Organo-Functionalization: An Effective Method in Enhancing the Separation and Antifouling Performance of Thin-Film Nanocomposite Membranes by Improving the Uniform Dispersion of Palygorskite Nanoparticles
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Preparation of the Modified Pal Nanoparticles
2.3. Fabrication of RO Membranes
2.4. Characterization of Pal Nanoparticles and Membranes
2.4.1. Transmission Electron Microscope (TEM)
2.4.2. Dynamic Light Scattering (DLS)
2.4.3. Fourier Transforms Infrared (FTIR)
2.4.4. X-ray Diffraction (XRD)
2.4.5. Contact Angle Measurement
2.4.6. Settling Analysis
2.4.7. Scanning Electron Microscope (SEM)
2.4.8. Atomic Force Microscopy (AFM)
2.5. RO Performance
2.6. Antifouling Ability
3. Results and Discussion
3.1. Characterization of Different Pal Nanoparticles
3.2. FTIR, SEM and AFM Characterization of RO Membranes
3.3. Separation Performance of RO Membranes
3.4. Antifouling Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy clay nanocomposites—Processing, properties and applications: A review. Compos. Part B Eng. 2013, 45, 308–320. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Z.; Wang, W.; Wang, Y.; Gao, B.; Wang, Z. Enhanced antifouling and antimicrobial thin film nanocomposite membranes with incorporation of Palygorskite/titanium dioxide hybrid material. J. Colloid Interface Sci. 2019, 537, 92. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, M.; Emadzadeh, D.; Lau, W.; Lai, S.; Matsuura, T.; Ismail, A. Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination 2015, 358, 33–41. [Google Scholar] [CrossRef]
- Dong, H.; Wu, L.; Zhang, L.; Chen, H.; Gao, C. Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes. J. Membr. Sci. 2015, 494, 92–103. [Google Scholar] [CrossRef]
- Lu, P.; Li, W.; Yang, S.; Liu, Y.; Wang, Q.; Li, Y. Layered double hydroxide-modified thin–film composite membranes with remarkably enhanced chlorine resistance and anti-fouling capacity. Sep. Purif. Technol. 2019, 220, 231–237. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Wang, W.; Gao, B.; Wang, Z. Palygorskite/silver nanoparticles incorporated polyamide thin film nanocomposite membranes with enhanced water permeating, antifouling and antimicrobial performance. Chemosphere 2019, 236, 124396. [Google Scholar] [CrossRef]
- Wu, M.; Ma, T.; Su, Y.; Wu, H.; You, X.; Jiang, Z.; Kasher, R. Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property. J. Membr. Sci. 2017, 544, 79–87. [Google Scholar] [CrossRef]
- Ge, Q.; Ling, M.; Chung, T.S. Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. J. Membr. Sci. 2013, 442, 225–237. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, S.; Lai, C.Y.; Wang, B.; Li, K. PVDF/palygorskite composite ultrafiltration membranes with enhanced abrasion resistance and flux. J. Membr. Sci. 2015, 495, 91–100. [Google Scholar] [CrossRef]
- Wei, D.; Zhou, S.; Li, M.; Xue, A.; Zhang, Y.; Zhao, Y.; Zhong, J.; Yang, D. PVDF/palygorskite composite ultrafiltration membranes: Effects of nano-clay particles on membrane structure and properties. Appl. Clay Sci. 2019, 181, 105171. [Google Scholar] [CrossRef]
- Zhao, X.; Su, Y.-L.; Liu, Y.; Li, Y.; Jiang, Z. Free-Standing Graphene Oxide-Palygorskite Nanohybrid Membrane for Oil/Water Separation. ACS Appl. Mater. Interfaces 2016, 8, 8247–8256. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Chu, H.; Zhou, X.; Wei, Y. Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane. Desalination 2014, 344, 71–78. [Google Scholar] [CrossRef]
- Wei, B.; Chang, Q.; Bao, C.; Dai, L.; Zhang, G.; Wu, F. Surface modification of filter medium particles with silane coupling agent KH550. Colloids Surf. A 2013, 434, 276–280. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, J.; Cao, Z.; Wang, R.; Du, W.; He, P.; Ge, Y. Preparation and properties of silane coupling agent modified zeolite as warm mix additive. Constr. Build. Mater. 2020, 244, 118408. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Wang, A. Effect of dry grinding on the microstructure of palygorskite and adsorption efficiency for methylene blue. Powder Technol. 2012, 225, 124–129. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Mu, B.; Wang, Q.; Wang, A. Effect of grinding time on fabricating a stable methylene blue/palygorskite hybrid nanocomposite. Powder Technol. 2015, 280, 173–179. [Google Scholar] [CrossRef]
- Ding, W.; Liu, H.; Zhang, K.; Lv, D.; Wang, S. Effective control of the carbon release of starch/polyvinyl alcohol based on a polyamide coating in solid-phase denitrification. Environ. Sci. Water Res. Technol. 2020, 6, 3293–3305. [Google Scholar] [CrossRef]
- Ding, W.; Zhuo, H.; Bao, M.; Li, Y.; Lu, J. Fabrication of organic-inorganic nanofiltration membrane using ordered stacking SiO2 thin film as rejection layer assisted with layer-by-layer method. Chem. Eng. J. 2017, 330, 337–344. [Google Scholar] [CrossRef]
- Cheng, X.; Wu, D.; Liang, H.; Zhu, X.; Tang, X.; Gan, Z.; Xing, J.; Luo, X.; Li, G. Effect of sulfate radical-based oxidation pretreatments for mitigating ceramic UF membrane fouling caused by algal extracellular organic matter. Water Res. 2018, 145, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.; Ruiz, J.; Melo, M.; Sobrinho, E.; Schmall, M. Preparation and characterization of terbium palygorskite clay as acid catalyst. Microporous Mesoporous Mater. 2000, 38, 345–349. [Google Scholar] [CrossRef]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Amin, M.A.M.; Ahmad, N.A.; Suzaimi, N.D.; Raji, Y.O. Facile preparation of palygorskite/chitin nanofibers hybrids nanomaterial with remarkable adsorption capacity. Mater. Sci. Eng. B 2020, 262, 114725. [Google Scholar] [CrossRef]
- Li, H.; Wang, R.; Hu, H.; Liu, W. Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent. Appl. Surf. Sci. 2008, 255, 1894–1900. [Google Scholar] [CrossRef]
- Ding, W.; Cai, J.; Yu, Z.; Wang, Q.; Xu, Z.; Wang, Z.; Gao, C. Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support. J. Mater. Chem. A 2015, 3, 20118–20126. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Ding, W.; Li, Y.; Bao, M.; Zhang, J.; Zhang, C.; Lu, J. Highly permeable and stable forward osmosis (FO) membrane based on the incorporation of Al2O3 nanoparticles into both substrate and polyamide active layer. RSC Adv. 2017, 7, 40311–40320. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhu, G.; Liu, Z.; Gao, C. Effect of MCM-48 nanoparticles on the performance of thin film nanocomposite membranes for reverse osmosis application. Desalination 2016, 394, 72–82. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Q.; Huang, J.; Liu, Y.; Shan, L.; Wang, X. Modification of palygorskite surface by organofunctionalization for application in immobilization of H3PW12O40. Appl. Surf. Sci. 2010, 256, 5911–5917. [Google Scholar] [CrossRef]
- Perreault, F.; Tousley, M.E.; Elimelech, M. Thin-Film Composite Polyamide Membranes Functionalized with Biocidal Graphene Oxide Nanosheets. Environ. Sci. Technol. Lett. 2014, 1, 71–76. [Google Scholar] [CrossRef]
- Zhao, D.L.; Zhao, Q.; Chung, T.S. Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination 2021, 516, 115230. [Google Scholar] [CrossRef]
- Lind, M.L.; Ghosh, A.K.; Jawor, A.; Huang, X.; Hou, W.; Yang, Y.; Hoek, E.M. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes. Langmuir 2009, 25, 10139–10145. [Google Scholar] [CrossRef]
- Baroña, G.N.B.; Lim, J.; Choi, M.; Jung, B. Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis. Desalination 2013, 325, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Kim, E.-S.; Yang, J.; Deng, B. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J. Membr. Sci. 2012, 423–424, 238–246. [Google Scholar] [CrossRef]
- Song, X.; Wang, L.; Tang, C.Y.; Wang, Z.; Gao, C. Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalination 2015, 369, 1–9. [Google Scholar] [CrossRef]
- Tian, J.-Y.; Ernst, M.; Cui, F.; Jekel, M. Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions. J. Membr. Sci. 2013, 446, 1–9. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, T.; Xiong, R.; Wang, P.; Ma, J. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer. Chemosphere 2019, 233, 524–531. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, F.; Wang, Y.; Lin, H.; Han, L. A tight nanofiltration membrane with multi-charged nanofilms for high rejection to concentrated salts. J. Membr. Sci. 2017, 537, 407–415. [Google Scholar] [CrossRef]
- Agashichev, S.P. Reverse osmosis at elevated temperatures: Influence of temperature on degree of concentration polarization and transmembrane flux. Desalination 2005, 179, 61–72. [Google Scholar] [CrossRef]
- Mickols, W.; Mai, Z.; van der Bruggen, B. Effect of pressure and temperature on solvent transport across nanofiltration and reverse osmosis membranes: An activity-derived transport model. Desalination 2021, 501, 114905. [Google Scholar] [CrossRef]
- Tow, E.W.; Warsinger, D.M.; Trueworthy, A.M.; Swaminathan, J.; Thiel, G.P.; Zubair, S.M.; Myerson, A.S.; Lienhard, V.J.H. Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. J. Membr. Sci. 2018, 556, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhao, D.L.; Chung, T.S. Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination. J. Membr. Sci. 2021, 625, 119158. [Google Scholar] [CrossRef]
- Mutharasi, Y.; Zhang, Y.; Weber, M.; Maletzko, C.; Chung, T.-S. Novel reverse osmosis membranes incorporated with Co-Al layered double hydroxide (LDH) with enhanced performance for brackish water desalination. Desalination 2021, 498, 114740. [Google Scholar] [CrossRef]
- Mi, B.; Elimelech, M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J. Membr. Sci. 2010, 348, 337–345. [Google Scholar] [CrossRef]
- Zhang, R.; Shi, W.; Yu, S.; Wang, W.; Zhang, Z.; Zhang, B.; Li, L.; Bao, X. Influence of salts, anion polyacrylamide and crude oil on nanofiltration membrane fouling during desalination process of polymer flooding produced water. Desalination 2015, 373, 27–37. [Google Scholar] [CrossRef]
- Zhang, Q.; Ding, W.; Zhang, H.; Zhang, K.; Wang, Z.; Liu, J. Enhanced performance of porous forward osmosis (FO) membrane in the treatment of oily wastewater containing HPAM by the incorporation of palygorskite. RSC Adv. 2021, 11, 22439–22449. [Google Scholar] [CrossRef]
- Zhao, S.; Liao, Z.; Fane, A.; Li, J.; Tang, C.; Zheng, C.; Lin, J.; Kong, L. Engineering antifouling reverse osmosis membranes: A review. Desalination 2021, 499, 114857. [Google Scholar] [CrossRef]
Samples | Zeta Potential (mV) | Mean Diameter (nm) | Poly-Dispersion Index (PDI) | Settling Rate (cm/s) |
---|---|---|---|---|
Pal | −11.7 ± 0.6 | 876.8 ± 122.8 | 0.901 ± 0.134 | 8.67 × 10−4 |
g-Pal | −12.0 ± 0.4 | 513.0 ± 14.5 | 0.412 ± 0.126 | 4.81 × 10−4 |
K-Pal0.25 | −12.8 ± 0.4 | 436.0 ± 12.2 | 0.373 ± 0.155 | 7.47 × 10−5 |
K-Pal0.75 | −13.2 ± 0.8 | 312.6 ± 6.2 | 0.113 ± 0.058 | 1.22 × 10−5 |
K-Pal1.5 | −13.8 ± 0.2 | 385.3 ± 15.0 | 0.419 ± 0.119 | 1.56 × 10−5 |
K-Pal3.0 | −14.5 ± 0.7 | 411.7 ± 9.0 | 0.155 ± 0.074 | 2.08 × 10−5 |
Nanoparticles | Loading at Best Performance a | Pressure (bar) | PWP (L/m2·h·bar) b | NaCl Rejection (%) b |
---|---|---|---|---|
MCM-48 [26] nanoparticles | 0.10 wt/v% (O) | 16.0 | 1.50 → 2.18 | 97.0 → 97.0 |
Halloysite nanotubes [3] | 0.05 wt/v% (O) | 15.0 | 1.27 → 2.41 | 97.2 → 95.6 |
ZIF-8 [40] | 0.15 wt% (O) | 20.0 | 1.72 → 2.61 | 98.2 → 98.6 |
Layered double hydroxides [41] | 0.2 wt% (O) | 20.0 | 1.49 → 2.75 | 98.5 → 99.05 |
Pal/TiO2 [2] | 75 mg/L (A) | 16.0 | 1.53 → 2.13 | 98.2 → 98.0 |
Pal/Ag [6] | 7.5 mg/L (A) | 16.0 | 1.50 → 2.49 | 98.5 → 98.3 |
Pal-KH550 (this work) | 0.03 wt% (O) | 16.0 | 1.57 → 2.38 | 98.5 → 98.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhang, Q.; Wang, Q.; Ding, W.; Zhang, K. Organo-Functionalization: An Effective Method in Enhancing the Separation and Antifouling Performance of Thin-Film Nanocomposite Membranes by Improving the Uniform Dispersion of Palygorskite Nanoparticles. Membranes 2021, 11, 889. https://doi.org/10.3390/membranes11110889
Yang L, Zhang Q, Wang Q, Ding W, Zhang K. Organo-Functionalization: An Effective Method in Enhancing the Separation and Antifouling Performance of Thin-Film Nanocomposite Membranes by Improving the Uniform Dispersion of Palygorskite Nanoparticles. Membranes. 2021; 11(11):889. https://doi.org/10.3390/membranes11110889
Chicago/Turabian StyleYang, Liu, Qianwen Zhang, Qikun Wang, Wande Ding, and Kefeng Zhang. 2021. "Organo-Functionalization: An Effective Method in Enhancing the Separation and Antifouling Performance of Thin-Film Nanocomposite Membranes by Improving the Uniform Dispersion of Palygorskite Nanoparticles" Membranes 11, no. 11: 889. https://doi.org/10.3390/membranes11110889
APA StyleYang, L., Zhang, Q., Wang, Q., Ding, W., & Zhang, K. (2021). Organo-Functionalization: An Effective Method in Enhancing the Separation and Antifouling Performance of Thin-Film Nanocomposite Membranes by Improving the Uniform Dispersion of Palygorskite Nanoparticles. Membranes, 11(11), 889. https://doi.org/10.3390/membranes11110889