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Abstract: Controlling wastewater pollution from centralized industrial zones is important for
reducing overall water pollution. Microbial community structure and diversity can adversely
affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied
microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal
wastewater. Sludge microbial community diversity and richness were the lowest for the industrial
WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial
WWTP had low Nitrospira populations, indicating that influent composition affected nitrification
and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with
xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated
with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with
total dissolved solids. This study was expected to provide a more comprehensive understanding of
activated sludge microbial communities in full-scale industrial and municipal WWTPs.

Keywords: activated sludge; industrial zone; metabolic function; microbial community;
wastewater treatment

1. Introduction

Activated sludge (AS) processes are the most widely used biological processes in wastewater
treatment plants (WWTPs) worldwide, and they have been employed for pollutant removal for
more than a century, owing to their high nutrient removal, toxin degradation, and biomass retention
capabilities [1–3]. Microbial community structure and diversity affect the performance and functional
stability of WWTPs [4–6]. Therefore, knowledge of AS microbial community structure and microbial
functions will facilitate sludge population optimization and improve WWTP operation.

The Chinese government has heavily promoted industrial zone development, and there were 626
national and 1141 provincial zones in China, as of 2017. Reductions in common chemical oxygen demand
(CODcr), ammonia–nitrogen (NH4-N), total nitrogen (TN), and total phosphorus (TP), via wastewater
treatment in industrial zones located in the Haihe Water Basin, China, contributed to 26.2%, 23.9%, 20.3%,
and 29.0%, respectively, of the total pollutant reduction achieved through municipal and industrial
wastewater treatment in China [7]. This implies that treatment of wastewater generated by China’s
industrial zones will facilitate water pollution control in China [8]. Factories sometimes discharge
their wastewater without any effective pretreatment into centralized WWTPs of industrial zones.
Industrial wastewater contains complex hazardous substances, such as heavy metals, terephthalic
acid, phthalic acid, and benzoic acid, and therefore, has low biodegradability and is highly toxic [9,10].
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Several conventional biomolecular techniques, such as denaturing gradient gel electrophoresis [1],
terminal restriction fragment length polymorphism analysis [11], reverse transcription-polymerase
chain reaction (RT-PCR) [12], and fluorescence in situ hybridization [13], have been widely used
to determine bacterial species and functional genes of microbial communities. These methods are
specific but of low throughput as they cannot provide a comprehensive profile of the bacterial
community structure and function, due to amplification bias. Recently developed powerful and
highly efficient high-throughput sequencing techniques, such as Illumina sequencing platforms and
454 pyrosequencing, provide enough sequencing depth and high accuracy for rapidly determining
complex microbial communities and metabolic pathways [14,15]. However, knowledge about the
microbial community in sludge during industrial wastewater treatment, especially from WWTPs in
centralized industrial zones of different industries, remains limited.

The objective of this study was to determine the structure and diversity of sludge bacterial
communities in two WWTPs in centralized industrial zones, as well as a municipal WWTP. This entailed
the analysis of the pollutant removal capacities of different WWTPs, the microbial community structure
of sludge, the key metabolic functions of different microorganisms, and the effects of influent wastewater
characteristics and treatment process on bacterial communities. This study was expected to contribute
towards a more comprehensive understanding of sludge microbial community structure in full-scale
industrial and municipal WWTPs, which would in turn offer insight into achieving better pollutant
removal performance of WWTPs.

2. Materials and Methods

2.1. WWTP Operation Conditions and Sampling

Three WWTPs, referred to as Y-, D-, and Z-WWTP, were considered in this study. Y-WWTP is
a centralized WWTP in the chemical industrial zone Y located in the Tianjin Economic-Technological
Development Area (TEDA). TEDA was established in 1984 as one of China’s first national-level
industrial zones. It generates a gross domestic product of 305 billion yuan/year. Chemical industrial
zone Y has 300 factories, including chemical, salt production, paper making, and machining factories.
Y-WWTP employs an oxidation ditch (OD) with a treatment capacity of 10 × 104 ton/d. This plant
operates at a mixed liquid suspended solid (MLSS) content of 3850 mg/L, sludge retention time (SRT)
of 24.5 d, hydraulic retention time (HRT) of 19.2 h, and dissolved oxygen (DO) content of 2.4 mg/L.
Industrial wastewater accounts for 60% of the influent to this plant, of which 70% is wastewater from
chemical industries. Its effluent meets level B of the Chinese discharge standard of pollutants for
municipal WWTPs (GB 18918-2002).

D-WWTP is also a centralized WWTP in comprehensive industrial zone D,
which has approximately 3000 industries covering communication, food processing,
machinery, and biopharmaceuticals. The composition of the D-WWTP influent is 40% industrial
wastewater and 60% local municipal wastewater. It employs a sequencing batch reactor (SBR)-based
demand aeration tank and intermittent aeration tank with a treatment capacity of 9 × 104 ton/d at
an MLSS content of 3450 mg/L, SRT of 20.0 d, HRT of 4.5 h, and DO content of 3.0 mg/L.

Z-WWTP is a municipal WWTP in the Z district and employs an anoxic–oxic (A/O) process. It has
a treatment capacity of 20 × 104 ton/d at an MLSS content of 3500 mg/L, SRT of 25.0 d, HRT of 19.5 h,
and DO content of 2.0 mg/L.

The influent and effluent of the WWTPs and AS in the aeration tanks were collected every three
days from September (monthly mean temperature: 24.5 ◦C) to November (monthly mean temperature:
5.6 ◦C), during the dry weather in 2017. Analyses of pollutant concentration, pollutant removal from
wastewater, and sludge microbial community are detailed in the following sections.
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2.2. DNA Extraction, PCR Amplification, and High-Throughput Sequencing

Total genomic DNA was extracted from sludge samples (300-mg wet weight) using a PowerSoil
DNA isolation kit (MO BIO Labs, Solana Beach, CA, USA). DNA quality and quantity were
assessed through agarose gel (1%) electrophoresis and spectrophotometry (260 nm/280 nm ratio).
The V3–V4 variable regions of microbial 16S rRNA genes were targeted using primer pair 338F
(5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′), as well as
adapter sequences and barcode sequences for bacterial community analysis. PCR was performed using
the following steps—initial denaturation for 5 min at 95 ◦C; 15 cycles of 1 min at 95 ◦C, annealing for
1 min at 50 ◦C, extension for 1 min at 72 ◦C; and a final extension at 72 ◦C for 7 min. High-throughput
sequencing was conducted by Biomarker Technologies Co., Ltd. (Beijing, China), using an Illumina
HiSeq 2500 (Illumina Inc., San Diego, CA, USA). After sequencing, paired-end reads were assembled
with a minimum overlap of 10 bp, using fast length adjustment of short reads (FLASH; version
1.2.11). The assembled tags were compared against primers, and tags corresponding to more than
six mismatches were discarded using the FASTX-Toolkit. Sequences with an average quality score
greater than 20, over a 50-bp sliding window were truncated using the Trimmomatic (version 0.33).
Chimeras were identified and removed using UCHIME. Subsequently, using USEARCH (version 10.0),
effective sequences were clustered into operational taxonomic units (OTUs) with a similarity cutoff of
97% [16].

2.3. Taxonomy, Community Richness and Diversity, and Gene Function Prediction

To use most sequence data, the read counts were not rarefied to a common depth. The taxonomy
of sequences was determined using the RDP classifier (version 2.2, https://sourceforge.net/projects/
rdp-classifier/files/rdp-classifier/) against Silva databases (Release 128). Community richness and
diversity were analyzed using alpha diversity estimators, including the abundance-based coverage
estimator (ACE), Chao1, Simpson, and Shannon indexes, calculated on Mothur (version 1.30,
https://www.mothur.org/) and through principal coordinates analysis (PCoA) of beta diversity
using QIIME (version 1.8, https://github.com/biocore/qiime). Functions of the 16S rRNA were
predicted based on the information in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.jp/kegg/) database. The OTU abundance table was standardized, and then the
KEGG ortholog cluster information was obtained and calculated from the Greengenes ID of each out,
using the PICRUSt software version 1.1.1 (http://picrust.github.io/picrust/) [17].

2.4. Chemical Analysis

The CODcr, 5-d biological oxygen demand (BOD5), NH4-N, TN, TP, suspended solids (SS),
total dissolved solids (TDS), sulfide, fluoride, cyanide, zinc, iron, copper, alumina, manganese,
mercury, arsenic, chromium, volatile phenol, petroleum oil, aniline, toluene, anionic surfactant,
and chlorobenzene removal efficiencies of the WWTPs were analyzed. These analyses were conducted
according to the corresponding standard methods [18], with assistance from the Tianjin Huanke Testing
Technology Co., Ltd. (Tianjin, China), which has obtained the China Metrology Accreditation.

2.5. Statistical Analysis

Correlations and mean statistical differences in the experimental data were analyzed via correlation
analysis and one-way analysis of variance using SPSS version 20 (IBM Corporation, Armonk, NY, USA).

3. Results

3.1. Pollutant Removal Efficiencies of the Three WWTPs

The industrial pollutants chromium, mercury, arsenic, alumina, manganese, iron, cyanide, TDS,
chlorobenzene, and surfactant concentrations in the industrial influent of Y-WWTP were markedly

https://sourceforge.net/projects/rdp-classifier/files/rdp-classifier/
https://sourceforge.net/projects/rdp-classifier/files/rdp-classifier/
https://www.mothur.org/
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higher than those in the municipal Z-WWTP; most of these pollutants were also significantly higher in
the industrial influent of D-WWTP than the municipal influent of Z-WWTP (Table 1). The removal
efficiencies for the conventional pollutants detected in the influent were lower than that of Y-WWTP
at Z-WWTP (BOD5: p = 0.035; NH4-N: p = 0.023; Figure 1). Additionally, the variation of removal
efficiencies of Y-WWTP was significantly larger than those of the other two WWTPs, especially for TN
and TP. This indicated that the industrial influent had negative effects on the removal efficiencies of
pollutants and on the treatment performance stability. If treatment by WWTPs in industrial zones was
inefficient, the residual pollutants in the effluent would pose environmental risks [19].

Table 1. Composition and concentration of raw sewage in the tested wastewater treatment
plant (WWTPs).

Pollutants D-WWTP Y-WWTP Z-WWTP

CODcr (mg/L) 185.17 221.00 234.00
BOD5 (mg/L) 47.87 49.64 41.80

NH4-N (mg/L) 13.87 26.28 36.60
TN (mg/L) 19.20 39.81 45.60
TP (mg/L) 2.40 3.95 4.36

Suspended solids (mg/L) 45.67 88.17 63.00
Total dissolved solids (mg/L) 2578.33 3748.33 770.00

Sulfide (mg/L) 3.322 0.922 8.860
Fluoride (mg/L) 1.170 0.882 1.080
Cyanide (µg/L) 4.3 61.7 4.0

Zn (mg/L) 0.192 0.126 0.428
Fe (mg/L) 3.128 3.329 0.622
Al (mg/L) 1.413 1.519 0.172
Mn (mg/L) 0.293 0.323 0.180
Hg (µg/L) 0.038 0.248 0.040
As (µg/L) 0.600 0.783 0.500
Cr (mg/L) 0.030 0.060 0.004

Phenol (mg/L) 0.014 0.015 0.028
Formaldehyde (mg/L) 0.057 0.050 0.140

Aniline (mg/L) 0.082 0.062 0.220
Surfactant (mg/L) 0.834 0.473 0.170

Chlorobenzene (µg/L) 1.000 159.867 1.000
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Figure 1. Removal efficiencies of the conventional pollutants in Y-, D-, and Z-wastewater
treatment plants.
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3.2. Microbial Community Structure Analysis

3.2.1. Microbial Community Richness and Diversity

Table 2 shows the microbial community richness and diversity indexes for all sludge samples.
The Good’s estimator of coverage values for all samples were greater than 0.998, indicating that
the corresponding sequence library provided complete coverage of the microbial community.
Sampling location and season evidently affected microbial abundance and diversity in sludge.
Sludge collected from Y-WWTP in November, termed YAW, had a significantly lower number of
OTUs (p < 0.05) compared to those in sludge collected in November from D-WWTP (DAW) and
Z-WWTP (ZAW). This indicated that industrial wastewater had considerably reduced bacterial
numbers. Furthermore, YAW showed the lowest values of ACE and Chao1 indexes, which are
indicators of microbial community richness. The lowest Shannon and highest Simpson indices were
obtained for YAW, which are diversity indicators, suggesting that industrial wastewater had a negative
impact on microbial sludge diversity. Sludge samples of WWTPs treating wastewater from industrial
processes such as textile dyeing, petroleum refining, whey processing, pharmaceutical production, and
pesticide production have lower microbial community richness than sludge samples of WWTPs that
treat municipal wastewater [3,20,21]. The highest Shannon index was obtained for ZAW, indicating
that the municipal wastewater enhanced sludge microbial diversity. Overall, the OTUs and ACE values
for all sludge samples collected in September were higher than those for sludge collected in November
by 8.9% and 13.5%, respectively. This suggests that bacterial community richness increases at higher
temperatures (in September). Similar differences in microbial richness and diversity were observed
for sludge samples from all other WWTPs. Zhang et al. (2018) also reported significantly higher
microbial community richness and diversity (Shannon index) in sludge samples collected in summer
than sludge collected in winter from four full-scale WWTPs [22]. Furthermore, Griffin and Wells
(2017) reported that bacterial community structure in a full-scale AS process was affected by seasonal
temperature fluctuations, with increased diversity at higher temperatures [23]. The abundances
of several functionally important bacterial genera varied considerably with seasonal variations in
temperature [24].

Table 2. Microbial community richness and diversity indices for sludge samples collected from different
wastewater treatment plants.

Sampling
Date

Sludge
Sampling

Site
OTU ACE Chao1 Shannon Simpson

D-WWTP 873 a 956 a 985 a 5.694 b 0.007 c

November. Y-WWTP 759 b 864 b 871 b 5.344 c 0.010 a

Z-WWTP 888 a 945 a 957 a 5.763 a 0.008 b

D-WWTP 962 a 1010 a 1020 a 5.271 c 0.024 a

September. Y-WWTP 921 b 989 a 1022 a 5.372 b 0.011 b

Z-WWTP 968 a 1007 a 1017 a 5.612 a 0.010 b

a, b, and c: multiple mean comparisons using alphabetic labels, where a > b > c. Different letters indicate significant
differences at 0.05.

The observed differences in bacterial community structure were verified via PCoA (Figure 2).
The samples, sludge collected in September from D-, Y-, and Z-WWTP (referred to as DAS,
YAS, and ZAS, respectively), and in November (DAW, YAW, and ZAW), were clustered into three
groups along PC1 (accounting for 52.54% of the variation). Thus, the bacterial communities of sludge
from different WWTPs differed considerably. Furthermore, the microbial community structures of
samples collected in November and September from the same WWTP were different, but were more
similar to each other than to samples collected from other WWTPs.
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communities of different sludge samples.

3.2.2. Taxonomic Classification of the Bacterial Communities

At the phylum level, 37–42 bacterial phyla were identified in the AS samples. Proteobacteria,
Bacteroidetes, Acidobacteria, Chloroflexi, Saccharibacteria, Planctomycetes, and Nitrospirae were the
most abundant bacteria at the phylum level in all AS samples (Figure 3A). Previous studies have shown
that these bacteria play important roles in the AS processes [25–27]. Proteobacteria was the most
dominant bacterial phylum (ranging from 47% to 52%) in the AS samples. This was consistent with
a previous report that Proteobacteria was predominant in WWTPs and played a significant and broad
role in organic and nutrient removal [28]. Moreover, Nitrospirae and Chloroflexi were the key bacterial
phyla for nitrite oxidation and denitrification in AS [29]. The abundances of Chlamydiae, Chlorobi,
Chloroflexi, Elusimicrobia, Ignavibacteriae, Latescibacteria, Parcubacteria, and Spirochaetae were the
highest in ZAS (see A, Table 3). The lowest abundances (see B or C, Table 3) of Armatimonadetes,
Bacteroidetes, Chlamydiae, Chlorobi, Cyanobacteria, Fibrobacteres, and Verrucomicrobia were
observed for YAS, indicating an inhibition of bacterial growth by wastewater from chemical industries.
Both DAS and YAS had lower Chlamydiae, Chlorobi, Chloroflexi, Elusimicrobia, Ignavibacteriae,
Latescibacteria, Parcubacteria, and Spirochaetae abundances than ZAS, indicating an inhibition of
these bacteria by industrial wastewater. The relative abundances of Chloroflexi and Ignavibacteriae
were reported to be significantly diminished by ampicillin at 30 mg/L [25]. Among the sludge samples
collected in November, the abundances of Chlorobi, Chloroflexi, Elusimicrobia, Parcubacteria, and
Spirochaetae in ZAW were highest and were similar to those in ZAS. However, bacterial abundances
in YAW were much lower (see C, Table 3) than those in YAS, which could be attributed to the lower
shock resistance of bacteria at lower temperatures. Overall, bacterial abundance in ZAS was much
higher than those in DAS or YAS.
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Table 3. Multiple mean comparison of bacterial abundance at the phylum level (significance level of
0.05).

Bacteria
Sludge Sample (Summer) Sludge Sample (Winter)

DAS YAS ZAS DAW YAW ZAW

Acidobacteria A B C AB A B
Actinobacteria B A B B A A
Aminicenantes B A B A A A
Armatimonadetes A C B A B B
BRC1 B A A B A B
Bacteroidetes A B A A B C
Chlamydiae B C A A C B
Chlorobi B C A B C A
Chloroflexi C B A B C A
Cyanobacteria A C B A C B
Deferribacteres A B B A A A
Elusimicrobia B B A B B A
Fibrobacteres A B A A C B
Firmicutes C A B B B A
Fusobacteria A A A A A A
Gemmatimonadetes B A A C A B
Gracilibacteria A A B A C B
Hydrogenedentes A B B A B B
Ignavibacteriae C B A B A A
Latescibacteria B B A A A B
Microgenomates A B B A B B
Nitrospirae C A B B C A
Parcubacteria C B A B C A
Peregrinibacteria A A A B A B
Planctomycetes AB B A A A B
Proteobacteria A B C B C A
RBG-1[Zixibacteria] B B A B B A
SR1[Absconditabacteria] B B A A A A
Saccharibacteria B A B B A C
Spirochaetae B B A B C A
Synergistetes A A A A A A
TM6[Dependentiae] A C B A AB B
Verrucomicrobia A B A A A A

A, B, and C—multiple mean comparisons using alphabetical labels, where A > B > C. Different letters indicate
significant differences at 0.05.

The taxonomic classification of the microbial communities at the genus level is shown
in Figure 3B. This provides more detailed information about microbial community succession.
ZAS had higher abundances of Parafilimonas, Thauera, Xanthomonadales, Dechloromonas,
Candidatus Competibacter, Parafilimonas, Anaerolineaceae, and Hydrogenophilaceae, than YAS
and DAS. Furthermore, Dechloromonas, Hyphomicrobium, Phaeodactylibacter, Terrimonas, and
Xanthomonadaceae abundances were the lowest in YAS, while abundances of Denitromonas,
Nitrosomonas, Nitrosomonadaceae, and Saccharibacteria were the highest. ZAW had higher
abundances of Candidatus Competibacter, Dechloromonas, Haliangium, Nitrospira, Parafilimonas, Thauera,
Nitrosomonadaceae, Xanthomonadales, and Parcubacteria, than YAW and DAW. Dechloromonas,
Ferruginibacter, Hyphomicrobium, Nitrospira, Anaerolineaceae, Hydrogenophilaceae, Xanthomonadales,
and Parcubacteria were the least abundant in YAW, while Denitratisoma, Nitrosomonas, Blastocatellaceae,
Saprospiraceae, and Sphingobacteriales were the most dominant. Overall, Z-WWTP had higher
abundances of Dechloromonas, Nitrospira, and Thauera, while Y-WWTP had higher Nitrosomonas
concentrations and lower Nitrospira abundances. Dechloromonas and Thauera were identified as typical
denitrifying bacteria in wastewater treatment [30], while Nitrosomonas and Nitrospira were predominant
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ammonia oxidation bacteria and nitrite oxidation bacteria in WWTPs [31–33]. In an SBR process,
the Nitrospira population decreased sharply and was ultimately wiped out in the presence of copper [34].
These dynamic changes might be attributed to the differences in wastewater type, technological process,
or geographical location.

3.3. KEGG Analysis of Dominant Taxonomic Groups and Related Metabolic Functions

Bacterial functions predicted based on KEGG level 2 functional categories are illustrated in
Figure 4. Metabolism was the dominant biochemical pathway, and the genes responsible for metabolism
accounted for 74.1%–74.8% of the total, followed by genes responsible for genetic information processing
(7.8%–8.0%), environmental information processing (9.7%–10.2%), human diseases (3.2%–3.4%),
cellular processes (3.2%–3.4%), and organismal systems (1.3%–1.4%). The major metabolic functions
were carbohydrate metabolism (13.8%), amino acid metabolism (12.5%), energy metabolism (7.5%),
cofactor and vitamin metabolism (6.6%), and nucleotide metabolism (4.5%), which are all necessary
metabolic activities for microbial communities [35]. Previous metagenomic studies have also
reported high proportions of genes responsible for these functions in biological reactors [35–38].
Most of the metabolic functions of bacteria from different samples were highly similar (Table 4).
However, xenobiotic biodegradation and metabolism, as well as amino acid metabolism, were more
dominant in the sludge from industrial Y- and D-WWTP (see A, Table 4) than in municipal Z-WWTP (see
B, Table 4), thereby, affecting the ability of microbes to degrade or assimilate these compounds. Samples
from both November and September (Table 4) collected from D-WWTP had more genes attributable for
regulating cellular processes (cell growth and death), organismal systems (environmental adaptation
and nervous system), and human diseases (substance dependence and infectious diseases such as
parasitic, infectious, and viral diseases, and cardiovascular disorders), which might be related to
the complex compositions of the industrial influent to this WWTP. Under long-term hyper-saline
stress conditions, microbial communities can develop special metabolic patterns for amino acids
and membrane transporters, to maintain optimal cellular activity and removal performance [27].
Exposure to 50 mg/L of silver nanoparticles was found to significantly hinder nutrient transport and
metabolism, especially amino acid transport and metabolism [39].
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Table 4. Multiple mean comparison of gene abundance according to bacterial functions in different
sludge samples based on KEGG level 2 categories.

Class 1 Class 2 DAS YAS ZAS DAW YAW ZAW

Metabolism Carbohydrate metabolism A A A A A A
Metabolism Lipid metabolism A A A A A A

Metabolism Metabolism of cofactors and
vitamins A A A A A A

Metabolism Energy metabolism A A A A A A
Metabolism Nucleotide metabolism A A A A A A

Metabolism Biosynthesis of other
secondary metabolites A A A A A A

Metabolism Metabolism of terpenoids
and polyketides A A A A A A

Metabolism Glycan biosynthesis and
metabolism AB B A A A A

Metabolism Global and overview maps A A A A A A
Metabolism Amino acid metabolism A A A A AB B

Metabolism Xenobiotics biodegradation
and metabolism A A B A A B

Metabolism Metabolism of other amino
acids A AB B A AB B

Environmental Information
Processing Membrane transport A A A A A A

Environmental Information
Processing Signal transduction A A A A A A

Cellular Processes Cell motility A A A A A A
Cellular Processes Transport and catabolism A A A A A A
Cellular Processes Cell growth and death A B B A A B
Cellular Processes Cellular community A B C AB B A

Genetic Information
Processing

Folding, sorting and
degradation B AB A A A A

Genetic Information
Processing Transcription A A A A A A

Genetic Information
Processing Translation A A A A A A

Genetic Information
Processing Replication and repair A A A A A A

Organismal Systems Endocrine system A A A AB A B
Organismal Systems Circulatory system A A A A A A
Organismal Systems Immune system B B A A A A
Organismal Systems Environmental adaptation A B B A AB B
Organismal Systems Nervous system A B B A A B
Organismal Systems Sensory system A B B A B A
Organismal Systems Excretory system B B A AB A B
Organismal Systems Digestive system A B AB A A B

Human Diseases Drug resistance A A A A AB B

Human Diseases Endocrine and metabolic
diseases A A A A A A

Human Diseases Cancers: Overview A A A A A A
Human Diseases Infectious diseases: Bacterial A A A A A A
Human Diseases Neurodegenerative diseases A B B A AB B
Human Diseases Substance dependence A B B A B C
Human Diseases Infectious diseases: Parasitic A C B A B B
Human Diseases Infectious diseases: Viral A B B A B B
Human Diseases Cancers: Specific types A B B A A A
Human Diseases Immune diseases A B B A A B
Human Diseases Cardiovascular diseases A B C A B B

A, B, and C—multiple mean comparisons using alphabetical labels, where A > B > C. Different letters indicate
significant differences at 0.05.
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3.4. Effects of Pollutant Concentration and Operation Condition on Microbial Communities

3.4.1. Pollutant Concentration

Figure 5 shows the correlation of OTU numbers, and ACE and Shannon indices with pollutant
concentration in wastewater. The OTU numbers and ACE index (Figure 5A,B), which indicate bacterial
community richness, were both positively correlated with the concentration of conventional pollutants
(e.g., carbon, nitrogen, and phosphorus) and negatively correlated with SS (r = 0.96) and TDS (r = 0.93).
With increasing salt concentration, species richness decreased due to the selection pressure of high
salt concentrations [27]. Levels of heavy metals such as mercury (r = 0.99), chromium (r = 0.92),
and arsenic (r = 0.94) were negatively correlated with OTU level and ACE index, while zinc (r = 0.77)
concentration showed a positive correlation with these two richness indicators. Similar phenomena
have been observed in previous studies. The heavy metals mercury, arsenic, aluminum, cadmium and
lead had a negative relationship with the richness of microbial communities in soil [40] and marine
sediments [41]. Conversely, as an essential element for microorganism growth, several bacteria in
contaminated soil were significantly positively correlated with zinc concentration [42], where low
exposure to zinc ion (<5 mg/L) promoted biogas production in an anaerobic digestion process [43] and
a low zinc oxide concentration enhanced the microbial richness by 21.3% in an anammox process [44].
The organic pollutants phenol (r = 0.51), formaldehyde (r = 0.55), and toluene (r = 0.39) were slightly
positively correlated with bacterial species richness, whereas chlorobenzene (r = 0.99) was significantly
negatively correlated. Microbial community richness and diversity decreased with continuous dosing
of copper [34]. Furthermore, in this study, these pollutants had a similar effect on microbial community
diversity, as indicated by the Shannon index values (Figure 5C).
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Figure 5. Correlation between wastewater composition and bacterial community. (A) Operational
taxonomic unit; (B) ACE index; and (C) Shannon index.

3.4.2. Operation Condition

Besides wastewater composition, wastewater treatment processes and operational conditions
have major impacts on the microbial community richness and diversity of AS. Y-WWTP, D-WWTP,
and Z-WWTP employ OD, A/O, and SBR processes, respectively, with MLSS levels of 3450–3850
mg/L, SRTs of 20–25 d, DO contents of 2.0–3.0 mg/L, and HRTs of 4.5–19.5 h. The results in
this study showed significant differences in the microbial community among the three WWTPs
(Figures 2 and 3). It must be noted that it is difficult to qualitatively analyze the effect of operation
conditions on the microbial communities in these WWTPs because they employ different systems.
Previous studies have shown that the MLSS concentration is correlated with the abundances of certain
microorganisms [45]. Furthermore, a high HRT favored growth of certain filamentous bacteria in
membrane tank reactors, thereby, changing the bacterial community [46]. By contrast, a shorter HRT
supported fewer microbial species, which in turn resulted in the utilization of fewer carbon sources [47].
However, no significant correlation was noted between bacteria genera number and DO content during
municipal wastewater treatment [48]. Finally, temperature had significant effects on nitrification
performance in a denitrification biofilter through the change of ammonia-oxidizing bacteria [49].
The microbial communities and treatment performances of centralized WWTPs in industrial zones
were negatively affected by the industry-related pollutant loading. Therefore, it is important to
enhance the shock resilience to obtain an optimal microbial community structure for high efficiency of
wastewater treatment, by selecting anti-shock loading treatment processes; increasing the returning
sludge; and optimizing the extended aeration and chemical addition in the centralized WWTPs.

4. Conclusions

We investigated microbial community structure, diversity, and functions in industrial and
municipal WWTPs. Sludge from Y-WWTP (processing chemical industrial wastewater) had
significantly lower OTU levels and ACE, Chao1, and Shannon indices (p < 0.05) than sludge
from D-WWTP (processing comprehensive industrial wastewater) and municipal Z-WWTP,
indicating that chemical industrial wastewater significantly inhibited bacterial richness and diversity.
Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon,
nitrogen, and phosphorus), but negatively correlated with TDS. Influent composition affected the
abundances of nitrifying and denitrifying microbes (e.g., Dechloromonas, Nitrospira, Nitrosomonas, and
Thauera) and xenobiotic degradation by microbes. These results provide support for the control of
wastewater effluent from upstream enterprises, and the strengthening of treatment performance of
downstream centralized WWTPs in industrial zones.
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