Transition from Simple V-V to V-A and Hybrid ECMO Configurations in COVID-19 ARDS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. End-Points and Definitions
2.3. Statistical Analysis
3. Results
Clinical Outcomes
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Univariable | Multivariable | ||
---|---|---|---|---|
OR (95% CIs) | p Value | OR (95% CIs) | p Value | |
Age | 0.95 (0.88–1.02) | 0.132 | 0.93 (0.85–1.03) | 0.169 |
Female | 0.73 (0.14–3.82) | 0.712 | - | - |
BMI (kg/m2) | 0.88 (0.26–3.04) | 0.845 | - | - |
BSA (m2) | 0.00 (1.15 × 10−24–3.67 × 1018) | 0.804 | - | - |
Hypertension | 0.85 (0.17–4.18) | 0.841 | - | - |
Diabetes | 1.50 (0.18–12.44) | 0.705 | - | - |
CKD | 0.97 (0.06–16.81) | 0.984 | - | - |
SOFA | 1.02 (0.84–1.23) | 0.841 | - | - |
SAPS II | 0.97 (0.91–1.04) | 0.400 | - | - |
APACHE II | 1.06 (0.97–1.16) | 0.184 | 1.05 (0.91–1.21) | 0.490 |
Off-site implant | 0.56 (0.12–2.63) | 0.462 | - | - |
ICU duration (d) | 0.95 (0.89–1.02) | 0.176 | 0.90 (0.82–0.99) | 0.047 |
HLoS before ICU | 1.03 (0.94–1.15) | 0.456 | - | - |
FiO2 (24 h) | 1.29 (0.74–2.27) | 0.365 | - | - |
pH (24 h) | 4.51 (0.00–9.26 × 105) | 0.809 | - | - |
paO2 (24 h) | 0.74 (0.36–1.50) | 0.401 | - | - |
paCO2 (24 h) | 1.02 (0.95–1.10) | 0.542 | - | - |
SpO2 (24 h) | 1.06 (0.92–1.23) | 0.402 | - | - |
PaO2/FiO2 (24 h) | 1.26 (0.66–2.41) | 0.478 | - | - |
CK | 0.96 (0.84–1.10) | 0.556 | - | - |
CK-MB | 1.05 (0.74–1.48) | 0.787 | - | - |
TnI | 1.00 (0.99–1.01) | 0.947 | - | - |
proBNP | 1.00 (1.00–1.01) | 0.263 | - | - |
AST | 0.99 (0.98–1.01) | 0.606 | - | - |
ALT | 0.99 (0.98–1.01) | 0.418 | - | - |
LDH | 1.00 (0.99–1.01) | 0.362 | - | - |
Lactate | 0.89 (0.01–113.28) | 0.964 | - | - |
Ferritin | 1.00 (0.99–1.01) | 0.729 | - | - |
IL-6 | 1.00 (1.00–1.01) | 0.399 | - | - |
PT | 0.90 (0.70–1.17) | 0.440 | - | - |
APTT | 1.01 (0.99–1.03) | 0.164 | 1.02 (0.99–1.05) | 0.149 |
Fibrinogen | 0.99 (0.99–1.00) | 0.524 | - | - |
D-dimer | 1.00 (0.99–1.00) | 0.389 | - | - |
CRP | 0.99 (0.98–1.01) | 0.748 | - | - |
PCT | 0.99 (0.94–1.06) | 0.932 | - | - |
Hb | 0.66 (0.39–1.21) | 0.193 | 0.59 (0.32–1.10) | 0.098 |
Dobutamine | 4.94 (0.80–30.60) | 0.086 | 14.70 (2.11–102.20) | 0.007 |
Dopamine | 4.76 (0.15–153.17) | 0.378 | - | - |
Adrenaline | 1.62 (0.21–12.48) | 0.645 | - | - |
Atropine | 1.01 (0.06–17.25) | 0.996 | - | - |
HR | 1.02 (0.99–1.05) | 0.147 | 1.03 (0.99–1.06) | 0.086 |
MAP | 0.97 (0.92–1.02) | 0.208 | - | - |
References
- Lorusso, R.; Combes, A.; Coco, V.L.; De Piero, M.E.; Belohlavek, J. ECMO for COVID-19 patients in Europe and Israel. Intensiv. Care Med. 2021, 47, 344–348. [Google Scholar] [CrossRef]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; Tonna, J.E.; Hyslop, R.; Fanning, J.J.; et al. Extracorporeal membrane oxygenation support in COVID-19: An international cohort study of the Extracorporeal Life Support Organization registry. Lancet 2020, 396, 1071–1078. [Google Scholar] [CrossRef]
- Peek, G.J.; Mugford, M.; Tiruvoipati, R.; Wilson, A.; Allen, E.; Thalanany, M.M.; Hibbert, C.L.; Truesdale, A.; Clemens, F.; Cooper, N.; et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial. Lancet 2009, 374, 1351–1363. [Google Scholar] [CrossRef]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef]
- Coco, V.L.; Swol, J.; De Piero, M.E.; Massimi, G.; Chiarini, G.; Broman, L.M.; Lorusso, R. Dynamic extracorporeal life support: A novel management modality in temporary cardio-circulatory assistance. Artif. Organs 2021, 45, 427–434. [Google Scholar] [CrossRef] [PubMed]
- De Piero, M.E.; Coco, V.L.; Taccone, F.S.; Belliato, M.; Broman, L.M.; Malfertheiner, M.V.; Lorusso, R. Has Venoarterial ECMO Been Underutilized in COVID-19 Patients? Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2020, 15, 317–321. [Google Scholar] [CrossRef]
- Anderson, H.L.; Delius, R.E.; Sinard, J.M.; McCurry, K.R.; Shanley, C.J.; Chapman, R.A.; Shapiro, M.B.; Rodriguez, J.L.; Bartlett, R.H. Early experience with adult extracorporeal membrane oxygenation in the modern era. Ann. Thorac. Surg. 1992, 53, 553–563. [Google Scholar] [CrossRef]
- Kolla, S.; Awad, S.S.; Rich, P.B.; Schreiner, R.J.; Hirschl, R.B.; Bartlett, R.H. Extracorporeal Life Support for 100 Adult Patients with Severe Respiratory Failure. Ann. Surg. 1997, 226, 544–566. [Google Scholar] [CrossRef]
- Hemmila, M.R.; Rowe, S.A.; Boules, T.N.; Miskulin, J.; McGillicuddy, J.W.; Schuerer, D.J.; Haft, J.W.; Swaniker, F.; Arbabi, S.; Hirschl, R.B.; et al. Extracorporeal Life Support for Severe Acute Respiratory Distress Syndrome in Adults. Ann. Surg. 2004, 240, 595–607. [Google Scholar] [CrossRef]
- Guzik, T.J.; Mohiddin, S.A.; DiMarco, A.; Patel, V.; Savvatis, K.; Marelli-Berg, F.M.; Madhur, M.S.; Tomaszewski, M.; Maffia, P.; D’Acquisto, F.; et al. COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 2020, 116, 1666–1687. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Laukkanen, J.A. Cardiovascular complications in COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, e139–e141. [Google Scholar] [CrossRef]
- Suwalski, P.; Drobiński, D.; Smoczyński, R.; Franczyk, M.; Sarnowski, W.; Gajewska, A.; Witkowska, A.; Wierzba, W.; Zaczyński, A.; Król, Z.; et al. Analysis of 75 consecutive COVID-19 ECMO cases in Warsaw Centre for Extracorporeal Therapies. Kardiologia Polska 2021. [Google Scholar] [CrossRef] [PubMed]
- Polish Diagnostic, Therapeutic and Organizational Recommendations for the Care of Individuals Infected with SARS-CoV-2 or Exposed to a SARS-CoV-2 Infection. Available online: https://www.aotm.gov.pl/media/2020/07/Covid_FINAL-v-1.1-_wersja-EN-1.pdf (accessed on 1 June 2021).
- Extracorporeal Life Support Organization SARS-CoV-2 Registry Addendum Database Definitions. 2020. Available online: https://www.elso.org/Registry/DataDefinitions,Forms,Instructions.aspx (accessed on 1 June 2021).
- Fraser, J.F.; Shekar, K.; Diab, S.; Dunster, K.; Foley, S.R.; McDonald, C.I.; Passmore, M.; Šimonová, G.; Roberts, J.A.; Platts, D.G.; et al. ECMO—The clinician’s view. ISBT Sci. Ser. 2012, 7, 82–88. [Google Scholar] [CrossRef]
- Shekar, K.; Mullany, D.V.; Thomson, B.; Ziegenfuss, M.; Platts, D.G.; Fraser, J.F. Extracorporeal life support devices and strategies for management of acute cardiorespiratory failure in adult patients: A comprehensive review. Crit. Care 2014, 18, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peck, T.J.; Hibbert, K. Recent advances in the understanding and management of ARDS. F1000Research 2019, 8, 1959. [Google Scholar] [CrossRef] [PubMed]
- Goligher, E.C.; Tomlinson, G.; Hajage, D.; Wijeysundera, D.N.; Fan, E.; Jüni, P.; Brodie, D.; Slutsky, A.S.; Combes, A. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial. JAMA 2018, 320, 2251–2259. [Google Scholar] [CrossRef]
- Munshi, L.; Walkey, A.; Goligher, E.; Pham, T.; Uleryk, E.M.; Fan, E. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: A systematic review and meta-analysis. Lancet Respir. Med. 2019, 7, 163–172. [Google Scholar] [CrossRef]
- Abrams, D.; Ferguson, N.; Brochard, L.; Fan, E.; Mercat, A.; Combes, A.; Pellegrino, V.; Schmidt, M.; Slutsky, A.S.; Brodie, D. ECMO for ARDS: From salvage to standard of care? Lancet Respir. Med. 2019, 7, 108–110. [Google Scholar] [CrossRef]
- Squiers, J.J.; Lima, B.; DiMaio, J.M. Contemporary extracorporeal membrane oxygenation therapy in adults: Fundamental principles and systematic review of the evidence. J. Thorac. Cardiovasc. Surg. 2016, 152, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Ware, L.B.; Matthay, M.A. The Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2000, 342, 1334–1349. [Google Scholar] [CrossRef]
- Esan, A.; Hess, D.R.; Raoof, S.; George, L.; Sessler, C.N. Severe Hypoxemic Respiratory Failure: Part 1—Ventilatory strategies. Chest 2010, 137, 1203–1216. [Google Scholar] [CrossRef] [Green Version]
- Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.; Amato, M.B.; Branson, R.; Brower, R.G.; et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.; Fan, E.; Ferguson, N.D.; Brodie, D. Unproven and Expensive May Still Be Justifiable. Am. J. Respir. Crit. Care Med. 2018, 198, 140. [Google Scholar] [CrossRef]
- Bein, T.; Weber-Carstens, S.; Goldmann, A.; Müller, T.; Staudinger, T.; Brederlau, J.; Muellenbach, R.; Dembinski, R.; Graf, B.M.; Wewalka, M.; et al. Lower tidal volume strategy (≈3 mL/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 mL/kg) in severe ARDS: The prospective randomized Xtravent-study. Intensiv. Care Med. 2013, 39, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Rozencwajg, S.; Guihot, A.; Franchineau, G.; Lescroat, M.; Bréchot, N.; Hékimian, G.; Lebreton, G.; Autran, B.; Luyt, C.-E.; Combes, A.; et al. Ultra-Protective Ventilation Reduces Biotrauma in Patients on Venovenous Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. Crit. Care Med. 2019, 47, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, G.; Fisher, D.; Brodie, D. Preparing for the Most Critically Ill Patients with COVID-19: The Potential Role of Ex-tracorporeal Membrane Oxygenation. JAMA 2020, 323, 1245. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, K.; Antognini, D.; Combes, A.; Paden, M.; Zakhary, B.; Ogino, M.; MacLaren, G.; Brodie, D.; Shekar, K. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir. Med. 2020, 8, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Loforte, A.; Di Mauro, M.; Pellegrini, C.; Monterosso, C.; Pelenghi, S.; Degani, A.; Rinaldi, M.; Stura, E.C.; Sales, G.; Montrucchio, G.; et al. Extracorporeal Membrane Oxygenation for COVID-19 Respiratory Distress Syndrome: An Italian Society for Cardiac Surgery Report. ASAIO J. 2021, 67, 385–391. [Google Scholar] [CrossRef]
- Yang, X.; Hu, M.; Yu, Y.; Zhang, X.; Fang, M.; Lian, Y.; Peng, Y.; Wu, L.; Wu, Y.; Yi, J.; et al. Extracorporeal Membrane Oxygenation for SARS-CoV-2 Acute Respiratory Distress Syndrome: A Retrospective Study From Hubei, China. Front. Med. 2021, 7, 611460. [Google Scholar] [CrossRef]
- Fang, J.; Li, R.; Chen, Y.; Qin, J.-J.; Hu, M.; Huang, C.-L.; Cheng, L.; He, Y.; Li, Y.; Zhou, Q.; et al. Extracorporeal Membrane Oxygenation Therapy for Critically Ill Coronavirus Disease 2019 Patients in Wuhan, China: A Retrospective Multicenter Cohort Study. Curr. Med. Sci. 2021, 41, 1–13. [Google Scholar] [CrossRef]
- Akhtar, W.; Olusanya, O.; Baladia, M.M.; Young, H.; Shah, S. SARS-CoV-2 and ECMO: Early results and experience. Indian J. Thorac. Cardiovasc. Surg. 2021, 37, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Dreier, E.; Malfertheiner, M.V.; Dienemann, T.; Fisser, C.; Foltan, M.; Geismann, F.; Graf, B.; Lunz, D.; Maier, L.S.; Müller, T.; et al. ECMO in COVID-19—Prolonged therapy needed? A retrospective analysis of outcome and prognostic factors. Perfusion 2021. [Google Scholar] [CrossRef]
- Zayat, R.; Kalverkamp, S.; Grottke, O.; Durak, K.; Dreher, M.; Autschbach, R.; Marx, G.; Marx, N.; Spillner, J.; Kersten, A. Role of extracorporeal membrane oxygenation in critically Ill COVID-19 patients and predictors of mortality. Artif. Organs 2020. [Google Scholar] [CrossRef]
- Abrams, D.; Lorusso, R.; Vincent, J.-L.; Brodie, D. ECMO during the COVID-19 pandemic: When is it unjustified? Crit. Care 2020, 24, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, M.; Fina, D.; Słomka, A.; Raffa, G.M.; Martucci, G.; Coco, V.L.; De Piero, M.E.; Ranucci, M.; Suwalski, P.; Lorusso, R. COVID-19 and ECMO: The interplay between coagulation and inflammation—A narrative review. Crit. Care 2020, 24, 205. [Google Scholar] [CrossRef]
- Tonna, J.E.; Abrams, D.; Brodie, D.; Greenwood, J.C.; Mateo-Sidron, J.A.R.; Usman, A.; Fan, E. Management of Adult Patients Supported with Venovenous Extracorporeal Membrane Oxygenation (VV ECMO): Guideline from the Extracorporeal Life Support Organization (ELSO). ASAIO J. 2021, 67, 601–610. [Google Scholar] [CrossRef]
- Deana, C. The COVID-19 pandemic: Is our medicine still evidence-based? Ir. J. Med Sci. 2021, 190, 11–12. [Google Scholar] [CrossRef]
Variable | Total (78) | V-V ECMO (64) | ECMO Conversion (14) | p Value |
---|---|---|---|---|
Age | 47.0 ± 11.3 | 48.3 ± 10.0 | 44.6 ± 12.2 | 0.228 |
Female | 18 (23.1%) | 15 (23.4%) | 3 (21.4) | 0.872 |
BMI (kg/m2) | 31.3 ± 9.5 | 32.6 ± 8.6 | 30.6 ± 10.5 | 0.449 |
BSA (m2) | 2.1 ± 0.5 | 2.2 ± 0.4 | 2.1 ± 0.6 | 0.442 |
Hypertension | 26 (33.3%) | 22 (34.4%) | 4 (28.6%) | 0.677 |
Diabetes | 13 (16.7%) | 11 (17.2%) | 2 (14.3%) | 0.792 |
Smoking | 5 (6.4%) | 5 (7.8%) | 0 (0%) | 0.506 |
CKD | 5 (6.4%) | 4 (6.3%) | 1 (7.1%) | 0.902 |
CAD | 1 (1.3%) | 1 (1.6%) | 0 (0%) | 0.819 |
Previous MI | 3 (3.8%) | 3 (4.7%) | 0 (0%) | 0.744 |
HF | 3 (3.8%) | 3 (4.7%) | 0 (0%) | 0.744 |
SOFA | 8.5 ± 3.2 | 8.4 ± 3.3 | 8.6 ± 2.9 | 0.834 |
SAPS II | 35.3 ± 11.0 | 35.8 ± 10.7 | 32.9 ± 12.6 | 0.375 |
APACHE II | 14.4 ± 6.6 | 13.9 ± 6.5 | 16.6 ± 6.8 | 0.165 |
Variable | Total (78) | V-V ECMO (64) | ECMO Conversion (14) | p Value |
---|---|---|---|---|
Off-site implant | 57 (73.1%) | 49 (76.6%) | 8 (51.7%) | 0.141 |
ECMO duration (d) | 16.5 ± 10.0 | 16.4 ± 9.4 | 17.8 ± 10.5 | 0.621 |
ICU duration (d) | 22.3 ± 11.4 | 23.0 ± 11.3 | 22.4 ± 12.3 | 0.859 |
HLoS before ICU | 6.2 ± 5.9 | 5.9 ± 5.8 | 6.6 ± 5.2 | 0.677 |
FiO2 (24 h) | 95.1 ± 8.3 | 95.4 ± 7.6 | 93.0 ± 15.3 | 0.385 |
pH (24 h) | 7.4 ± 0.1 | 7.4 ± 0.1 | 7.2 ± 1.1 | 0.143 |
paO2 (24 h) | 60.2 ± 19.3 | 61.1 ± 20.1 | 58.5 ± 21.5 | 0.665 |
paCO2 (24 h) | 58.8 ± 20.5 | 58.5 ± 20.7 | 59.1 ± 22.0 | 0.923 |
SpO2 (24 h) | 86.4 ± 9.3 | 86.4 ± 9.7 | 83.9 ± 15.8 | 0.440 |
PaO2/FiO2 (24 h) | 64.1 ± 22.8 | 64.8 ± 23.3 | 62.5 ± 24.3 | 0.740 |
CK (24 h) | 148 (68–524) | 148 (70–524) | 158 (63–362) | 0.292 |
CK-MB (24 h) | 26 (17–45) | 28 (18–55) | 21 (17–27) | 0.430 |
TnI (24 h) | 60 (24.5–202.9) | 75 (25–220) | 52.8 (26.45–173.3) | 0.436 |
proBNP (24 h) | 535 (245–3105) | 395 (184–1855) | 909 (478–6354) | 0.209 |
AST (24 h) | 42 (28–75) | 46 (30–85) | 33 (28–39) | 0.194 |
ALT (24 h) | 52 (30–98) | 54 (32–99) | 36 (26–55) | 0.155 |
LDH (24 h) | 468 (344–908) | 486 (338–1295) | 455 (375–603) | 0.196 |
Lactate (24 h) | 1.6 (1.2–2.1) | 1.5 (1.1–2.1) | 1.8 (1.2–2.0) | 0.560 |
Ferritin (24 h) | 1852 (1426–2817) | 1808 (1426–3200) | 1878 (1599–2053) | 0.203 |
IL-6 | 161 (49–2195) | 185 (48–2626) | 129 (53–488) | 0.260 |
PT | 13.4 (12.7–14.9) | 13.3 (12.7–14.9) | 13.4 (12.7–15.1) | 0.373 |
APTT | 38.1 (33.1–47.4) | 38.1 (33.1–46.1) | 37.2 (32.9–59.2) | 0.165 |
Fibrinogen | 508 (320–707) | 516 (334–720) | 406 (280–629) | 0.688 |
D-dimer | 4660 (2023–12,810) | 4550 (2095–15,931) | 4771 (1754–5403) | 0.758 |
CRP | 125.8 (61.1–194.1) | 126.6 (60.5–216.8) | 114.1 (87.8–165.1) | 0.589 |
PCT | 0.7 (0.2–1.9) | 0.8 (0.2–1.9) | 0.3 (0.2–0.8) | 0.519 |
Hb | 10.9 (9.8–12.1) | 10.9 (9.9–12.5) | 10.7 (9.6–11.1) | 0.274 |
Dobutamine | 12 (15.4%) | 7 (10.9%) | 5 (35.7%) | 0.023 |
Dopamine | 3 (3.8%) | 2 (3.1%) | 1 (7.1%) | 0.486 |
Adrenaline | 13 (16.7%) | 11 (17.2%) | 2 (14.3%) | 0.792 |
Noradrenaline | 74 (94.9%) | 60 (98.3%) | 14 (100%) | 0.610 |
Atropine | 5 (6.4%) | 4 (6.3%) | 1 (7.1%) | 0.902 |
Levosimendan | 1 (1.3%) | 1 (1.6%) | 0 (0%) | 0.819 |
HR | 83.2 ± 24.6 | 82.8 ± 21.6 | 83.5 ± 25.8 | 0.916 |
MAP | 82.0 ± 16.1 | 83.6 ± 12.4 | 80.7 ± 19.3 | 0.477 |
Variable | Total (78) | V-V ECMO (64) | ECMO Conversion (14) | ORs (95% CIs) | p Value |
---|---|---|---|---|---|
Major bleeding | 53 (67.9%) | 45 (70.3%) | 8 (57.1%) | 1.78 (0.54–5.82) | 0.343 |
Massive transfusions | 7 (9.0%) | 7 (10.9%) | 0 (0%) | 3.78 (0.2–70.14) | 0.372 |
Circuit complications | 2 (2.6%) | 0 (0%) | 2 (14.3%) | 0.04 (0.00–0.86) | 0.040 |
Stroke | 5 (6.4%) | 4 (6.3%) | 1 (7.1%) | 0.87 (0.09–8.40) | 0.902 |
CVVH | 24 (30.8%) | 17 (26.6%) | 7 (50.0%) | 0.36 (0.11–1.18) | 0.093 |
Cardiovascular | 16 (20.5%) | 9 (14.1%) | 7 (50.0%) | 0.16 (0.05–0.58) | 0.005 |
Pulmonary | 14 (17.9%) | 11 (17.2%) | 3 (21.4%) | 0.76 (0.18–3.19) | 0.709 |
Metabolic | 7 (9.0%) | 5 (7.8%) | 2 (14.3%) | 0.51 (0.09–2.94) | 0.450 |
Limb | 4 (5.1%) | 1 (1.6%) | 3 (21.4%) | 0.06 (0.01–0.61) | 0.018 |
Sepsis | 33 (42.3%) | 28 (43.8%) | 5 (35.7%) | 1.40 (0.42–4.65) | 0.582 |
MOF | 16 (20.5%) | 12 (18.8%) | 4 (28.6%) | 0.58 (0.15–2.16) | 0.414 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwalski, P.; Staromłyński, J.; Brączkowski, J.; Bartczak, M.; Mariani, S.; Drobiński, D.; Szułdrzyński, K.; Smoczyński, R.; Franczyk, M.; Sarnowski, W.; et al. Transition from Simple V-V to V-A and Hybrid ECMO Configurations in COVID-19 ARDS. Membranes 2021, 11, 434. https://doi.org/10.3390/membranes11060434
Suwalski P, Staromłyński J, Brączkowski J, Bartczak M, Mariani S, Drobiński D, Szułdrzyński K, Smoczyński R, Franczyk M, Sarnowski W, et al. Transition from Simple V-V to V-A and Hybrid ECMO Configurations in COVID-19 ARDS. Membranes. 2021; 11(6):434. https://doi.org/10.3390/membranes11060434
Chicago/Turabian StyleSuwalski, Piotr, Jakub Staromłyński, Jakub Brączkowski, Maciej Bartczak, Silvia Mariani, Dominik Drobiński, Konstanty Szułdrzyński, Radosław Smoczyński, Marzena Franczyk, Wojciech Sarnowski, and et al. 2021. "Transition from Simple V-V to V-A and Hybrid ECMO Configurations in COVID-19 ARDS" Membranes 11, no. 6: 434. https://doi.org/10.3390/membranes11060434
APA StyleSuwalski, P., Staromłyński, J., Brączkowski, J., Bartczak, M., Mariani, S., Drobiński, D., Szułdrzyński, K., Smoczyński, R., Franczyk, M., Sarnowski, W., Gajewska, A., Witkowska, A., Wierzba, W., Zaczyński, A., Król, Z., Olek, E., Pasierski, M., Ravaux, J. M., de Piero, M. E., ... Kowalewski, M. (2021). Transition from Simple V-V to V-A and Hybrid ECMO Configurations in COVID-19 ARDS. Membranes, 11(6), 434. https://doi.org/10.3390/membranes11060434