Cellulose Triacetate (CTA) Hollow-Fiber (HF) Membranes for Sustainable Seawater Desalination: A Review
Abstract
:1. Introduction
2. Brief Background of the CTA Membrane for Seawater Desalination
3. Features of CTA-HF RO Module
3.1. CTA-HF Membrane
3.1.1. Preparation Procedure and Its Characteristics
3.1.2. Chlorine Resistance
3.1.3. CTA Membrane Characteristics Compared to PA-Based Membrane
3.2. Module for CTA-HF Membranes
3.2.1. Module Design
3.2.2. Cross Arrangement of HFs
3.2.3. Optimum Permeability (Lower Distributed Flux)
3.3. Flux Theory for CTA-HF RO Module
3.3.1. FCP Model
- Reducing the effective fiber length, Le;
- Increasing the fiber diameter, ID;
- Reducing the tube sheet length Lts.
3.3.2. CFD/FCP Model
- Set the module operating condition as boundary conditions.
- Set appropriate initial conditions for the inside and outside of HFs.
- Calculate the pressure, velocity, and concentration distribution outside the HFs using Fluent.
- Consider the shell side pressure gradient in the HF bundle ∇PB using the Ergun equation as follows:
- 5.
- Calculate the volumetric permeate flux (JV) using Equations (1), (3), (6)–(8) implemented in the UDF and pass it to Fluent as a source term of the mass balance equation in the HF bundle. The concentration polarization coefficient at membrane surface Φ is described by Equations (6)–(8):
- 6.
- Calculate the bore side pressure gradient, dPp/dz, caused by the membrane-permeate water inside the HFs using the following Hagen–Poiseuille equation, and then update the pressure distribution in the HFs.
- 7.
- Repeat the steps 3 to 6 until the pressure, velocity, and concentration distribution in Fluent are converged to the steady state.
4. Seawater RO Plant Operation Using CTA-HF RO Module
4.1. Clorine Injection for Successful Long-Term Operation
4.1.1. Optimization of ICI Condition
4.1.2. Effect of Chlorine Exposure on the Permeate Water Quality
4.2. Seawater Desalination Plant Data Using CTA RO Module
4.2.1. Jeddah 1 Phase II Plant
4.2.2. Ras Al Khair SWRO Plant
5. Current Development in CTA-HF Membranes
5.1. Most Recent CTA RO Membrane
Support Layer Design
5.2. Development of CTA-HF Membranes Targeting Novel Applications
Osmotically Assisted Reverse Osmosis (OARO)
6. Conclusions
- A high performance CTA-HF RO membrane was developed by designing the support layer structure. The 10-inch module using the developed membrane has about 1.4 times higher water flux performance than that of the previous one, with an acceptable salt rejection performance exceeding 99.5%.
- To estimate the module performance, a new combining model based on computer fluid dynamic (CFD) and friction concentration polarization (FCP) models were developed, and this new analytical model proved the effectiveness and accuracy of the previous FCP model at the practical level.
- Optimization of intermittent chlorine injection (ICI) provided the stable and reliable operation in SWRO plant with ensuring safe drinking water quality.
- In addition to the RO membrane purpose, the CTA-HF membranes were also preferably used as other types of membrane, such as BC.
- For the brine concentration (BC) application by OARO process, a novel CTA-HF membrane and its 10-inch module have been well developed. Moreover, a hybrid process of RO and BC enables (1) minimization of the brine discharge, (2) increase of the fresh water production (recovery ratio), and (3) the provision of beneficial opportunities for mining valuable salts from the brine in the near future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IDA; GWI DesalData. IDA Water Security Handbook 2019–2020; IDA and GWI DesalData: Topsfield, MA, USA, 2019; pp. 14–41. [Google Scholar]
- Pitchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Linares, R.V.; Li, Z.; Elimelech, M.; Amy, G.; Vrouwenvelder, H. Population Distribution and Water Scarcity. In Recent Developments in Forward Osmosis Processes; Linares, R.V., Li, Z., Elimelech, M., Amy, G., Vrouwenvelder, H., Eds.; IWA Publishing: London, UK, 2017; pp. 3–13. [Google Scholar]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth Future 2017, 5, 545–559. [Google Scholar] [CrossRef]
- Caparrós-Martínez, J.L.; Rueda-Lópe, N.; Milán-García, J.; Valenciano, J.P. Public policies for sustainability and water security: The case of Almeria (Spain). Glob. Ecol. Conserv. 2020, 23, e01037. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Saliba, S. Water, Energy and Food Supply Security in the Gulf Cooperation Council (GCC) Countries: A Risk Perspective. Water 2019, 11, 455. [Google Scholar] [CrossRef] [Green Version]
- Schewea, J.; Heinkea, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godart, P. Design and simulation of a heat-driven direct reverse osmosis device for seawater desalination powered by solar thermal energy. Appl. Energy 2020, 284, 116039. [Google Scholar] [CrossRef]
- Yasukawa, M.; Suzuki, T.; Higa, M. Salinity Gradient Process: Thermodynamics, Applications, and Future Prospects. In Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation, 1st ed.; Sarp, S., Hilal, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–56. [Google Scholar]
- Mistry, K.H.; McGovern, R.K.; Thiel, G.P.; Summers, E.K.; Zubair, S.M.; Lienhard, J.H. Entropy generation analysis of desalination technologies. Entropy 2011, 13, 1829–1864. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Yasukawa, M.; Goda, S.; Sakurai, H.; Shibuya, M.; Takahashi, T.; Kishimoto, M.; Higa, M.; Matsuyama, H. Experimental and simulation studies of two types of 5-inch scale hollow fiber membrane modules for pressure-retarded osmosis. Desalination 2018, 447, 133–146. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Kurihara, M.; Sakai, H.; Tanioka, A.; Tomioka, H. Role of pressure-retarded osmosis (PRO) in the mega-ton water project. Desalin. Water Treat. 2016, 57, 26518–26528. [Google Scholar] [CrossRef]
- Kurihara, M.; Hanakawa, M. Mega-ton Water System: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 2013, 308, 131–137. [Google Scholar] [CrossRef]
- Giwa, A.; Dufour, V.; Al Marzooqi, F.; Al Kaabi, M.; Hasan, S.W. Brine management methods: Recent innovations and current status. Desalination 2017, 407, 1–23. [Google Scholar] [CrossRef]
- Jones, M.; Qadir, M.; van Vliet, M.T.; Smakhtin, V.; Kang, S.M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination 2020, 495, 114633. [Google Scholar] [CrossRef]
- Missimer, T.M.; Maliva, R.G. Environmental issues in seawater reverse osmosis desalination: Intakes and Outfalls. Desalination 2018, 434, 198–215. [Google Scholar] [CrossRef]
- Schantz, A.B.; Xiong, B.; Dees, E.; Moore, D.R.; Yang, X.; Kumar, M. Emerging investigators series: Prospects and challenges for high-pressure reverse osmosis in minimizing concentrated waste streams. Environ. Sci. Water Res. Technol. 2018, 4, 894. [Google Scholar] [CrossRef]
- Semblante, G.U.; Lee, J.Z.; Lee, L.Y.; Ong, S.L.; Ng, H.Y. Brine pre-treatment technologies for zero liquid discharge system. Desalination 2018, 441, 96–111. [Google Scholar] [CrossRef]
- Vanoppen, M.; Stoffels, G.; Buffel, J.; Gusseme, B.D.; Verliefde, A.R.D. A hybrid IEX-RO process with brine recycling for increased RO recovery without chemical addition: A pilot-scale study. Desalination 2016, 394, 185–194. [Google Scholar] [CrossRef]
- Breton, E.J., Jr. Water and Ion Flow Through Imperfect Osmotic Membranes. In Research and Development Progress Report No. 16. Office of Saline Water; Washington, DC, USA, 1957; Available online: https://ufdc.ufl.edu/AA00003986/00001/2j (accessed on 8 March 2021).
- Shibuya, M.; Yasukawa, M.; Takahashi, T.; Miyoshi, T.; Higa, M.; Matsuyama, H. Effect of operating conditions on osmotic-driven membrane performances of cellulose triacetate forward osmosis hollow fiber membrane. Desalination 2015, 362, 34–42. [Google Scholar] [CrossRef]
- Shibuya, M.; Yasukawa, M.; Goda, S.; Sakurai, H.; Takahashi, T.; Higa, M.; Matsuyama, H. Experimental and theoretical study of a forward osmosis hollow fiber membrane module with a cross-wound configuration. J. Membr. Sci. 2016, 504, 10–19. [Google Scholar] [CrossRef]
- Ahmed, M.; Kumar, R.; Garudachari, B.; Thomas, J.P. Performance evaluation of a thermoresponsive polyelectrolyte draw solution in a pilot scale forward osmosis seawater desalination system. Desalination 2019, 452, 132–140. [Google Scholar] [CrossRef]
- Goda, S.; Sekino, M. Application of irreversible thermodynamic model to a hollow fiber forward osmosis module in sodium chloride aqueous solution system. Desalination 2020, 486, 114458. [Google Scholar] [CrossRef]
- Saito, K.; Irie, M.; Zaitsu, S.; Sakai, H.; Hayashi, H.; Tanioka, A. Power generation with salinity gradient by pressure retarded osmosis using concentrated brine from SWRO system and treated sewage as pure water. Desalin. Water Treat. 2012, 41, 114–121. [Google Scholar] [CrossRef]
- Kumano, A.; Marui, K.; Terashima, Y. Hollow fiber type PRO module and its characteristics. Desalination 2016, 389, 149–154. [Google Scholar] [CrossRef]
- Higa, M.; Shigefuji, D.; Shibuya, M.; Izumikawa, S.; Ikebe, Y.; Yasukawa, M.; Endo, N.; Tanioka, A. Experimental study of a hollow fiber membrane module in pressure-retarded osmosis: Module performance comparison with volumetric-based power outputs. Desalination 2017, 420, 45–53. [Google Scholar] [CrossRef]
- Yasukawa, M.; Shigefuji, D.; Shibuya, M.; Ikebe, Y.; Horie, R.; Higa, M. Effect of DS Concentration on the PRO Performance Using a 5-Inch Scale Cellulose Triacetate-Based Hollow Fiber Membrane Module. Membranes 2018, 8, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishimoto, M.; Tanaka, Y.; Yasukawa, M.; Goda, S.; Higa, M.; Matsuyama, H. Optimization of Pressure-Retarded Osmosis with Hollow-Fiber Membrane Modules by Numerical Simulation. Ind. Eng. Chem. Res. 2019, 58, 6687–6695. [Google Scholar] [CrossRef]
- Matsuyama, K.; Makabe, R.; Ueyama, T.; Sakai, H.; Saito, K.; Okumura, T.; Hayashi, H.; Tanioka, A. Power generation system based on pressure retarded osmosis with a commercially-available hollow fiber PRO membrane module using seawater and freshwater. Desalination 2021, 499, 114805. [Google Scholar] [CrossRef]
- Madsen, H.T.; Hansen, T.B.; Nakao, T.; Goda, S.; Søgaard, E.G. Combined geothermal heat and pressure retarded osmosis as a new green power system. Energy Convers. Manag. 2020, 226, 113504. [Google Scholar] [CrossRef]
- Togo, N.; Nakagawa, K.; Shintani, T.; Yoshioka, T.; Takahashi, T.; Kamio, E.; Matsuyama, H. Osmotically Assisted Reverse Osmosis Utilizing Hollow Fiber Membrane Module for Concentration Process. Ind. Eng. Chem. Res. 2019, 58, 6721–6729. [Google Scholar] [CrossRef]
- Nakagawa, K.; Togo, N.; Takagi, R.; Shintani, T.; Yoshioka, T.; Kamio, E.; Matsuyama, H. Multistage osmotically assisted reverse osmosis process for concentrating solutions using hollow fiber membrane modules. Chem. Eng. Res. Des. 2020, 162, 117–124. [Google Scholar] [CrossRef]
- Reid, C.E.; Breton, E.J. Water and ion flow across cellulosic membranes. J. Appl. Polym. Sci. 1959, 1, 133–143. [Google Scholar] [CrossRef]
- Kumano, A. Advances in Hollow-Fiber Reverse-Osmosis Membrane Modules in Seawater Desalination. In Advances in Water Desalination; Lior, N., Ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 309–375. [Google Scholar]
- Kumano, A.; Fujiwara, N. Cellulose Triacetate Membranes for Reverse Osmosis. In Advanced Membrane Technology and Applications; Li, N.N., Fane, A.G., Ho, W.S.W., Matsuura, T., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 21–46. [Google Scholar]
- Loeb, S.; Sourirajan, S. High Flow Porous Membranes for Separating Water from Saline Solutions. U.S. Patent 3,133,132, 12 May 1964. [Google Scholar]
- Loeb, S. The Loeb-Sourirajan Membrane: How It Came About. In Synthetic Membranes; Turbak, A.F., Ed.; American Chemical Society: Washington, DC, USA, 1981; Volume 153, pp. 1–9. [Google Scholar]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Glater, J. The early history of reverse osmosis membrane development. Desalination 1998, 117, 297–309. [Google Scholar] [CrossRef]
- Belfort, G. Desalting Experience by Hyperfiltration (Reverse Osmosis) in the United States. In Synthetic Membranes Process: Fundamentals and Water Applications; Academic Press: Cambridge, MA, USA, 1984; pp. 221–280. [Google Scholar]
- Staude, E. Desalting Experience by Hyperfiltration (Reverse Osmosis) in Europe and Japan. In Synthetic Membranes Process: Fundamentals and Water Applications; Academic Press: Cambridge, MA, USA, 1984; pp. 281–341. [Google Scholar]
- Petersen, R.J. Membranes for Desalination. In Synthetic Membranes; Chenoweth, M.B., Ed.; MMI Press by Harwood Academic Publishers: New York, NY, USA, 1986; pp. 129–154. [Google Scholar]
- Mclain, E.A.; Mahon, H.I. Permselective Hollow Fibers and Method of Making. U.S. Patent 3,423,491, 2 September 1964. [Google Scholar]
- Manjikian, S. Cellulose Acetate Butyrate Semipermeable Membranes and Their Production. U.S. Patent 3,607,329, 22 April 1969. [Google Scholar]
- Hoernschemeyer, D.L. Cellulose Acetate Blend Membranes. U.S. Patent 3,878,276, 24 May 1972. [Google Scholar]
- Cannon, C.R.; Cantor, P.A. Mixed Esters of Cellulose. U.S. Patent Application No. 3,585,126, 15 June 1971. [Google Scholar]
- Del, P.J. Supported Semipermeable Membranes and Process for Preparing Same. U.S. Patent 3,762,566, 3 August 1971. [Google Scholar]
- Loeb, S. UCLA Dept. of Engineering Report 66-40; UCLA: Los Angeles, CA, USA, 1966. [Google Scholar]
- Loeb, S. UCLA Dept. of Engineering Report 62-41; UCLA: Los Angeles, CA, USA, 1961. [Google Scholar]
- Westmoreland, J.C. Spirally Wrapped Reverse Osmosis Membrane Cell. U.S. Patent 3,367,504, 6 February 1968. [Google Scholar]
- Bray, D.T. Reverse Osmosis Purification Apparatus. U.S. Patent 3,417,870, 24 December 1968. [Google Scholar]
- Mahon, H.I. Permeability Separatory Apparatus, Permeability Separatory Membrane Element, Method of Making the Same and Process Utilizing the Same. U.S. Patent 3,228,876, 19 September 1960. [Google Scholar]
- Baker, R.W. Membrane Technology and Applications, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 207–208. [Google Scholar]
- Uemura, T.; Henmi, M. Thin-Film Composite Membranes for Reverse Osmosis. In Advanced Membrane Technology and Applications; Li, N.N., Fane, A.G., Ho, W.S.W., Matsuura, T., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 21–46. [Google Scholar]
- Cadotte, J.E. Interfacially Synthesized Reverse Osmosis Membrane. U.S. Patent 4,277,344, 22 February 1979. [Google Scholar]
- Dance, E.L.; Davis, T.E.; Mahon, E.I.; McLain, E.A.; Skiens, W.E.; Spano, J.O. Development of Cellulose Triacetate Hollow Fiber Reverse Osmosis Modules for Brackish Water Desalination; Report No. 763; U.S. Office of Saline Water Research and Development Progress: New York, NY, USA, 1971. [Google Scholar]
- Ammons, R.D.; Mahon, H.I. Development of a One-Pass Hollow Fiber Seawater Desalination Module Having a Capacity of 2500–3000 gpd; Report No. 924; U.S. Office of Saline Water Research and Development Progress: Washington, DC, USA; U.S. Government Printing Office: Washington, DC, USA, 1974; Volume 6.
- Ukai, T.; Nimura, Y.; Hamada, K.; Matsui, H. Development of one pass sea water reverse osmosis module, “HOLLOSEP”. Desalination 1980, 32, 169–178. [Google Scholar] [CrossRef]
- Kumano, A. Recent Trends in Water Desalination Technology by Reverse Osmosis. Sen I Gakkaishi 1992, 48, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Badruzzaman, M.; Voutchkovn, N.; Weinrich, L.; Jacangelo, J.G. Selection of pretreatment technologies for seawater reverse osmosis plants: A review. Desalination 2019, 449, 78–91. [Google Scholar] [CrossRef]
- Anis, S.A.; Hashaiken, R.; Hilal, N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination 2019, 452, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Bereschenko, L.A.; Heilig, G.H.J.; Nederlof, M.M.; van Loosdrecht, M.C.M.; Stams, A.J.M.; Euverink, G.J.W. Molecular Characterization of the Bacterial Communities in the Different Compartments of a Full-Scale Reverse-Osmosis Water Purification Plant. Appl. Environ. Microbiol. 2008, 74, 5297–5304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.P.N.; Jun, B.-M.; Kwon, Y.-N. The chlorination mechanism of integrally asymmetric cellulose triacetate (CTA)-based and thin film composite polyamide-based forward osmosis membrane. J. Membr. Sci. 2017, 523, 111–121. [Google Scholar] [CrossRef]
- Lim, S.; Tran, V.H.; Akther, N.; Phuntsho, S.; Shon, H.K. Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications. J. Membr. Sci. 2019, 586, 281–291. [Google Scholar] [CrossRef]
- Do, V.T.; Tang, C.Y.; Reinhard, M.; Leckie, J.O. Effects of Chlorine Exposure Conditions on Physiochemical Properties and Performance of a Polyamide Membrane-Mechanisms and Implications. Environ. Sci. Technol. 2012, 46, 13184–13192. [Google Scholar] [CrossRef]
- Ohya, H. An expression method of compaction effects on reverse osmosis membranes at high pressure operation. Desalination 1978, 26, 163–174. [Google Scholar] [CrossRef]
- Khairkar, S.R.; Pansare, A.V.; Shedge, A.A.; Chhatre, S.Y.; Suresh, A.K.; Chakrabarti, S.; Patil, V.R.; Nagarkar, A.A. Hydrophobic interpenetrating polyamide-PDMS membranes for desalination, pesticides removal and enhanced chlorine tolerance. Chemosphere 2020, 258, 127179. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Medina, J.; Inukai, S.; Araki, T.; Morelos-Gomez, A.; Cruz-Silva, R.; Takeuchi, K.; Noguchi, T.; Kawaguchi, T.; Terrones, M.; Endo, M. Robust water desalination membranes against degradation using high loads of carbon nanotubes. Sci. Rep. 2018, 8, 2748. [Google Scholar] [CrossRef] [PubMed]
- Saleem, H.; Zaidi, S.J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination 2020, 475, 114171. [Google Scholar] [CrossRef]
- Chen, K.; Xiao, C.; Liu, H.; Li, G.; Meng, X. Structure design on reinforced cellulose triacetate composite membrane for reverse osmosis desalination process. Desalination 2018, 441, 35–43. [Google Scholar] [CrossRef]
- Sekino, M. Precise analytical model of hollow fiber reverse osmosis modules. J. Membr. Sci. 1993, 85, 241–252. [Google Scholar] [CrossRef]
- Sekino, M. Study of an analytical model for hollow fiber reverse osmosis module systems. Desalination 1995, 100, 85–97. [Google Scholar] [CrossRef]
- Kumano, A.; Sekino, M.; Matsui, Y.; Fujiwara, N.; Matsuyama, H. Study of mass transfer characteristics for a hollow fiber reverse osmosis module. J. Membr. Sci. 2008, 324, 136–141. [Google Scholar] [CrossRef]
- Marui, K.; Al-Ateeq, I.M.; Al-Rugaibah, A.A.; Yagi, T.; Kumano, A.; Nishida, M.; Tanaka, S.; Fujiwara, N. Successful Performance of Toyobo’s Advanced RO Module in Arabian Gulf. In Proceedings of the International Desalination Association World Congress 2007, Gran Canaria, Spain, 21–26 October 2007. [Google Scholar]
- Shrivastava, A.; Stevens, D. Energy Effiency of Reverse Osmosis. In Sustainable Desalination Handbook: Plant Selection, Design and Implementation; Gude, V.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 25–54. [Google Scholar]
- Furuichi, K.; Komon, E.; Nonomura, C.; Marui, K.; Kumano, A. Integrated CFD Simulation of Hollow-Fiber Reverse Osmosis Module. In Proceedings of the International Desalination Association World Congress 2015, San Diego, CA, USA, 30 August–4 September 2015. [Google Scholar]
- Hwan, O.J.; Am, J. Application of chlorine dioxide (ClO2) to reverse osmosis (RO) membrane for seawater desalination. J. Taiwan Inst. Chem. Eng. 2016, 68, 281–288. [Google Scholar]
- Kim, D.; Amy, G.L.; Karanfil, T. Disinfection by-product formation during seawater desalination: A review. Water Res. 2015, 81, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.; Plewa, M. To regulate or not to regulate? What to do with more toxic disinfection by-products? J. Environ. Chem. Eng. 2020, 8, 103939. [Google Scholar] [CrossRef]
- Tanaka, S.; Numata, K.; Kuzumoto, H.; Sekino, M. New disinfection method in RO seawater desalination systems. Desalination 1994, 96, 191–199. [Google Scholar] [CrossRef]
- Song, M.; Im, S.J.; Jeong, D.; Jang, A. Reduction of biofouling potential in cartridge filter by using chlorine dioxide for enhancing anti-biofouling of seawater reverse osmosis membrane. Environ. Res. 2020, 180, 108866. [Google Scholar] [CrossRef]
- Chuang, Y.-H.; Szxzuka, A.; Shabani, F.; Munoz, J.; Aflaki, R.; Hammond, S.D.; Mitch, W.A. Pilot-scale comparison of microfiltration/reverse osmosis and ozon/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection by products during wastewater reuse. Water Res. 2019, 152, 215–225. [Google Scholar] [CrossRef]
- Fujiwara, N.; Matsuyama, H. Optimization of the intermittent chlorine injection (ICI) method for seawater desalination RO plants. Desalination 2008, 229, 231–244. [Google Scholar] [CrossRef]
- Farooque, A.M.; Al-Amoudi, A.; Numata, K. Degradation study of cellulose triacetate hollow fine-fiber SWRO membranes. Desalination 1999, 123, 165–171. [Google Scholar] [CrossRef]
- Matsuyama, H.; Fujiwara, N. Elimination of biological fouling in seawater reverse osmosis desalination plants. Desalination 2008, 227, 295–305. [Google Scholar]
- Miura, Y.; Ito, Y.; Ariji, A.; Kumano, A. Optimal Operation of Hollow-Fiber Reverse Osmosis Module with Membrane Fouling—Case Study in The Middle East. In Proceedings of the International Desalination Association World Congress 2015, San Diego, CA, USA, 30 August–4 September 2015. [Google Scholar]
- Miura, Y.; Ito, Y.; Kumano, A.; Tanaka, S. Successful Long-Term Operation Results of Seawater Ro Plant by Using Hollow Fiber Type CTA—RO Membrane Modules. In Proceedings of the International Desalination Association World Congress 2017, Sao Paulo, Brazil, 15–20 October 2017. [Google Scholar]
- Khan, M.T.; Hong, P.-Y.; Nada, N.; Croue, J.-P. Does chlorine of seawater reverse osmosis membranes control biofouling? Water Res. 2015, 78, 84–97. [Google Scholar] [CrossRef] [Green Version]
- AlAsam, A.F.; AlSaidi, F.M.; Tharwan, H.Y.; AlHaidhah, A.M. Shuqaiq-IWPP RO Plant Optimized Operation during High SDI Season. In Proceedings of the International Desalination Association World Congress 2019, Dubai, UAE, 20–24 October 2019. [Google Scholar]
- Al-Sheikh, A.H.H. Seawater reverse osmosis pretreatment with an emphasis on the Jeddah Plant operation experience. Desalination 1997, 110, 183–192. [Google Scholar] [CrossRef]
- Katsube, M.; Marui, K.; Tanaka, S.; Kumano, A.; Fujiwara, N.; Iwahashi, H. Around Twenty-Year Operation History of Jeddah RO Plant using Hollow-Fiber RO Modules. In Proceedings of the International Desalination Association World Congress 2009, Dubai, UAE, 7–12 November 2009. [Google Scholar]
- Masumoto, N.; Tanaka, T.; Ito, Y.; AlHarthi, M.S.; Al-Anazi, A.B.; Al-Johani, H.M. Successful Largest SWRO Plant Operation in Arabian Gulf with CTA Hollowfiber RO Membrane. In Proceedings of the International Desalination Association World Congress 2019, Dubai, UAE, 20–24 October 2019. [Google Scholar]
- Haidah, A.; Ettwadi, A.O.; Al-Asam, A.F.; Masumoto, N.; Katsube, M.; Terashima, Y.; Marui, K. Development of Cellulose Triacetate Hollow Fiber Type High Performance RO Membrane for Energy Saving Seawater Desalination System. In Proceedings of the International Desalination Association World Congress 2019, Dubai, UAE, 20–24 October 2019. [Google Scholar]
- Thiel, G.P.; Tow, E.W.; Banchik, L.D.; Chung, H.W.; Lienhard, J.H. Energy consumption in desalinating produced water from shale oil and gas extraction. Desalination 2015, 366, 94–112. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, T.V.; Mey, L.; Arena, J.T.; Siefert, N.S.; Mauter, M.S. Osmotically assisted reverse osmosis for high salinity brine treatment. Desalination 2017, 421, 3–11. [Google Scholar] [CrossRef]
- Bouma, A.T.; Lienhard, J.H. Split-feed counterflow reverse osmosis for brine concentration. Desalination 2018, 445, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yip, N.Y. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis. Environ. Sci. Technol. 2018, 52, 2242–2250. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Kim, J.; Hong, S. Osmotically enhanced dewatering-reverse osmosis (OED-RO) hybrid system: Implications for shale gas produced water treatment. J. Membr. Sci. 2018, 554, 282–290. [Google Scholar] [CrossRef]
- Yasukawa, M.; Mishima, S.; Tanaka, Y.; Takahashi, T.; Matsuyama, H. Thin-film composite forward osmosis membrane with high water flux and high pressure resistance using a thicker void-free polyketone porous support. Desalination 2017, 402, 1–9. [Google Scholar] [CrossRef]
- Nakao, T. Development of Hollow Fiber Membrane for Brine Concentration. In Proceedings of the Water Arabia 2020, Al-Khobar, Saudi Arabia, 11–13 February 2020. [Google Scholar]
- Hyrec, H.P. Available online: www.hyrec.co/saline-water-conversion-corporation-swcc-has-signed-mou-with-hyrec-technologies-ltd/ (accessed on 12 January 2021).
- Gradiant, H.P. Gradiant Partners with Saudi Arabia’s SAWACO to Double Production of Fresh Water with Counter-Flow Reverse Osmosis Process. Available online: https://gradiant.com/gradiant-partners-with-saudi-arabias-sawaco-to-double-production-of-fresh-water-with-counter-flow-reverse-osmosis-process/ (accessed on 12 January 2021).
- Gradiant, H.P. Gradiant and SAWACO Deploy Environmentally Friendly High Recovery Desalination Technology. Available online: https://gradiant.com/gradiant-and-sawaco-deploy-environmentally-friendly-high-recovery-desalination-technology/ (accessed on 12 January 2021).
- Toyobo, H.P. Toyobo and Saline Water Conversion Corporation sign MOU on Joint Pilot Test Aimed at Accelerating Use of New Membrane Technology for Reusing Concentrated Brine. Available online: www.toyobo-global.com/news/2019/release_108.html (accessed on 12 January 2021).
- Ihm, S. Innovative Dual Brine Concentrator—Harvesting Pure Sodium Chloride from Brine. In Proceedings of the IDA Academy-DTRI/SWCC Webinar on Innovation in Desalination Brine Mining, Boston, MA, USA, 9 July 2020. [Google Scholar]
- Yaqub, M.; Lee, W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review. Sci. Total Environ. 2019, 681, 551–563. [Google Scholar] [CrossRef]
Operation | Original Operation | High Recovery Operation |
---|---|---|
Recovery | 35.5% | 40.5% |
Feed pressure | 62.0 kg/cm2 | 68.7 kg/cm2 |
Differential pressure | 1.07 kg/cm2 | 1.01 kg/cm2 |
Production | 237.3 m3/h/train | 271.0 m3/h/train |
Product TDS | 365 mg/L | 383 mg/L |
Date | June 1998 | March 2008 |
CTA-Based BC HF Membrane | 10-Inch BC Module (FB10155S3SI) | ||||
---|---|---|---|---|---|
ID | OD | Thickness | Diameter | Length | Membrane area |
[μm] | [μm] | [μm] | [mm] | [mm] | [m2] |
90 | 200 | 55 | 280 | 1400 | 600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakao, T.; Miura, Y.; Furuichi, K.; Yasukawa, M. Cellulose Triacetate (CTA) Hollow-Fiber (HF) Membranes for Sustainable Seawater Desalination: A Review. Membranes 2021, 11, 183. https://doi.org/10.3390/membranes11030183
Nakao T, Miura Y, Furuichi K, Yasukawa M. Cellulose Triacetate (CTA) Hollow-Fiber (HF) Membranes for Sustainable Seawater Desalination: A Review. Membranes. 2021; 11(3):183. https://doi.org/10.3390/membranes11030183
Chicago/Turabian StyleNakao, Takahito, Yuki Miura, Kenji Furuichi, and Masahiro Yasukawa. 2021. "Cellulose Triacetate (CTA) Hollow-Fiber (HF) Membranes for Sustainable Seawater Desalination: A Review" Membranes 11, no. 3: 183. https://doi.org/10.3390/membranes11030183
APA StyleNakao, T., Miura, Y., Furuichi, K., & Yasukawa, M. (2021). Cellulose Triacetate (CTA) Hollow-Fiber (HF) Membranes for Sustainable Seawater Desalination: A Review. Membranes, 11(3), 183. https://doi.org/10.3390/membranes11030183