Sequencing Batch Integrated Fixed-Film Activated Sludge Membrane Process for Treatment of Tapioca Processing Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Activated Sludge
2.2. The SB-IFASM Set-Up
2.3. Short-Term Filtration Tests
2.4. The SB-IFASM Operation
2.5. Chemical Oxygen Demand Analysis
2.6. Total Solid (TS)
3. Results and Discussion
3.1. Effect of Hydrostatic Pressure on the Clean Water and Activated Sludge Filtration
3.2. Effect of Hydrostatic Pressure on the Activated Sludge Filtration
3.3. Effects of Activated Sludge Concentration on the Permeability
3.4. SB-IFASM Performances
3.4.1. Filtration Performance
3.4.2. Total Solid Mixing
3.4.3. Chemical Oxygen Demand Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mai, H.N.P. Integrated Treatment of Tapioca Processing Industrial Wastewater Based on Environmental Bio-Technology. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2006. [Google Scholar]
- Howeler, R. Cassava in Asia: Trends in Cassava Production, Processing and Marketing. In Proceedings of the Partnership in Modern Science to Develop a Strong Cassava Commercial Sector in Africa and Appropriate Varieties by 2020, Bellagio, Italy, 2–6 May 2006; Available online: http://ciat-library.ciat.cgiar.org/articulos_ciat/0605_Bellagio_Cassava_Production.pdf (accessed on 4 October 2021).
- Agbo, B.E.; Ogar, A.V.; Itah, A.Y.; Brooks, A.A.; Akonjor, M.A. Assessment of the Effects of Cassava Mill Effluent on the Soil and Its Microbiota in Biase Local Government Area of Cross River State, Nigeria. World J. Adv. Res. Rev. 2019, 1, 34–44. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Li, S.; Diao, X. Effects of Earthworms and Effective Microorganisms on the Composting of Sewage Sludge with Cassava Dregs in the Tropics. J. Air Waste Manag. Assoc. 2019, 69, 710–716. [Google Scholar] [CrossRef]
- Annachhatre, A.P.; Amatya, P.L. UASB Treatment of Tapioca Starch Wastewater. J. Environ. Eng. 2000, 126, 1149–1152. [Google Scholar] [CrossRef]
- Pronk, W.; Ding, A.; Morgenroth, E.; Derlon, N.; Desmond, P.; Burkhardt, M.; Wu, B.; Fane, A.G. Gravity-Driven Membrane Filtration for Water and Wastewater Treatment: A Review. Water Res. 2019, 149, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Peter-Varbanets, M.; Hammes, F.; Vital, M.; Pronk, W. Stabilization of Flux during Dead-End Ultra-Low Pressure Ultrafiltration. Water Res. 2010, 44, 3607–3616. [Google Scholar] [CrossRef]
- Lee, S.; Suwarno, S.R.; Quek, B.W.H.; Kim, L.; Wu, B.; Chong, T.H. A Comparison of Gravity-Driven Membrane (GDM) Reactor and Biofiltration + GDM Reactor for Seawater Reverse Osmosis Desalination Pretreatment. Water Res. 2019, 154, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sutter, M.; Burkhardt, M.; Wu, B.; Chong, T.H. Biocarriers Facilitated Gravity-Driven Membrane (GDM) Reactor for Wastewater Reclamation: Effect of Intermittent Aeration Cycle. Sci. Total Environ. 2019, 694, 133719. [Google Scholar] [CrossRef]
- Song, D.; Zhang, W.; Cheng, W.; Jia, B.; Wang, P.; Sun, Z.; Ma, J.; Zhai, X.; Qi, J.; Liu, C. Micro Fine Particles Deposition on Gravity-Driven Ultrafiltration Membrane to Modify the Surface Properties and Biofilm Compositions: Water Quality Improvement and Biofouling Mitigation. Chem. Eng. J. 2020, 393, 123270. [Google Scholar] [CrossRef]
- Lee, D.; Lee, Y.; Choi, S.S.; Lee, S.-H.; Kim, K.-W.; Lee, Y. Effect of Membrane Property and Feed Water Organic Matter Quality on Long-Term Performance of the Gravity-Driven Membrane Filtration Process. Environ. Sci. Pollut. Res. 2019, 26, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Soon, G.Q.Y.; Chong, T.H. Recycling Rainwater by Submerged Gravity-Driven Membrane (GDM) Reactors: Effect of Hydraulic Retention Time and Periodic Backwash. Sci. Total Environ. 2019, 654, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Waqas, S.; Bilad, M.R.; Man, Z.; Wibisono, Y.; Jaafar, J.; Indra Mahlia, T.M.; Khan, A.L.; Aslam, M. Recent Progress in Integrated Fixed-Film Activated Sludge Process for Wastewater Treatment: A Review. J. Environ. Manag. 2020, 268, 110718. [Google Scholar] [CrossRef]
- Mulyani, H.; Budianto, G.P.I.; Margono; Kaavessina, M. The Influence of PH Adjustment on Kinetics Parameters in Tapioca Wastewater Treatment Using Aerobic Sequencing Batch Reactor System; AIP Publishing LLC: Jatinangor, Indonesia, 2018; p. 030007. [Google Scholar]
- Bilad, M.R.; Mat Nawi, N.I.; Subramaniam, D.D.; Shamsuddin, N.; Khan, A.L.; Jaafar, J.; Nandiyanto, A.B.D. Low-Pressure Submerged Membrane Filtration for Potential Reuse of Detergent and Water from Laundry Wastewater. J. Water Process Eng. 2020, 36, 101264. [Google Scholar] [CrossRef]
- Ding, A.; Liang, H.; Li, G.; Szivak, I.; Traber, J.; Pronk, W. A Low Energy Gravity-Driven Membrane Bioreactor System for Grey Water Treatment: Permeability and Removal Performance of Organics. J. Membr. Sci. 2017, 542, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Bohonak, D.; Zydney, A. Compaction and Permeability Effects with Virus Filtration Membranes. J. Membr. Sci. 2005, 254, 71–79. [Google Scholar] [CrossRef]
- Persson, K.M.; Gekas, V.; Trägårdh, G. Study of Membrane Compaction and Its Influence on Ultrafiltration Water Permeability. J. Membr. Sci. 1995, 100, 155–162. [Google Scholar] [CrossRef]
- Stade, S.; Kallioinen, M.; Mikkola, A.; Tuuva, T.; Mänttäri, M. Reversible and Irreversible Compaction of Ultrafiltration Membranes. Sep. Purif. Technol. 2013, 118, 127–134. [Google Scholar] [CrossRef]
- Tarnawski, V.R.; Jelen, P. Estimation of Compaction and Fouling Effects during Membrane Processing of Cottage Cheese Whey. J. Food Eng. 1986, 5, 75–90. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; Mei, S.; Li, J.; Du, Q.; Qin, L.; Zhang, H. The Anti-Compaction Behavior of Aramid Fiber Based Polyvinylidene Fluoride Composite Separation Membranes. Fibers Polym. 2019, 20, 440–449. [Google Scholar] [CrossRef]
- Homaeigohar, S.S.; Elbahri, M. Novel Compaction Resistant and Ductile Nanocomposite Nanofibrous Microfiltration Membranes. J. Colloid Interface Sci. 2012, 372, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Almojjly, A.; Johnson, D.J.; Mandale, S.; Hilal, N. Optimisation of the Removal of Oil in Water Emulsion by Using Ceramic Microfiltration Membrane and Hybrid Coagulation/Sand Filter-MF. J. Water Process Eng. 2019, 27, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Muchtar, S.; Wahab, M.Y.; Mulyati, S.; Arahman, N.; Riza, M. Superior Fouling Resistant PVDF Membrane with Enhanced Filtration Performance Fabricated by Combined Blending and the Self-Polymerization Approach of Dopamine. J. Water Process Eng. 2019, 28, 293–299. [Google Scholar] [CrossRef]
- Truttmann, L.; Su, Y.; Lee, S.; Burkhardt, M.; Brynjólfsson, S.; Chong, T.H.; Wu, B. Gravity-Driven Membrane (GDM) Filtration of Algae-Polluted Surface Water. J. Water Process Eng. 2020, 36, 101257. [Google Scholar] [CrossRef]
- Abbassi, B.; Jordan, A. Effect of Hydraulic Loading Variations on the Performance of Decentralized Small Scale Activated Sludge Treatment Plant. Am.-Eurasian J. Agric. Environ. Sci. 2008, 4, 617–624. [Google Scholar]
- Di Trapani, D.; Corsino, S.F.; Torregrossa, M.; Viviani, G. Treatment of High Strength Industrial Wastewater with Membrane Bioreactors for Water Reuse: Effect of Pre-Treatment with Aerobic Granular Sludge on System Performance and Fouling Tendency. J. Water Process Eng. 2019, 31, 100859. [Google Scholar] [CrossRef]
- Sang, Y.; Wang, S.; Song, L.; Guo, J.; Zhang, L.; Zhang, H. Characterization of Activated Sludge Flocs in Membrane Bioreactor: Stable and Unstable Flocs. Environ. Sci. Pollut. Res. 2019, 26, 31786–31792. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhou, Z.; Cheng, C.; Wang, Z.; Pang, H.; Jiang, L.; Jiang, L.-M. Effects of Packing Carriers and Ultrasonication on Membrane Fouling and Sludge Properties of Anaerobic Side-Stream Reactor Coupled Membrane Reactors for Sludge Reduction. J. Membr. Sci. 2019, 581, 312–320. [Google Scholar] [CrossRef]
- Wang, K.M.; Soares, A.; Jefferson, B.; McAdam, E.J. Comparable Membrane Permeability Can Be Achieved in Granular and Flocculent Anaerobic Membrane Bioreactor for Sewage Treatment through Better Sludge Blanket Control. J. Water Process Eng. 2019, 28, 181–189. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, F. Membrane Fouling in Aerobic Granular Sludge (AGS)-Membrane Bioreactor (MBR): Effect of AGS Size. Water Res. 2019, 157, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Judd, S.; Judd, C. (Eds.) The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, 2nd ed.; Elsevier/BH Buttherworth-Heinemann: Amsterdam, The Netherlands, 2011; ISBN 978-0-08-096682-3. [Google Scholar]
- Meng, F.; Chae, S.-R.; Drews, A.; Kraume, M.; Shin, H.-S.; Yang, F. Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, W.; Tang, B.; Ding, J.; Zheng, Y.; Zhang, Z. Membrane Fouling Mechanism of Biofilm-Membrane Bioreactor (BF-MBR): Pore Blocking Model and Membrane Cleaning. Bioresour. Technol. 2018, 250, 398–405. [Google Scholar] [CrossRef]
- Chomiak, A.; Traber, J.; Morgenroth, E.; Derlon, N. Biofilm Increases Permeate Quality by Organic Carbon Degradation in Low Pressure Ultrafiltration. Water Res. 2015, 85, 512–520. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Xiang, F.; Zhao, L.; Qiao, Z. Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones. Int. J. Environ. Res. Public Health 2020, 17, 436. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.-T.; Ye, L.; Ju, F.; Wang, Y.-L.; Zhang, T. Toward an Intensive Longitudinal Understanding of Activated Sludge Bacterial Assembly and Dynamics. Environ. Sci. Technol. 2018, 52, 8224–8232. [Google Scholar] [CrossRef] [PubMed]
- Moeller, L.; Eismann, F.; Wißmann, D.; Nägele, H.-J.; Zielonka, S.; Müller, R.A.; Zehnsdorf, A. Innovative Test Method for the Estimation of the Foaming Tendency of Substrates for Biogas Plants. Waste Manag. 2015, 41, 39–49. [Google Scholar] [CrossRef]
- Li, Q.; Yuwen, C.; Cheng, X.; Yang, X.; Chen, R.; Wang, X.C. Responses of Microbial Capacity and Community on the Performance of Mesophilic Co-Digestion of Food Waste and Waste Activated Sludge in a High-Frequency Feeding CSTR. Bioresour. Technol. 2018, 260, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Kaya, Y.; Bacaksiz, A.M.; Bayrak, H.; Vergili, I.; Gönder, Z.B.; Hasar, H.; Yilmaz, G. Investigation of Membrane Fouling in an Anaerobic Membrane Bioreactor (AnMBR) Treating Pharmaceutical Wastewater. J. Water Process Eng. 2019, 31, 100822. [Google Scholar] [CrossRef]
- Ziegler, A.S.; McIlroy, S.J.; Larsen, P.; Albertsen, M.; Hansen, A.A.; Heinen, N.; Nielsen, P.H. Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor. PLoS ONE 2016, 11, e0158811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, T.; Zihlmann, D.; Derlon, N.; Isaacson, C.; Szivak, I.; Weissbrodt, D.G.; Pronk, W. Biological Control of Biofilms on Membranes by Metazoans. Water Res. 2016, 88, 20–29. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainuddin, N.I.; Bilad, M.R.; Marbelia, L.; Budhijanto, W.; Arahman, N.; Fahrina, A.; Shamsuddin, N.; Zaki, Z.I.; El-Bahy, Z.M.; Nandiyanto, A.B.D.; et al. Sequencing Batch Integrated Fixed-Film Activated Sludge Membrane Process for Treatment of Tapioca Processing Wastewater. Membranes 2021, 11, 875. https://doi.org/10.3390/membranes11110875
Zainuddin NI, Bilad MR, Marbelia L, Budhijanto W, Arahman N, Fahrina A, Shamsuddin N, Zaki ZI, El-Bahy ZM, Nandiyanto ABD, et al. Sequencing Batch Integrated Fixed-Film Activated Sludge Membrane Process for Treatment of Tapioca Processing Wastewater. Membranes. 2021; 11(11):875. https://doi.org/10.3390/membranes11110875
Chicago/Turabian StyleZainuddin, Nur Izzati, Muhammad Roil Bilad, Lisendra Marbelia, Wiratni Budhijanto, Nasrul Arahman, Afrilia Fahrina, Norazanita Shamsuddin, Zaki Ismail Zaki, Zeinhom M. El-Bahy, Asep Bayu Dani Nandiyanto, and et al. 2021. "Sequencing Batch Integrated Fixed-Film Activated Sludge Membrane Process for Treatment of Tapioca Processing Wastewater" Membranes 11, no. 11: 875. https://doi.org/10.3390/membranes11110875
APA StyleZainuddin, N. I., Bilad, M. R., Marbelia, L., Budhijanto, W., Arahman, N., Fahrina, A., Shamsuddin, N., Zaki, Z. I., El-Bahy, Z. M., Nandiyanto, A. B. D., & Gunawan, P. (2021). Sequencing Batch Integrated Fixed-Film Activated Sludge Membrane Process for Treatment of Tapioca Processing Wastewater. Membranes, 11(11), 875. https://doi.org/10.3390/membranes11110875