Continuous MOF Membrane-Based Sensors via Functionalization of Interdigitated Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Functionalization of Electrodes
2.1.1. Silane
2.1.2. Carboxylic Acid
2.2. Synthesis of Co-MOF-74 on IDE
2.3. Synthesis of Mg-MOF-74 on IDE
2.4. Synthesis of Ni-MOF-74 on IDE
2.5. Synthesis of Bulk Ni-MOF-74
2.6. Preparation of Dropcast Ni-MOF-74 on IDE
2.7. Powder X-ray Diffraction
2.8. Scanning Electron Microscopy
2.9. Fourier Transform Infrared Spectroscopy
2.10. NO2 Exposure and Electrical Impedance Detection of NO2
3. Results and Discussion
3.1. Membrane Growth
3.2. Electrochemical Detection of NO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ockwig, N.W.; Nenoff, T.M. Membranes for Hydrogen Separation. Chem. Rev. 2007, 107, 4078–4110. [Google Scholar] [CrossRef]
- Li, W. Metal–organic framework membranes: Production, modification, and applications. Prog. Mater. Sci. 2019, 100, 21–63. [Google Scholar] [CrossRef]
- Fang, M.; Montoro, C.; Semsarilar, M. Metal and Covalent Organic Frameworks for Membrane Applications. Membranes 2020, 10, 107. [Google Scholar] [CrossRef]
- Qiu, S.; Xue, M.; Zhu, G. Metal–organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140. [Google Scholar] [CrossRef] [PubMed]
- Caro, J.; Noack, M. Zeolite membranes–Recent developments and progress. Microporous Mesoporous Mater. 2008, 115, 215–233. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Samarasinghe, S.; Li, W.; Goh, K.; Bae, T.-H. Leveraging Nanocrystal HKUST-1 in Mixed-Matrix Membranes for Ethylene/Ethane Separation. Membranes 2020, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef] [PubMed]
- Saraci, F.; Quezada-Novoa, V.; Donnarumma, P.R.; Howarth, A.J. Rare-earth metal–organic frameworks: From structure to applications. Chem. Soc. Rev. 2020, 49, 7949–7977. [Google Scholar] [CrossRef]
- Hoskins, B.F.; Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962–5964. [Google Scholar] [CrossRef]
- Li, H.-Y.; Zhao, S.-N.; Zang, S.-Q.; Li, J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef]
- Britt, D.; Tranchemontagne, D.; Yaghi, O.M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 2008, 105, 11623–11627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, W.-T.; Jang, J.-S.; Kim, I.-D. Metal-Organic Frameworks for Chemiresistive Sensors. Chem 2019, 5, 1938–1963. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Song, J.; Bae, T.-H. CO2/N2 Separation Properties of Polyimide-Based Mixed-Matrix Membranes Comprising UiO-66 with Various Functionalities. Membranes 2020, 10, 154. [Google Scholar] [CrossRef]
- Fuoco, A.; Khdhayyer, M.R.; Attfield, M.P.; Esposito, E.; Jansen, J.C.; Budd, P.M. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation. Membranes 2017, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyaya, L.; Chiao, Y.-H.; Wickramasinghe, S.R.; Qian, X. Cu(I/II) Metal–Organic Frameworks Incorporated Nanofiltration Membranes for Organic Solvent Separation. Membranes 2020, 10, 313. [Google Scholar] [CrossRef]
- Henkelis, S.E.; Rademacher, D.; Vogel, D.J.; Valdez, N.R.; Rodriguez, M.A.; Shea-Rohwer, L.E.; Nenoff, T.M. Luminescent Properties of DOBDC Containing MOFs: The Role of Free Hydroxyls. ACS Appl. Mater. Interfaces 2020, 12, 22845–22852. [Google Scholar] [CrossRef]
- Du, L.; Lu, Z.; Zheng, K.; Wang, J.; Zheng, X.; Pan, Y.; You, X.; Bai, J. Fine-Tuning Pore Size by Shifting Coordination Sites of Ligands and Surface Polarization of Metal–Organic Frameworks To Sharply Enhance the Selectivity for CO2. J. Am. Chem. Soc. 2013, 135, 562–565. [Google Scholar] [CrossRef]
- Pascanu, V.; Miera, G.G.; Inge, A.K.; Martín-Matute, B. Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. [Google Scholar] [CrossRef] [Green Version]
- García-García, P.; Müller, M.; Corma, A. MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chem. Sci. 2014, 5, 2979–3007. [Google Scholar] [CrossRef]
- Herbst, A.; Janiak, C. MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm 2017, 19, 4092–4117. [Google Scholar] [CrossRef] [Green Version]
- Liberman, I.; Shimoni, R.; Ifraemov, R.; Rozenberg, I.; Singh, C.; Hod, I. Active-Site Modulation in an Fe-Porphyrin-Based Metal–Organic Framework through Ligand Axial Coordination: Accelerating Electrocatalysis and Charge-Transport Kinetics. J. Am. Chem. Soc. 2020, 142, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.-Y.; Das, P.; White, D.L.; Liu, C.; Star, A.; Rosi, N.L. Luminescence “Turn-On” Detection of Gossypol Using Ln3+-Based Metal−Organic Frameworks and Ln3+ Salts. J. Am. Chem. Soc. 2020, 142, 2897–2904. [Google Scholar] [CrossRef]
- Small, L.J.; Nenoff, T.M. Direct Electrical Detection of Iodine Gas by a Novel Metal–Organic-Framework-Based Sensor. ACS Appl. Mater. Interfaces 2017, 9, 44649–44655. [Google Scholar] [CrossRef] [PubMed]
- Small, L.J.; Hill, R.C.; Krumhansl, J.L.; Schindelholz, M.E.; Chen, Z.; Chapman, K.W.; Zhang, X.; Yang, S.; Schröder, M.; Nenoff, T.M. Reversible MOF-Based Sensors for the Electrical Detection of Iodine Gas. ACS Appl. Mater. Interfaces 2019, 11, 27982–27988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henkelis, S.E.; Huber, D.L.; Vogel, D.J.; Rimsza, J.M.; Nenoff, T.M. Magnetic Tunability in RE-DOBDC MOFs via NOx Acid Gas Adsorption. ACS Appl. Mater. Interfaces 2020, 12, 19504–19510. [Google Scholar] [CrossRef] [PubMed]
- Gallis, D.F.S.; Vogel, D.J.; Vincent, G.A.; Rimsza, J.M.; Nenoff, T.M. NOx Adsorption and Optical Detection in Rare Earth Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2019, 11, 43270–43277. [Google Scholar] [CrossRef]
- Han, X.; Godfrey, H.G.W.; Briggs, L.; Davies, A.J.; Cheng, Y.; Daemen, L.L.; Sheveleva, A.M.; Tuna, F.; McInnes, E.J.L.; Sun, J.; et al. Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nat. Mater. 2018, 17, 691–696. [Google Scholar] [CrossRef]
- Li, J.; Han, X.; Zhang, X.; Sheveleva, A.M.; Cheng, Y.; Tuna, F.; McInnes, E.J.L.; McPherson, L.J.M.; Teat, S.J.; Daemen, L.L.; et al. Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework. Nat. Chem. 2019, 11, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.; Gehl, A.; Schlenkrich, J.; Schulze, H.A.; Zimmermann, S.; Schaate, A. A Calixarene-Based Metal-Organic Framework for Highly Selective NO2 Detection. Angew. Chem. Int. Ed. 2018, 57, 12961–12965. [Google Scholar] [CrossRef]
- Henkelis, S.E.; Vornholt, S.M.; Cordes, D.B.; Slawin, A.M.Z.; Wheatley, P.S.; Morris, R.E. A single crystal study of CPO-27 and UTSA-74 for nitric oxide storage and release. CrystEngComm 2019, 21, 1857–1861. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Zuluaga, S.; Wang, H.; Canepa, P.; Soliman, K.; Cure, J.; Li, J.; Thonhauser, T.; Chabal, Y.J. Interaction of Acid Gases SO2 and NO2 with Coordinatively Unsaturated Metal Organic Frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). Chem. Mater. 2017, 29, 4227–4235. [Google Scholar] [CrossRef]
- McKinlay, A.C.; Xiao, B.; Wragg, D.S.; Wheatley, P.S.; Megson, I.L.; Morris, R.E. Exceptional Behavior over the Whole Adsorption−Storage−Delivery Cycle for NO in Porous Metal Organic Frameworks. J. Am. Chem. Soc. 2008, 130, 10440–10444. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, A.M.; Levasseur, B.; Bandosz, T.J. Interactions of NO2 with Zr-Based MOF: Effects of the Size of Organic Linkers on NO2 Adsorption at Ambient Conditions. Langmuir 2012, 29, 168–174. [Google Scholar] [CrossRef] [PubMed]
- McGrath, D.T.D.; Ryan, M.D.; MacInnis, J.J.; VandenBoer, T.C.; Young, C.J.; Katz, M.J. Selective decontamination of the reactive air pollutant nitrous acid via node-linker cooperativity in a metal–organic framework. Chem. Sci. 2019, 10, 5576–5581. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, H.; Scholl, D.; Parsons, M.H.; Inagaki, H.; Shiotani, K.; Visser, J.; Zawacki, G.; Kawai, T.; Teramoto, S.; Kubinski, D. Development of an Al2O3/ZrO2-Composite High-Accuracy NOx Sensor. SAE Tech. Pap. Ser. 2010. [Google Scholar] [CrossRef]
- Drager Sensor & Portable Instruments Handbook, 4th ed.; Drager Safety AG & Co. KGaA: Lübeck, Germany, 2018.
- Small, L.J.; Henkelis, S.E.; Rademacher, D.X.; Schindelholz, M.E.; Krumhansl, J.L.; Vogel, D.J.; Nenoff, T.M. Near-Zero Power MOF-Based Sensors for NO2 Detection. Adv. Funct. Mater. 2020, 2006598, 1–8. [Google Scholar]
- Bétard, A.; Fischer, R.A. Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chem. Rev. 2011, 112, 1055–1083. [Google Scholar] [CrossRef]
- Shekhah, O.; Liu, J.; Fischer, R.A.; Wöll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev. 2011, 40, 1081–1106. [Google Scholar] [CrossRef]
- Zacher, D.; Shekhah, O.; Wöll, C.; Fischer, R.A. Thin films of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1418–1429. [Google Scholar] [CrossRef]
- Spoerke, E.D.; Small, L.J.; Foster, M.E.; Wheeler, J.; Ullman, A.M.; Stavila, V.; Rodriguez, M.; Allendorf, M.D. MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework. J. Phys. Chem. C 2017, 121, 4816–4824. [Google Scholar] [CrossRef]
- Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastré, J. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 2006, 16, 626–636. [Google Scholar] [CrossRef]
- Liu, Y.; Ng, Z.; Khan, E.A.; Jeong, H.-K.; Ching, C.-B.; Lai, Z. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater. 2009, 118, 296–301. [Google Scholar] [CrossRef]
- Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Molecular-Sieve Membrane with Hydrogen Permselectivity: ZIF-22 in LTA Topology Prepared with 3-Aminopropyltriethoxysilane as Covalent Linker. Angew. Chem. Int. Ed. 2010, 49, 4958–4961. [Google Scholar] [CrossRef]
- Zacher, D.; Baunemann, A.; Hermes, S.; Fischer, R.A. Deposition of microcrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: Evidence of surface selective and oriented growth. J. Mater. Chem. 2007, 17, 2785–2792. [Google Scholar] [CrossRef]
- Conato, M.T.; Jacobson, A.J. Control of nucleation and crystal growth kinetics of MOF-5 on functionalized gold surfaces. Microporous Mesoporous Mater. 2013, 175, 107–115. [Google Scholar] [CrossRef]
- Small, L.J.; Hibbs, M.R.; Wheeler, D.R. Spontaneous Aryldiazonium Film Formation on 440C Stainless Steel in Nonaqueous Environments. Langmuir 2014, 30, 14212–14218. [Google Scholar] [CrossRef]
- Small, L.J.; Wheeler, D.R.; Spoerke, E.D. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity. Nanoscale 2015, 7, 16909–16920. [Google Scholar] [CrossRef] [PubMed]
- Saby, C.; Ortiz, B.; Champagne, G.Y.; Bélanger, D. Electrochemical Modification of Glassy Carbon Electrode Using Aromatic Diazonium Salts. 1. Blocking Effect of 4-Nitrophenyl and 4-Carboxyphenyl Groups. Langmuir 1997, 13, 6805–6813. [Google Scholar] [CrossRef]
- Taek, L.; Shin, M.W. Solvothermal Growth of Mg-MOF-74 Films on Carboxylic Functionalized Silicon Substrate using Acrylic Acid. Surf. Interfaces 2021, 22, 100845. [Google Scholar]
- The Aldrich Library of FT-IR Spectra, 2nd ed.; Pouchert, C. (Ed.) Sigma-Aldrich: Milwaukee, WI, USA, 1997; Volume 1–3. [Google Scholar]
- Bradshaw, D.; Garai, A.; Huo, J. Metal–organic framework growth at functional interfaces: Thin films and composites for diverse applications. Chem. Soc. Rev. 2011, 41, 2344–2381. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.-A.; Cho, H.-Y.; Kim, J.; Yang, S.-T.; Ahn, W.-S. CO2capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 2012, 5, 6465–6473. [Google Scholar] [CrossRef]
- Vornholt, S.M.; Henkelis, S.E.; Morris, R.E. Low Temperature Synthesis Study of Metal-Organic Framefowk CPO-27: Investigating Metal, Solvent and Base Effects Down to −78 °C. Dalton Trans. 2017, 46, 8298–8303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaneo, D.; Warrender, S.J.; Duncan, M.J.; Kelsall, C.J.; Doherty, M.K.; Whitfield, P.D.; Megson, I.L.; Morris, R.E. Tuning the nitric oxide release from CPO-27 MOFs. RSC Adv. 2016, 6, 14059–14067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henkelis, S.E.; Percival, S.J.; Small, L.J.; Rademacher, D.X.; Nenoff, T.M. Continuous MOF Membrane-Based Sensors via Functionalization of Interdigitated Electrodes. Membranes 2021, 11, 176. https://doi.org/10.3390/membranes11030176
Henkelis SE, Percival SJ, Small LJ, Rademacher DX, Nenoff TM. Continuous MOF Membrane-Based Sensors via Functionalization of Interdigitated Electrodes. Membranes. 2021; 11(3):176. https://doi.org/10.3390/membranes11030176
Chicago/Turabian StyleHenkelis, Susan E., Stephen J. Percival, Leo J. Small, David X. Rademacher, and Tina M. Nenoff. 2021. "Continuous MOF Membrane-Based Sensors via Functionalization of Interdigitated Electrodes" Membranes 11, no. 3: 176. https://doi.org/10.3390/membranes11030176
APA StyleHenkelis, S. E., Percival, S. J., Small, L. J., Rademacher, D. X., & Nenoff, T. M. (2021). Continuous MOF Membrane-Based Sensors via Functionalization of Interdigitated Electrodes. Membranes, 11(3), 176. https://doi.org/10.3390/membranes11030176