMO PEEP < 10 cm H2O Plateau Pressure > 30 cm H2O | 2013 | Source Multicenter (3 French ICUs) Date 2008–2012 # of Patients 140 ARDS patients | 0.89 (0.83–0.94) | Yes (0.68 (0.62–0.75) and 0.75 (0.57–0.92)) * |
RESP [20] | Prior to ECMO Demographics Age Immunocompromised status Mechanical ventilation prior to initiation of ECMO Acute Respiratory Diagnosis CNS dysfunction Acute associated nonpulmonary infection Cardiac Arrest prior to ECMO Laboratory Data PaCO2 Treatment Data Neuromuscular blockade prior to ECMO iNO HCO3 Peak inspiratory pressure | 2013 | Source ELSO registry Date 2000–2012 # of Patients 2355 Adult patients with Severe acute respiratory failure | 0.74 (0.72–0.76) | Yes (0.92 (0.89–0.97) and 0.81 (0.67–0.95)) * |
Roch Score [25] | Prior to ECMO Demographics SOFA Age Influenza Pneumonia | 2014 | Source Single Center Date 2009–2013 # of Patients 85 patients with ARDS | 0.80 (0.71–0.89) | Yes (0.56 (0.45–0.68)) ** |
VV [26] | Prior to ECMO Demographics Immunocompromised SOFA score Treatment Data Days of MV | 2016 | Source Single center Date 2007–2015 # of Patients 116 patients on VV ECMO for ARDS | 0.76 (0.67–0.85) | No |
PRESET [27] | Prior to ECMO Demographics Hospital days pre ECMO Vitals Mean arterial pressure Laboratory Data Lactate pH Platelet | 2017 | Source Single Center Date 2010–2015 # of Patients 108 patients with Severe ARDS treated with VV ECMO | 0.85 (0.76–0.93) | Yes (0.70 (0.56–0.84)) |
Score | Variables | Year | Patient Cohort | AUC (95% CI) | External Validation |
---|---|---|---|---|---|
SAVE [28] | Prior to ECMO Demographics Cardiogenic shock Age Weight Pre-ECMO organ failure Chronic Renal failure Pre-ECMO cardiac arrest Vitals DBP before ECMO >40 mmHg PP before ECMO <20 mmHg Laboratory Data HCO3 < 15 mmol/L Treatment Data Duration of intubation prior to initiation of ECMO Peak inspiratory pressure <20 cmH2O | 2015 | Source ELSO registry Date 2003–2013 # of Patients 3846 patients with refractory cardiogenic shock treated with VA ECMO | 0.68 (0.64–0.71) | Yes—0.90 (0.85–0.95) 0.77 (0.69–0.86) * [31] & 0.69 (CI unavailable) ** |
Encourage [29] | Prior to ECMO Demographics Age Sex BMI > 25 GCS < 6 Laboratory Data Creatinine Lactate Prothrombin activity | 2016 | Source Multicenter Date 2008–2013 # of Patients 138 ECMO treated AMI patients | 0.84 (0.77–0.91) | No |
PREDICT VA-ECMO [30] | On ECMO Laboratory Data pH Lactate HCO3 | 2018 | Source Single Center Date 2010–2015 # of Patients 205 VA-ECMO | 0.82 (0.76–0.88)—6 h score 0.84 (0.78–0.90)—12 h score | Yes—0.72 (0.65–0.78) (6 h) & 0.74 (0.65–0.82) (12 h) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, N.; Said, A.S. Extracorporeal Support Prognostication—Time to Move the Goal Posts? Membranes 2021, 11, 537. https://doi.org/10.3390/membranes11070537
Shah N, Said AS. Extracorporeal Support Prognostication—Time to Move the Goal Posts? Membranes. 2021; 11(7):537. https://doi.org/10.3390/membranes11070537
Chicago/Turabian StyleShah, Neel, and Ahmed S. Said. 2021. "Extracorporeal Support Prognostication—Time to Move the Goal Posts?" Membranes 11, no. 7: 537. https://doi.org/10.3390/membranes11070537
APA StyleShah, N., & Said, A. S. (2021). Extracorporeal Support Prognostication—Time to Move the Goal Posts? Membranes, 11(7), 537. https://doi.org/10.3390/membranes11070537