The Use of Polymer Membranes to Counteract the Risk of Environmental of Soil and Water Contamination
Abstract
:1. Introduction
2. Application of Membranes in Contamination Situations
2.1. Surface Water Contamination
2.2. Contamination of the Soil Environment
- Flat membranes made of oxidized asphalts or modified with polymers (poly (vinyl chloride) polyvinyl chloride PVC), or terpolymer obtained from ethylene-propylene-diene rubber monomers (ethylene propylene diene rubber EPDM or high density polyethylene HDPE).
- Extruded HDPE membranes.
- petrol stations and their storage facilities,
- sewage treatment plants,
- oil boiler rooms,
- rainwater sedimentation tanks,
- hazardous substances reloading yards,
- recycling yards for scrapped vehicles,
- drainage ditches at road bodies,
- sealing municipal waste landfills, and
- broadly understood agrotechnics.
2.3. Groundwater Contamination
- oxygen content in the water feeding a given aquifer,
- distribution and reactivity of organic matter and other potential reducers in the groundwater reservoir,
- distribution of potential redox buffers in the groundwater reservoir, and
- intensity of groundwater exchange [77].
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Human Pharmaceuticals in Wastewater Treatment Processes. Crit. Rev. Environ. Sci. Technol. 2005, 35, 401–427. [Google Scholar] [CrossRef]
- Mohammad, A.; Teow, Y.; Ang, W.; Chung, Y.; Oatley-Radcliffe, D.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Krzeminski, P.; Leverette, L.; Malamis, S.; Katsou, E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Membr. Sci. 2017, 527, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, S.; Mohammad, A.W. Challenges and trends in membrane technology implementation for produced water treatment: A review. J. Water Process. Eng. 2014, 4, 107–133. [Google Scholar] [CrossRef]
- Wang, J.; Myers, E. Tidal Datum Changes Induced by Morphological Changes of North Carolina Coastal Inlets. J. Mar. Sci. Eng. 2016, 4, 79. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Elam, J.W.; Darling, S.B. Membrane materials for water purification: Design, development, and application. Environ. Sci. Water Res. Technol. 2016, 2, 17–42. [Google Scholar] [CrossRef]
- Nataraj, S.; Hosamani, K.; Aminabhavi, T. Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination 2009, 249, 12–17. [Google Scholar] [CrossRef]
- Nataraj, S.K.; Hosamani, K.M.; Aminabhavi, T.M. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Res. 2006, 40, 2349–2356. [Google Scholar] [CrossRef]
- Fane, A.; Tang, C.; Wang, R. Membrane Technology for Water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis. In Treatise on Water Science; Elsevier BV: Amsterdam, The Netherlands, 2011; pp. 301–335. [Google Scholar]
- Mandegari, M.; Fashandi, H. Untapped potentials of acrylonitrile-butadiene-styrene/polyurethane (ABS/PU) blend membrane to purify dye wastewater. J. Environ. Manag. 2017, 197, 464–475. [Google Scholar] [CrossRef]
- Aminabhavi, T.; Mallikarjuna, N. Column: Polymeric Membranes. Polym. News 2004, 29, 193–195. [Google Scholar] [CrossRef]
- Hoek, E.M.; Ghosh, A.K.; Huang, X.; Liong, M.; Zink, J.I. Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes. Desalination 2011, 283, 89–99. [Google Scholar] [CrossRef]
- Zhao, S.; Zou, L.; Tang, C.Y.; Mulcahy, D. Recent developments in forward osmosis: Opportunities and challenges. J. Membr. Sci. 2012, 396, 1–21. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.; Marchand, E.A.; Childress, A.E. The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination 2009, 239, 10–21. [Google Scholar] [CrossRef]
- Chanukya, B.; Rastogi, N.K. Ultrasound assisted forward osmosis concentration of fruit juice and natural colorant. Ultrason. Sonochem. 2017, 34, 426–435. [Google Scholar] [CrossRef]
- Fawell, J.; Nieuwenhuijsen, M.J. Contaminants in drinking water. Br. Med Bull. 2003, 68, 199–208. [Google Scholar] [CrossRef]
- Harvey, C.F.; Swartz, C.H.; Badruzzaman, A.B.M.; Keon-Blute, N.; Yu, W.; Ali, M.A.; Jay, J.; Beckie, R.; Niedan, V.; Brabander, D.; et al. Groundwater arsenic contamination on the Ganges Delta: Biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. Comptes Rendus Geosci. 2005, 337, 285–296. [Google Scholar] [CrossRef]
- Abu Rukah, Y.; Alsokhny, K. Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration, North Jordan. Geochemistry 2004, 64, 171–181. [Google Scholar] [CrossRef]
- Ghrefat, H.; Nazzal, Y.; Batayneh, A.; Zumlot, T.; Zaman, H.; Elawadi, E.; Laboun, A.; Mogren, S.; Qaisy, S. Geochemical assessment of groundwater contamination with special emphasizes on fluoride, a case study from Midyan Basin, northwestern Saudi Arabia. Environ. Earth Sci. 2014, 71, 1495–1505. [Google Scholar] [CrossRef]
- Nriagu, J.O. A silent epidemic of environmental metal poisoning? Environ. Pollut. 1988, 50, 139–161. [Google Scholar] [CrossRef] [Green Version]
- Damalas, C.A.; Eleftherohorinos, I. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Heal. 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- WHO International Code of Conduct on the Distribution and Use of Pesticides: Guidelines for the Registration of Pesticides; World Health Organization: Geneva, Switzerland, 2010.
- Ashbolt, N.J. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 2004, 198, 229–238. [Google Scholar] [CrossRef]
- Duffa, C.; Du Bois, P.B.; Caillaud, M.; Charmasson, S.; Couvez, C.; Didier, D.; Dumas, F.; Fievet, B.; Morillon, M.; Renaud, P.; et al. Development of emergency response tools for accidental radiological contamination of French coastal areas. J. Environ. Radioact. 2016, 151, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Usha, N.; Sawant, P.D.; Tripathi, R.M.; Raj, S.S.; Mishra, M.; Rout, S.; Supreeta, P.; Singh, J.; Kumar, S.; et al. Risk Assessment for Natural Uranium in Subsurface Water of Punjab State, India. Hum. Ecol. Risk Assessment: Int. J. 2011, 17, 381–393. [Google Scholar] [CrossRef]
- Charcosset, C. A review of membrane processes and renewable energies for desalination. Desalination 2009, 245, 214–231. [Google Scholar] [CrossRef]
- Strathmann, H. Electrodialysis, a mature technology with a multitpude of new applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Pendergast, M.M.; Hoek, E.M. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef] [Green Version]
- Rabajczyk, A.; Zielecka, M.; Cygańczuk, K.; Pastuszka, Ł.; Jurecki, L. Nanometals-Containing Polymeric Membranes for Purification Processes. Materials 2021, 14, 513. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ding, M.; Liu, S.; Li, Y.; Shen, Z.; Wang, K. Preparation and characterization of novel polysulphone hybrid ultrafiltration membranes blended with N-doped GO/TiO 2 nanocomposites. Polymer 2017, 117, 198–207. [Google Scholar] [CrossRef]
- Bodzek, M.; Konieczny, K. Membrane Techniques in the Removal of Inorganic Anionic Micropollutants from Water Envi-ronment—State of the Art. Arch. Environ. Prot. 2011, 37, 15–29. [Google Scholar]
- Velizarov, S.; Reis, M.A. Removal of inorganic anions from drinking water supplies by membrane bio/processes. Rev. Environ. Sci. Bio/Technology 2004, 3, 361–380. [Google Scholar] [CrossRef]
- de Moraes, M.A.; Cocenza, D.S.; Vasconcellos, F.D.C.; Fraceto, L.; Beppu, M.M. Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. J. Environ. Manag. 2013, 131, 222–227. [Google Scholar] [CrossRef]
- Qin, J.-J.; Wai, M.-N.; Oo, M.-H.; Wong, F.-S. A feasibility study on the treatment and recycling of a wastewater from metal plating. J. Membr. Sci. 2002, 208, 213–221. [Google Scholar] [CrossRef]
- Luo, L.; Han, G.; Chung, T.-S.; Weber, M.; Staudt, C.; Maletzko, C. Oil/water separation via ultrafiltration by novel triangle-shape tri-bore hollow fiber membranes from sulfonated polyphenylenesulfone. J. Membr. Sci. 2015, 476, 162–170. [Google Scholar] [CrossRef]
- Cui, J.; Zhou, Z.; Xie, A.; Wang, Q.; Liu, S.; Lang, J.; Li, C.; Yan, Y.; Dai, J. Facile preparation of grass-like structured NiCo-LDH/PVDF composite membrane for efficient oil–water emulsion separation. J. Membr. Sci. 2019, 573, 226–233. [Google Scholar] [CrossRef]
- Cui, J.; Xie, A.; Zhou, S.; Liu, S.; Wang, Q.; Wu, Y.; Meng, M.; Lang, J.; Zhou, Z.; Yan, Y. Development of composite membranes with irregular rod-like structure via atom transfer radical polymerization for efficient oil-water emulsion separation. J. Colloid Interface Sci. 2019, 533, 278–286. [Google Scholar] [CrossRef]
- Wu, J.; Ding, Y.; Wang, J.; Li, T.T.; Lin, H.; Wang, J.; Liu, F. Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions. J. Mater. Chem. A 2018, 6, 7014–7020. [Google Scholar] [CrossRef]
- Zioui, D.; Salazar, H.; Aoudjit, L.; Martins, P.M.; Lanceros-Méndez, S. Polymer-Based Membranes for Oily Wastewater Remediation. Polymers 2019, 12, 42. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Dai, F.; Lin, L.; An, Z.; He, Y.; Chen, X.; Chen, L.; Zhao, Y. Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation. J. Membr. Sci. 2018, 555, 220–228. [Google Scholar] [CrossRef]
- Fakhru’L-Razi, A.; Pendashteh, A.; Abidin, Z.Z.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S. Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use. Bioresour. Technol. 2010, 101, 6942–6949. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Chen, L.; Feng, Y.; He, W.; Lv, X. Modified superhydrophilic and underwater superoleophobic PVDF membrane with ultralow oil-adhesion for highly efficient oil/water emulsion separation. Mater. Lett. 2016, 185, 169–172. [Google Scholar] [CrossRef]
- Shi, H.; He, Y.; Pan, Y.; Di, H.; Zeng, G.; Zhang, L.; Zhang, C. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J. Membr. Sci. 2016, 506, 60–70. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Bringas, E.; Tan, N.R.; Ortiz, I.; Ghahramani, M.; Shahmirzadi, M.A.A. Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: A review. J. Water Process. Eng. 2016, 9, 78–110. [Google Scholar] [CrossRef]
- Chaudhari, L.B.; Murthy, Z. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model. J. Hazard. Mater. 2010, 180, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Rajaganapa, V.; Xavier, F.; Sreekumar, D.; Mandal, P. Heavy Metal Contamination in Soil, Water and Fodder and their Presence in Livestock and Products: A Review. J. Environ. Sci. Technol. 2011, 4, 234–249. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hou, D.; Cao, Y.; Ok, Y.S.; Tack, F.M.; Rinklebe, J.; O’Connor, D. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environ. Int. 2020, 134, 105281. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. J. Environ. Public Heal. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Weste statistics. Eurostat Statistics Explained. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation (accessed on 20 April 2021).
- Abrahams, P. Soils: Their implications to human health. Sci. Total. Environ. 2002, 291, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.W.; Von Lau, E.; Poh, P.E. A comprehensive guide of remediation technologies for oil contaminated soil—Present works and future directions. Mar. Pollut. Bull. 2016, 109, 14–45. [Google Scholar] [CrossRef]
- Chingo, C.; Gómez, J.M.; Narváez C., R.A. Material selection using multi-criteria decision making methods for geomembranes. Int. J. Math. Oper. Res. 2020, 16, 24. [Google Scholar] [CrossRef]
- Sammarco, P.W.; Kolian, S.R.; Warby, R.A.F.; Bouldin, J.L.; Subra, W.A.; Porter, S.A. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico. Arch. Toxicol. 2016, 90, 829–837. [Google Scholar] [CrossRef]
- Gennadiev, A.N.; Pikovskii, Y.I.; Tsibart, A.S.; Smirnova, M. Hydrocarbons in soils: Origin, composition, and behavior (Review). Eurasian Soil Sci. 2015, 48, 1076–1089. [Google Scholar] [CrossRef]
- McWatters, R.S.; Rutter, A.; Rowe, R.K. Geomembrane applications for controlling diffusive migration of petroleum hydro-carbons in cold region environments. J. Environ. Manag. 2016, 181, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Jafari, N.H.; Stark, T.D.; Rowe, R.K. Service Life of HDPE Geomembranes Subjected to Elevated Temperatures. J. Hazard. Toxic Radioact. Waste 2014, 18, 16–26. [Google Scholar] [CrossRef]
- Koerner, R.M.; Hsuan, Y.G.; Koerner, G.R. Lifetime predictions of exposed geotextiles and geomembranes. Geosynth. Int. 2017, 24, 198–212. [Google Scholar] [CrossRef]
- Kiersnowska, A.; Fabianowski, W.; Koda, E. The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Geogrids Used for Landfill Slope Reinforcement. Polymers 2020, 12, 1874. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, F.; Valentin, C.; Kobelnik, M.; Da Silva, J.L.; Lopes, M. HDPE Geomembranes for Environmental Protection: Two Case Studies. Sustainability 2020, 12, 8682. [Google Scholar] [CrossRef]
- Valentin, C.A.; Da Silva, J.L.; Kobelnik, M.; Ribeiro, C.A. Thermoanalytical and dynamic mechanical analysis of commercial geomembranes used for fluid retention of leaching in sanitary landfills. J. Therm. Anal. Calorim. 2018, 136, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Ewais, A.M.R.; Rowe, R.K.; Brachman, R.W.I.; Arnepalli, D.N. Service Life of a High-Density Polyethylene Geomembrane under Simulated Landfill Conditions at 85 °C. J. Geotech. Geoenviron. Eng. 2014, 140, 04014060. [Google Scholar] [CrossRef]
- Abdelaal, F.B.; Rowe, R.K.; Islam, M.Z. Effect of leachate composition on the long-term performance of a HDPE geomembrane. Geotext. Geomembr. 2014, 42, 348–362. [Google Scholar] [CrossRef]
- Dillon, M.; White, R.; Power, D. Tailings storage at Lisheen Mine, Ireland. Miner. Eng. 2004, 17, 123–130. [Google Scholar] [CrossRef]
- Man, H.C.; Abba, M.U.; Abdulsalam, M.; Azis, R.S.; Idris, A.I.; Hamzah, M.H. Utilization of Nano-TiO2 as an Influential Additive for Complementing Separation Performance of a Hybrid PVDF-PVP Hollow Fiber: Boron Removal from Leachate. Polymers 2020, 12, 2511. [Google Scholar] [CrossRef]
- Liu, Y.; Ke, X.; Wu, X.; Ke, C.; Chen, R.; Chen, X.; Zheng, X.; Jin, Y.; Van Der Bruggen, B. Simultaneous Removal of Trivalent Chromium and Hexavalent Chromium from Soil Using a Modified Bipolar Membrane Electrodialysis System. Environ. Sci. Technol. 2020, 54, 13304–13313. [Google Scholar] [CrossRef]
- Gilson-Beck, A. Controlling leakage through installed geomembranes using electrical leak location. Geotext. Geomembr. 2019, 47, 697–710. [Google Scholar] [CrossRef]
- Gilson, A. Electrical leak location testing for zero leak verification. In Proceedings of the IFAI Geosynthetics 2019 Conference, Houston, TX, USA, 10–13 February 2019; pp. 45–54, ISBN 9781510893528. [Google Scholar]
- Ramsey, B.; Zanzinger, H.; Zimmel, E. New technique for predictive geomembrane stress crack performance: Commercial application. In Proceedings of the 11th International Conference on Geosynthetics, Seoul, Korea, 16–21 September 2018. [Google Scholar]
- ASTM D5397: Standard Test Method for Evaluation of Stress Crack Resistance of Polyolefin Geomembranes Using Notched Constant Tensile Load Test; Swedish Institute for Standards: Stockholm, Sweden, 2005; p. 5.
- Cai, Z.; Wang, W.; Zhao, M.; Ma, Z.; Lu, C.; Li, Y. Interaction between Surface Water and Groundwater in Yinchuan Plain. Water 2020, 12, 2635. [Google Scholar] [CrossRef]
- Reyes-Toscano, C.A.; Alfaro-Cuevas-Villanueva, R.; Cortés-Martínez, R.; Morton-Bermea, O.; Hernández-Álvarez, E.; Buenrostro-Delgado, O.; Ávila-Olivera, J.A. Hydrogeochemical Characteristics and Assessment of Drinking Water Quality in the Urban Area of Zamora, Mexico. Water 2020, 12, 556. [Google Scholar] [CrossRef] [Green Version]
- Isotope Methods for Dating Old Groundwater. International Atomic Energy Agency, Vienna, Austria, 2013. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1587_web.pdf (accessed on 20 April 2021).
- Lin, H. Earth’s Critical Zone and hydropedology: Concepts, characteristics, and advances. Hydrol. Earth Syst. Sci. 2010, 14, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.W.N. Groundwater–Surface Water Interactions in the Hyporheic Zone. Science Report SC030155/SR1; Environment Agency: Rio House: Bristol, UK, 2005. [Google Scholar]
- Bacchin, P. Colloid-interface interactions initiate osmotic flow dynamics. Colloids Surfaces A: Physicochem. Eng. Asp. 2017, 533, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Krogulec, E.; Małecki, J.J.; Porowska, D.; Wojdalska, A. Assessment of Causes and Effects of Groundwater Level Change in an Urban Area (Warsaw, Poland). Water 2020, 12, 3107. [Google Scholar] [CrossRef]
- Miao, Z.; Brusseau, M.L.; Carroll, K.C.; Carreón-Diazconti, C.; Johnson, B. Sulfate reduction in groundwater: Characterization and applications for remediation. Environ. Geochem. Health 2011, 34, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Koch, E. Groundwater remediation ultrafiltration system pilot and operating data. 3M—Charlotte, NC. 3M Science. Applied to Life. 3M, Liqui-Cel, and Liqui-Flux are trademarks of 3M Company. 2020. Available online: https://multimedia.3m.com/mws/media/1937620O/36071-spsd-iwc-white-paper.pdf (accessed on 15 April 2021).
- Kang, M.; Kawasaki, M.; Tamada, S.; Kamei, T.; Magara, Y. Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination 2000, 131, 293–298. [Google Scholar] [CrossRef]
- Oh, J.; Yamamoto, K.; Kitawaki, H.; Nakao, S.; Sugawara, T.; Rahman, M. Application of low-pressure nanofiltration coupled with a bicycle pump for the treatment of arsenic-contaminated groundwater. Desalination 2000, 132, 307–314. [Google Scholar] [CrossRef]
- Mojarrad, M.; Noroozi, A.; Zeinivand, A.; Kazemzadeh, P. Response surface methodology for optimization of simultaneous Cr (VI) and as (V) removal from contaminated water by nanofiltration process. Environ. Prog. Sustain. Energy 2018, 37, 434–443. [Google Scholar] [CrossRef]
- He, Y.; Tang, Y.P.; Ma, D.; Chung, T.-S. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. J. Membr. Sci. 2017, 541, 262–270. [Google Scholar] [CrossRef]
- He, Y.; Liu, J.; Han, G.; Chung, T.-S. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal. J. Membr. Sci. 2018, 555, 299–306. [Google Scholar] [CrossRef]
- Manirethan, V.; Gupta, N.; Balakrishnan, R.M.; Raval, K. Batch and continuous studies on the removal of heavy metals from aqueous solution using biosynthesised melanin-coated PVDF membranes. Environ. Sci. Pollut. Res. 2019, 27, 24723–24737. [Google Scholar] [CrossRef]
- Sang, Y.; Li, F.; Gu, Q.; Liang, C.; Chen, J. Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane. Desalination 2008, 223, 349–360. [Google Scholar] [CrossRef]
- Yoo, H.; Kwak, S.-Y. Surface functionalization of PTFE membranes with hyperbranched poly(amidoamine) for the removal of Cu2+ ions from aqueous solution. J. Membr. Sci. 2013, 448, 125–134. [Google Scholar] [CrossRef]
- Weng, Y.-H.; Chaung-Hsieh, L.H.; Lee, H.-H.; Li, K.-C.; Huang, C. Removal of arsenic and humic substances (HSs) by electro-ultrafiltration (EUF). J. Hazard. Mater. 2005, 122, 171–176. [Google Scholar] [CrossRef]
- Iron and Manganese Removal by Nanofiltration and Ultrafiltration Membranes: Influence of Ph Adjustment. Malays. J. Anal. Sci. 2017, 21, 149–158. [CrossRef]
- Cai, Y.-H.; Yang, X.; Schäfer, A. Removal of Naturally Occurring Strontium by Nanofiltration/Reverse Osmosis from Groundwater. Membrane. 2020, 10, 321. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, C.; Tong, T.; Epsztein, R.; Sun, M.; Verduzco, R.; Ma, J.; Elimelech, M. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength. J. Membr. Sci. 2018, 559, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Fakhfekh, R.; Chabanon, E.; Mangin, D.; Amar, R.B.; Charcosse, C. Removal of iron using an oxidation and ceramic microfil-tration hybrid process for drinking water treatment. Desalination Water Treat. 2017, 6, 210–220. [Google Scholar] [CrossRef]
- Chang, F.-F.; Liu, W.-J.; Wang, X.-M. Comparison of polyamide nanofiltration and low-pressure reverse osmosis membranes on As(III) rejection under various operational conditions. Desalination 2014, 334, 10–16. [Google Scholar] [CrossRef]
- A Siddique, T.; Dutta, N.K.; Choudhury, N.R. Nanofiltration for Arsenic Removal: Challenges, Recent Developments, and Perspectives. Nanomaterials 2020, 10, 1323. [Google Scholar] [CrossRef]
- Tanne, N.; Xu, R.; Zhou, M.; Zhang, P.; Wang, X.; Wen, X. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes. Front. Environ. Sci. Eng. 2019, 13, 19. [Google Scholar] [CrossRef]
- Ren, J.; Yao, M.; Woo, Y.C.; Tijing, L.D.; Kim, J.-H.; Shon, H.K. Recyclable nanoscale zerovalent iron (nZVI)-immobilized electrospun nanofiber composites with improved mechanical strength for groundwater remediation. Compos. Part B Eng. 2019, 171, 339–346. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Zhu, M.; Liu, H.; Ma, J. Investigation of PAA/PVDF–NZVI hybrids for metronidazole removal: Synthesis, characterization, and reactivity characteristics. J. Hazard. Mater. 2014, 264, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Shen, M.; Guo, R.; Wang, S.; Shi, X. Immobilization of Zerovalent Iron Nanoparticles into Electrospun Polymer Nanofibers: Synthesis, Characterization, and Potential Environmental Applications. J. Phys. Chem. C 2009, 113, 18062–18068. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, S.; Liu, J.; Cao, Y.; Qian, G.; Li, Y.-Y.; Xu, Z.P. Nitrate removal from groundwater using negatively charged nanofiltration membrane. Environ. Sci. Pollut. Res. 2019, 26, 34197–34204. [Google Scholar] [CrossRef]
- Plattner, J.; Kazner, C.; Naidu, G.; Wintgens, T.; Vigneswaran, S. Removal of selected pesticides from groundwater by membrane distillation. Environ. Sci. Pollut. Res. 2017, 25, 20336–20347. [Google Scholar] [CrossRef]
- Šír, M.; Podhola, M.; Patočka, T.; Honzajková, Z.; Kocurek, P.; Bystrianský, M.; Vurm, R.; Kubal, M. Removal of pesticides and inorganic pollutants by reverse osmosis. Environ. Prot. Eng. 2015, 41, 159–166. [Google Scholar] [CrossRef]
- Ainscough, T.; Oatley-Radcliffe, D.; Barron, A. Groundwater Remediation of Volatile Organic Compounds Using Nanofiltration and Reverse Osmosis Membranes—A Field Study. Membranes 2021, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Wan, H. Bimetallic Nanoparticles Integrated Membranes for Groundwater Remediation: Synthesis, Characterization and Applications; College of Engineering, the University of Kentucky: Lexington, KY, USA, 2020. [Google Scholar]
- Wan, H.; Islam, S.; Briot, N.; Schnobrich, M.; Pacholik, L.; Ormsbee, L.; Bhattacharyya, D. Pd/Fe nanoparticle integrated PMAA-PVDF membranes for chloro-organic remediation from synthetic and site groundwater. J. Membr. Sci. 2020, 594, 117454. [Google Scholar] [CrossRef] [PubMed]
Technique | Type of Membrane | Conditions | Ref. |
---|---|---|---|
UF | PPSU/TBF | Transmembrane pressure of 1 bar; a flow rate of 300 mL/min along the lumen side; a velocity range of 2.58–2.81 m/s | [35] |
Gravity-driven filtration | NiCo-LDH/PVDF composite | Glass sand core filter device; water-in-oil emulsions (soybean oil, petroleum ether, 1,2-dichloroethane, n-hexadecane)—the volume ratio of 1:99 | [36] |
Filtration | APTES@PVDF/GO | Polymerization with ATRP; a volume ratio of organics and water: 1:99; the pressure of 0.05 MPa; complex environments, such as 2 M HCl, 2 M NaOH and saturated NaCl; permeation flux 1000 ± 44 L/m2·h·bar | [37] |
Gravity-driven filtration | nanofibrous PVDF membrane | Permeability 88 166 ± 652 L/m2·h·bar; water-in-oil emulsions (chloroform, toluene, dichloromethane and high viscosity oils: D4 and D5) | [38] |
Photoreactor | TiO2-NPs/PVDF-TrFE | The flow rate 100.8 L/h; pH = 4–5.5; oily industrial wastewater | [39] |
Separation | SiO2-NPs/PVDF | The pressure of 0.9 bar; fluxes of over 10,000 L/m2 h | [40] |
RO | PES or PVDF (EM006, ES209, ES625, FP100, FP200) | The cross flow velocity 2 m/s; operating pressure 60 bar; crossflow membrane sequencing batch reactor inoculated with isolated tropical halophilic microorganisms | [41] |
VDF system | CS–SiO2–GA composite/PVDF | Separation area ~1.6 cm2; the pressure 0.03 MPa. | [42] |
Separation | TiO2-NP/PVDF | Pressure difference of 0.09 MPa; separation area 1.77 cm2; the permeation flux for SDS/oil/H2O emulsion (oil: petroleum ether; n-hexadecane; 1,3,5-trimethylbenzene; diesel oil): 428 L/m2∙h, 605 L/m2∙h, 524 L/m2∙h, 382 L/m2∙h respectively | [43] |
Type of Membrane | Pollution | Conditions | Ref. |
---|---|---|---|
HDPE | BTEX: benzene, toluene, ethylbenzene, xylenes | a landfill site in the Canadian Arctic; temperature: 2, 7, 14 °C; geomembranes below the 2 m thick soil; lowering the temperature of the geomembrane reduces the amount of pollution transport increase | [55] |
HDPE | The municipal landfill leachate | 2.0 mm of nominal thickness of geomembrane; the nature of the leachate determines the strength and efficiency of the membrane | [59] |
HDPE | fluid retention of leaching in sanitary landfills | influence of different purge gases at different heating rates (5, 10, 15 and 20 °C/min); deformation of geomembranes under the influence of temperature, environmental chemistry, pressure and heat prevailing on geomembranes, deposition of residues in geomembranes | [60] |
HDPE | Landfill | 1.5 mm thick; vertical pressure of 250 kPa; temperature 85 °C; coarse gravel determines cracks and dents (stress crack) | [61] |
HDPE | Municipal solid waste leachates | temperature: 22, 40, 55, 70, 85 and 95°C; salts and VFA have a significant influence on the mechanical properties of the geomembrane (especially resistance to stress cracking) | [62] |
LLDPE/GCL | Insulation tailings | peat bog—up to 5.5 m thick; glacial till—thickness from 0.5 to 3.1 m beneath the perimeter dam wall; bedrock—comprising Waulsortian limestone (30–80 m thick) | [63] |
PVDF/TiO2 | Boron removal from landfill leachates | achieving a homogeneous TiO2 surface under defined loading is critical to achieving good boron rejection results | [64] |
BPM/ED | Cr(III)/Cr(VI) | Effectiveness depends on: cell voltage, soil pH, current efficiency, and specific energy consumption; the optimal current density 2.0 mA/cm2; | [65] |
Technique | Type of Membrane | Metal | Conditions | Ref. |
---|---|---|---|---|
RO | ES-10, NTR-729HF | As, Sb | pH = 3–10, the removals of As(V) and Sb(V) are much higher than those of As(III) and Sb(III) | [79] |
NF/RO | ES-10 and HS5110/HR3155 | As | NF: pressure 0.2 to 0.7 MPa/RO: pressure 4 MPa | [80] |
NF | NF90–4040 | Cr, As | pH = 9, temp. 45 °C, pressure 3.1 MPa | [81] |
NF | UiO-66 (Zr-MOF)/TFN | Se, As | 1,15 LMH/MPa | [82] |
NF | The P[MPC-co-AEMA] co-polymer/ | Se, As | 0,85 LMH/MPa | [83] |
VF | PVDF with melanin nanoparticles from the marine bacterium Pseudomonas stutzeri | Hg, Cu, Cr, Pb | 45 °C; pH = 3 for Cr and pH = 5 for other metals; flow rate of 0.5 mL/min | [84] |
MEF | M-I | Cu, Pb, Cd | 10-layer filtration; pH = 6.5–8.5; flow rates of feed 30 L/h | [85] |
MF | PTFE/HPAMAM | Cu | operating pressure 25 kPa; the flux 63,579 L/m2 h | [86] |
EUF | PAN—Osmonic 100 kDa UF | As | an averaged crossflow velocity of 0.1 m/s; pressure 98 kPa | [87] |
NF, UF | PA (for NF: Koch; for UF: Osmonics) | Fe, Mn | 0.5 MPa, pH = 3–11 | [88] |
NF/RO | Desal AG-2540 RO,TFC-ULP-2540 RO and TFC-SR2-2540 NF | Sr | applied pressure 0.10–0.15 MPa, pH = 3–6 | [89] |
NF | PEM: PDADMACand PSS on PA | Mg, Sr, Ca, Ba | low ionic strength conditions (e.g., <50 mM NaCl as a background electrolyte); 0.345 MPa; crossflow velocity 21.4 cm/s; 25 °C. | [90] |
Hybrid: Oxidation/MF | tubular Kerasep® ceramic membranę | Fe | Oxidation: 0.07 MPa; 20–22 °C; MF: tangential velocity 3.2 m/s; transmembrane pressure 0.06–0.3 MPa; pH = 6.8–7.2; 20–22 °C | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabajczyk, A.; Zielecka, M.; Cygańczuk, K.; Pastuszka, Ł.; Jurecki, L. The Use of Polymer Membranes to Counteract the Risk of Environmental of Soil and Water Contamination. Membranes 2021, 11, 426. https://doi.org/10.3390/membranes11060426
Rabajczyk A, Zielecka M, Cygańczuk K, Pastuszka Ł, Jurecki L. The Use of Polymer Membranes to Counteract the Risk of Environmental of Soil and Water Contamination. Membranes. 2021; 11(6):426. https://doi.org/10.3390/membranes11060426
Chicago/Turabian StyleRabajczyk, Anna, Maria Zielecka, Krzysztof Cygańczuk, Łukasz Pastuszka, and Leszek Jurecki. 2021. "The Use of Polymer Membranes to Counteract the Risk of Environmental of Soil and Water Contamination" Membranes 11, no. 6: 426. https://doi.org/10.3390/membranes11060426
APA StyleRabajczyk, A., Zielecka, M., Cygańczuk, K., Pastuszka, Ł., & Jurecki, L. (2021). The Use of Polymer Membranes to Counteract the Risk of Environmental of Soil and Water Contamination. Membranes, 11(6), 426. https://doi.org/10.3390/membranes11060426