The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Preparation
2.2. Experimental Setup and Aging Tests Parameters
2.3. Quantification of the Fluoride Emission Rates
3. Results
3.1. Impact of a Cyclic Compressive Stress
3.2. Impact of a Static Compressive Stress
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kusoglu, A.; Hexemer, A.; Jiang, R.; Gittleman, C.S.; Weber, A.Z. Effect of Compression on PFSA-Ionomer Morphology and Predicted Conductivity Changes. J. Membr. Sci. 2012, 421–422, 283–291. [Google Scholar] [CrossRef]
- Robert, M.; El Kaddouri, A.; Perrin, J.-C.; Mozet, K.; Daoudi, M.; Dillet, J.; Morel, J.-Y.; André, S.; Lottin, O. Effects of Conjoint Mechanical and Chemical Stress on Perfluorosulfonic-Acid Membranes for Fuel Cells. J. Power Sources 2020, 476, 228662. [Google Scholar] [CrossRef]
- Rodgers, M.P.; Bonville, L.J.; Kunz, H.R.; Slattery, D.K.; Fenton, J.M. Fuel Cell Perfluorinated Sulfonic Acid Membrane Degradation Correlating Accelerated Stress Testing and Lifetime. Chem. Rev. 2012, 112, 6075–6103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, X. A Review of Polymer Electrolyte Membrane Fuel Cell Durability for Vehicular Applications: Degradation Modes and Experimental Techniques. Energy Convers. Manag. 2019, 199, 112022. [Google Scholar] [CrossRef]
- Zatoń, M.; Rozière, J.; Jones, D.J. Current Understanding of Chemical Degradation Mechanisms of Perfluorosulfonic Acid Membranes and Their Mitigation Strategies: A Review. Sustain. Energy Fuels 2017, 1, 409–438. [Google Scholar] [CrossRef]
- LaConti, A.B.; Hamdan, M.; McDonald, R.C. Mechanisms of membrane degradation. In Handbook of Fuel Cells; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; ISBN 978-0-470-97400-1. [Google Scholar]
- Danilczuk, M.; Coms, F.D.; Schlick, S. Visualizing Chemical Reactions and Crossover Processes in a Fuel Cell Inserted in the ESR Resonator: Detection by Spin Trapping of Oxygen Radicals, Nafion-Derived Fragments, and Hydrogen and Deuterium Atoms. J. Phys. Chem. B 2009, 113, 8031–8042. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Cho, E.; Lee, J.-H.; Kim, H.-J.; Lim, T.-H.; Oh, I.-H.; Won, J. Effects of Purging on the Degradation of PEMFCs Operating with Repetitive On/Off Cycles. J. Electrochem. Soc. 2007, 154, B194–B200. [Google Scholar] [CrossRef]
- Healy, J.; Hayden, C.; Xie, T.; Olson, K.; Waldo, R.; Brundage, A.; Gasteiger, H.; Abbott, J. Aspects of the Chemical Degradation of PFSA Ionomers Used in PEM Fuel Cells. Fuel Cells 2005, 5, 302–308. [Google Scholar] [CrossRef]
- Kusoglu, A.; Weber, A.Z. A Mechanistic Model for Pinhole Growth in Fuel-Cell Membranes during Cyclic Loads. J. Electrochem. Soc. 2014, 161, E3311–E3322. [Google Scholar] [CrossRef]
- Gittleman, C.S.; Coms, F.D.; Lai, Y.-H. Chapter 2 - Membrane Durability: Physical and Chemical Degradation. In Polymer Electrolyte Fuel Cell Degradation; Mench, M.M., Kumbur, E.C., Veziroglu, T.N., Eds.; Academic Press: Boston, MA, USA, 2012; pp. 15–88. ISBN 978-0-12-386936-4. [Google Scholar]
- Moor, G.D.; Bas, C.; Charvin, N.; Moukheiber, E.; Niepceron, F.; Breilly, N.; André, J.; Rossinot, E.; Claude, E.; Albérola, N.D.; et al. Understanding Membrane Failure in PEMFC: Comparison of Diagnostic Tools at Different Observation Scales. Fuel Cells 2012, 12, 356–364. [Google Scholar] [CrossRef]
- Lim, C.; Ghassemzadeh, L.; Van Hove, F.; Lauritzen, M.; Kolodziej, J.; Wang, G.G.; Holdcroft, S.; Kjeang, E. Membrane Degradation during Combined Chemical and Mechanical Accelerated Stress Testing of Polymer Electrolyte Fuel Cells. J. Power Sources 2014, 257, 102–110. [Google Scholar] [CrossRef]
- Alavijeh, A.S.; Goulet, M.-A.; Khorasany, R.M.H.; Ghataurah, J.; Lim, C.; Lauritzen, M.; Kjeang, E.; Wang, G.G.; Rajapakse, R.K.N.D. Decay in Mechanical Properties of Catalyst Coated Membranes Subjected to Combined Chemical and Mechanical Membrane Degradation. Fuel Cells 2015, 15, 204–213. [Google Scholar] [CrossRef]
- Mukundan, R.; Baker, A.M.; Kusoglu, A.; Beattie, P.; Knights, S.; Weber, A.Z.; Borup, R.L. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing. J. Electrochem. Soc. 2018, 165, F3085–F3093. [Google Scholar] [CrossRef]
- Lin, L.; Danilczuk, M.; Schlick, S. Electron Spin Resonance Study of Chemical Reactions and Crossover Processes in a Fuel Cell: Effect of Membrane Thickness. J. Power Sources 2013, 233, 98–103. [Google Scholar] [CrossRef]
- Tang, Y.; Kusoglu, A.; Karlsson, A.M.; Santare, M.H.; Cleghorn, S.; Johnson, W.B. Mechanical Properties of a Reinforced Composite Polymer Electrolyte Membrane and Its Simulated Performance in PEM Fuel Cells. J. Power Sources 2008, 175, 817–825. [Google Scholar] [CrossRef]
- Shi, S.; Weber, A.Z.; Kusoglu, A. Structure/Property Relationship of Nafion XL Composite Membranes. J. Membr. Sci. 2016, 516, 123–134. [Google Scholar] [CrossRef]
- D’Urso, C.; Oldani, C.; Baglio, V.; Merlo, L.; Aricò, A.S. Towards Fuel Cell Membranes with Improved Lifetime: Aquivion® Perfluorosulfonic Acid Membranes Containing Immobilized Radical Scavengers. J. Power Sources 2014, 272, 753–758. [Google Scholar] [CrossRef]
- Lim, C.; Alavijeh, A.S.; Lauritzen, M.; Kolodziej, J.; Knights, S.; Kjeang, E. Fuel Cell Durability Enhancement with Cerium Oxide under Combined Chemical and Mechanical Membrane Degradation. ECS Electrochem. Lett. 2015, 4, F29–F31. [Google Scholar] [CrossRef]
- Zatoń, M.; Prélot, B.; Donzel, N.; Rozière, J.; Jones, D.J. Migration of Ce and Mn Ions in PEMFC and Its Impact on PFSA Membrane Degradation. J. Electrochem. Soc. 2018, 165, F3281–F3289. [Google Scholar] [CrossRef]
- De Moor, G.; Bas, C.; Charvin, N.; Dillet, J.; Maranzana, G.; Lottin, O.; Caque, N.; Rossinot, E.; Flandin, L. Perfluorosulfonic Acid Membrane Degradation in the Hydrogen Inlet Region: A Macroscopic Approach. Int. J. Hydrog. Energy 2016, 41, 483–496. [Google Scholar] [CrossRef]
- Robert, M.; Kaddouri, A.E.; Perrin, J.-C.; Leclerc, S.; Lottin, O. Towards a NMR-Based Method for Characterizing the Degradation of Nafion XL Membranes for PEMFC. J. Electrochem. Soc. 2018, 165, F3209. [Google Scholar] [CrossRef]
- Yandrasits, M.A.; Lindell, M.J.; Hamrock, S.J. New Directions in Perfluoroalkyl Sulfonic Acid–Based Proton-Exchange Membranes. Curr. Opin. Electrochem. 2019, 18, 90–98. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Deng, S.; Li, C.; Dong, J.; Wang, J.; Yang, Z.; Wang, D.; Cheng, H. Semi-Interpenetrating Polymer Networks toward Sulfonated Poly(Ether Ether Ketone) Membranes for High Concentration Direct Methanol Fuel Cell. Chin. Chem. Lett. 2019, 30, 299–304. [Google Scholar] [CrossRef]
- Ning, F.; Bai, C.; Qin, J.; Song, Y.; Zhang, T.; Chen, J.; Wei, J.; Lu, G.; Wang, H.; Li, Y.; et al. Great Improvement in the Performance and Lifetime of a Fuel Cell Using a Highly Dense, Well-Ordered, and Cone-Shaped Nafion Array. J. Mater. Chem. A 2020, 8, 5489–5500. [Google Scholar] [CrossRef]
- Xu, F.; Innocent, C.; Bonnet, B.; Jones, D.J.; Roziere, J. Chemical Modification of Perfluorosulfonated Membranes with Pyrrole for Fuel Cell Application: Preparation, Characterisation and Methanol Transport. Fuel Cells 2005, 5, 398–405. [Google Scholar] [CrossRef]
- Frensch, S.H.; Serre, G.; Fouda-Onana, F.; Jensen, H.C.; Christensen, M.L.; Araya, S.S.; Kær, S.K. Impact of Iron and Hydrogen Peroxide on Membrane Degradation for Polymer Electrolyte Membrane Water Electrolysis: Computational and Experimental Investigation on Fluoride Emission. J. Power Sources 2019, 420, 54–62. [Google Scholar] [CrossRef]
- Khattra, N.S.; Karlsson, A.M.; Santare, M.H.; Walsh, P.; Busby, F.C. Effect of Time-Dependent Material Properties on the Mechanical Behavior of PFSA Membranes Subjected to Humidity Cycling. J. Power Sources 2012, 214, 365–376. [Google Scholar] [CrossRef]
Mechanical Strength | Chemical Conditions | Duration | Number of Tests |
---|---|---|---|
5 MPa cycling | H2O2 solution | 8 h | 2 |
5 MPa cycling | Fenton solution | 8 h | 3 |
Static 5 MPa | Fenton solution | 8 h | 1 |
10 MPa cycling | Fenton solution | 8 h | 2 |
5 MPa cycling | Fenton solution | 20 h | 1 |
Static 5 MPa | Fenton solution | 20 h | 1 |
FER (µg/gNafion/h) | Cyclic 5 MPa + Fenton Solution (8 h) | Cyclic 10 MPa + Fenton Solution (8 h) | Cyclic 5 MPa + Fenton Solution (20 h) |
---|---|---|---|
XL membrane | 167 ± 44 | 316 ± 44 | 465 |
NR211 membrane | 264 ± 157 | 324 ± 79 | 492 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robert, M.; El Kaddouri, A.; Perrin, J.-C.; Mozet, K.; Dillet, J.; Morel, J.-Y.; Lottin, O. The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells. Membranes 2021, 11, 366. https://doi.org/10.3390/membranes11050366
Robert M, El Kaddouri A, Perrin J-C, Mozet K, Dillet J, Morel J-Y, Lottin O. The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells. Membranes. 2021; 11(5):366. https://doi.org/10.3390/membranes11050366
Chicago/Turabian StyleRobert, Mylène, Assma El Kaddouri, Jean-Christophe Perrin, Kévin Mozet, Jérôme Dillet, Jean-Yves Morel, and Olivier Lottin. 2021. "The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells" Membranes 11, no. 5: 366. https://doi.org/10.3390/membranes11050366
APA StyleRobert, M., El Kaddouri, A., Perrin, J.-C., Mozet, K., Dillet, J., Morel, J.-Y., & Lottin, O. (2021). The Impact of Chemical-Mechanical Ex Situ Aging on PFSA Membranes for Fuel Cells. Membranes, 11(5), 366. https://doi.org/10.3390/membranes11050366