Decolorization of a Corn Fiber Arabinoxylan Extract and Formulation of Biodegradable Films for Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Decolorization Process
2.3. Preparation of Films
2.4. Films’ Characterization
2.4.1. Color Measurement
2.4.2. Antioxidant Activity by Ferric Reduction Antioxidant Power (FRAP) Method
2.4.3. Solubility
2.4.4. Mechanical Tests
2.4.5. Films’ thickness and Water Vapor Permeability
2.4.6. Statistical Analysis
3. Results and Discussion
3.1. Decolorization of Arabinoxylan Extract
3.1.1. Adsorption by Activated Charcoal Method
3.1.2. Hydrogen Peroxide Method
3.2. Films’ Characterization
3.2.1. Color Measurement
3.2.2. Antioxidant Activity
3.2.3. Films’ Cross-Linking and Solubility in Water
3.2.4. Water Vapor Permeability
3.2.5. Mechanical Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, A.; Mangaraj, S.; Singh, R.; Das, K.; Kumar, N.; Arora, S. Biopolymers as Packaging Material in Food and Allied Industry. Int. J. Chem. Stud. 2018, 6, 2411–2418. [Google Scholar]
- RameshKumar, S.; Shaiju, P.; O’Connor, K.E. Bio-Based and Biodegradable Polymers—State-of-the-Art, Challenges and Emerging Trends. Curr. Opin. Green Sustain. Chem. 2020, 21, 75–81. [Google Scholar] [CrossRef]
- Ferreira, A.R.V.; Alves, V.D.; Coelhoso, I.M. Polysaccharide-Based Membranes in Food Packaging Applications. Membranes 2016, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Kliem, S.; Kreutzbruck, M.; Bonten, C. Review on the Biological Degradation of Polymers in Various Environments. Materials 2002, 3, 632–640. [Google Scholar] [CrossRef]
- Dharmalingam, K.; Anandalakshmi, R. Polysaccharide-Based Films for Food Packaging Applications; Springer: Singapore, 2019; pp. 183–207. [Google Scholar]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Vartiainen, J.; Vähä-Nissi, M.; Harlin, A. Biopolymer Films and Coatings in Packaging Applications—A Review of Recent Developments. Mater. Sci. Appl. 2014, 05, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Mendes, J.F.; Norcino, L.B.; Manrich, A.; Pinheiro, A.C.M.; Oliveira, J.E.; Mattoso, L.H.C. Characterization of Pectin Films Integrated with Cocoa Butter by Continuous Casting: Physical, Thermal and Barrier Properties. J. Polym. Environ. 2020, 28, 2905–2917. [Google Scholar] [CrossRef]
- Huang, L.; Xu, H.; Zhao, H.; Xu, M.; Qi, M.; Yi, T.; An, S.; Zhang, X.; Li, C.; Huang, C.; et al. Properties of Thermoplastic Starch Films Reinforced with Modified Cellulose Nanocrystals Obtained from Cassava Residues. New J. Chem. 2019, 43, 14883–14891. [Google Scholar] [CrossRef]
- Kaya, M.; Khadem, S.; Cakmak, Y.S.; Mujtaba, M.; Ilk, S.; Akyuz, L.; Salaberria, A.M.; Labidi, J.; Abdulqadir, A.H.; Deligöz, E. Antioxidative and Antimicrobial Edible Chitosan Films Blended with Stem, Leaf and Seed Extracts of Pistacia Terebinthus for Active Food Packaging. RSC Adv. 2018, 8, 3941–3950. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.R.V.; Torres, C.A.V.; Freitas, F.; Reis, M.A.M.; Vítor, D.; Coelhoso, I.M. Biodegradable Films Produced from the Bacterial Polysaccharide FucoPol. Int. J. Biol. Macromol. 2014, 71, 111–116. [Google Scholar] [CrossRef]
- Pires, J.; de Paula, C.D.; Souza, V.G.L.; Fernando, A.L.; Coelhoso, I. Understanding the Barrier and Mechanical Behavior of Different Nanofillers in Chitosan Films for Food Packaging. Polymers 2021, 13, 721. [Google Scholar] [CrossRef]
- Rose, D.J.; Inglett, G.E.; Liu, S.X. Utilisation of Corn (Zea mays) Bran and Corn Fiber in the Production of Food Components. J. Sci. Food Agric. 2010, 90, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Hussain, M.; Arshad, M.S.; Afzaal, M.; Munir, H.; Imran, M.; Tufail, T.; Anjum, F.M. Functional and Nutraceutical Properties of Maize Bran Cell Wall Non-Starch Polysaccharides. Int. J. Food Prop. 2021, 24, 233–248. [Google Scholar] [CrossRef]
- Serra, M.; Weng, V.; Coelhoso, I.M.; Alves, V.D.; Brazinha, C. Purification of Arabinoxylans from Corn Fiber and Preparation of Bioactive Films for Food Packaging. Membranes 2020, 10, 95. [Google Scholar] [CrossRef]
- Anderson, C.; Simsek, S. Mechanical Profiles and Topographical Properties of Films Made from Alkaline Extracted Arabinoxylans from Wheat Bran, Maize Bran, or Dried Distillers Grain. Food Hydrocoll. 2019, 86, 78–86. [Google Scholar] [CrossRef]
- Zhurlova, O.D. The Current Trends and Future Perspectives of Arabinoxylans Prebiotics Research: A Review. Зернoві Прoдукти І Кoмбікoрми 2017, 17, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Encinas, M.A.; Carvajal-Millan, E.; Rascon-Chu, A.; Astiazaran-Garcia, H.F.; Valencia-Rivera, D.E. Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. Oxid. Med. Cell. Longev. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.; Simsek, S. A Novel Combination of Methods for the Extraction and Purification of Arabinoxylan from Byproducts of the Cereal Industry. J. Food Meas. Charact. 2019, 13, 1049–1057. [Google Scholar] [CrossRef]
- Ferreira, A.R.V.; Torres, C.A.V.; Freitas, F.; Sevrin, C.; Grandfils, C.; Reis, M.A.M.; Alves, V.D.; Coelhoso, I.M. Development and Characterization of Bilayer Films of FucoPol and Chitosan. Carbohydr. Polym. 2016, 147, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.D.; Costa, N.; Coelhoso, I.M. Barrier Properties of Biodegradable Composite Films Based on Kappa-Carrageenan/Pectin Blends and Mica Flakes. Carbohydr. Polym. 2010, 79, 269–276. [Google Scholar] [CrossRef]
- Liu, Y.; Lotero, E.; Goodwin, J.G. Effect of Water on Sulfuric Acid Catalyzed Esterification. J. Mol. Catal. A Chem. 2006, 245, 132–140. [Google Scholar] [CrossRef]
- Péroval, C.; Debeaufort, F.; Despré, D.; Voilley, A. Edible Arabinoxylan-Based Films. 1. Effects of Lipid Type on Water Vapor Permeability, Film Structure, and Other Physical Characteristics. J. Agric. Food Chem. 2002, 50, 3977–3983. [Google Scholar] [CrossRef]
Film | Ax (2% w/v) | Decolorized (H2O2) | Glycerol (30% w/wAx basis) | Citric Acid (10% w/wAx basis) | Heat Treatment (90 °C, 1 h) |
---|---|---|---|---|---|
1 | X | ||||
2 | X | X | |||
3 | X | X | X | ||
4 | X | X | X | X | |
5 | X | X | X | X | X |
Film | L* | a* | b* | h° | C* |
---|---|---|---|---|---|
1 (Ax) | 80.29 ± 0.69 a | 0.65 ± 0.32 a | 43.60 ± 1.21 a | 89.15 ± 0.40 a | 43.60 ± 1.21 a |
2 (Ax + Glycerol) | 79.65 ± 0.99 a | 0.56 ± 0.48 a | 46.85 ± 1.90 b | 89.33 ± 0.57 a | 46.86 ± 1.91 b |
3 (Ax + H2O2+Glycerol) | 95.64 ± 0.24 b | −1.77 ± 0.17 b | 8.69 ± 0.64 c | 101.48 ± 0.23 b | 8.87 ± 0.66 c |
4 (Ax + H2O2 + Glycerol + Citric Acid) | 94.94 ± 0.23 b | −2.62 ± 0.19 c | 14.56 ± 1.00 d | 100.19 ± 0.24 b | 14.79 ± 1.01 d |
5 (Ax + H2O2 + Glycerol + Citric Acid + 90 °C, 1 h) | 89.03 ± 0.88 c | −1.55 ± 0.10 b | 28.04 ± 1.00 e | 93.16 ± 0.29 c | 28.08 ± 0.99 e |
Film | Antioxidant Activity (10−5 mmol Trolox/mg Film) |
---|---|
1 (Ax) | 5.09 ± 0.14 a |
2 (Ax + Glycerol) | 4.15 ± 0.46 b |
3 (Ax + H2O2 + Glycerol) | 3.53 ± 0.39 b,c |
4 (Ax + H2O2 + Glycerol + Citric Acid) | 3.21 ± 0.40 c |
Film | Solubility (%) |
---|---|
1 (Ax) | 86 ± 10 a |
2 (Ax + Glycerol) | 87 ± 10 a |
3 (Ax + H2O2 + Glycerol) | 70 ± 13 a |
4 (Ax + H2O2 + Glycerol + Citric Acid) | 82 ± 10 a |
Film | Thickness (μm) | WVP (10−11 mol·m/m2·s·Pa) |
---|---|---|
1 (Ax) | 76 ± 6 | 3.89 ± 1.99 a |
2 (Ax + Glycerol) | 101 ± 12 | 2.62 ± 0.96 a |
3 (Ax + H2O2+ Glycerol) | 79 ± 2 | 3.46 ± 0.13 a |
4 (Ax + H2O2 + Glycerol + Citric Acid) | 94 ± 3 | 2.94 ± 0.49 a |
Film | Thickness (μm) | Tension of Perforation (MPa) | Deformation (%) |
---|---|---|---|
1 (Ax) | 79 ± 6 | 1.17 ± 0.23 a | 1.3 ± 0.3 a |
2 (Ax + Glycerol) | 84 ± 4 | 2.36 ± 0.30 b | 50.8 ± 4.8 b |
3 (Ax + H2O2 + Glycerol) | 89 ± 11 | 1.57 ± 0.15 a | 41.3 ± 3.1 c |
4 (Ax+H2O2+ Glycerol + Citric Acid | 105 ± 19 | 1.22 ± 0.41 a | 53.0 ± 1.7 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, V.; Brazinha, C.; Coelhoso, I.M.; Alves, V.D. Decolorization of a Corn Fiber Arabinoxylan Extract and Formulation of Biodegradable Films for Food Packaging. Membranes 2021, 11, 321. https://doi.org/10.3390/membranes11050321
Weng V, Brazinha C, Coelhoso IM, Alves VD. Decolorization of a Corn Fiber Arabinoxylan Extract and Formulation of Biodegradable Films for Food Packaging. Membranes. 2021; 11(5):321. https://doi.org/10.3390/membranes11050321
Chicago/Turabian StyleWeng, Verónica, Carla Brazinha, Isabel M. Coelhoso, and Vitor D. Alves. 2021. "Decolorization of a Corn Fiber Arabinoxylan Extract and Formulation of Biodegradable Films for Food Packaging" Membranes 11, no. 5: 321. https://doi.org/10.3390/membranes11050321
APA StyleWeng, V., Brazinha, C., Coelhoso, I. M., & Alves, V. D. (2021). Decolorization of a Corn Fiber Arabinoxylan Extract and Formulation of Biodegradable Films for Food Packaging. Membranes, 11(5), 321. https://doi.org/10.3390/membranes11050321