Discussion on Water Condensation in Membrane Pores during CO2 Absorption at High Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. CO2 Absorption Experiments
3. Results and Discussion
3.1. High-Temperature CO2 Removal Experiment
3.2. Changes in Feed Gas Flow Rate
3.3. Changes in Liquid Flow Rate
3.4. Reduction of Absorption Temperature
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current status and development of membranes for CO2/CH4 separation: A review. Int. J. Greenh. Gas Control 2013, 12, 84–107. [Google Scholar] [CrossRef]
- Li, S.; Pyrzynski, T.J.; Klinghoffer, N.B.; Tamale, T.; Zhong, Y.; Aderhold, J.L.; Zhou, S.J.; Meyer, H.S.; Ding, Y.; Bikson, B. Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. J. Memb. Sci. 2017, 527, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Hsieh, C.; Li, M.; Tung, K. Determination of mass transfer resistance during absorption of carbon dioxide by mixed absorbents in PVDF and PP membrane contactor. Desalination 2009, 249, 647–653. [Google Scholar] [CrossRef]
- Hoff, K.A.; Svendsen, H.F. CO2 absorption with membrane contactors vs. packed absorbers- Challenges and opportunities in post combustion capture and natural gas sweetening. Energy Procedia 2013, 37, 952–960. [Google Scholar] [CrossRef] [Green Version]
- Amaral, R.A.; Habert, A.C.; Borges, C.P. Performance evaluation of composite and microporous gas-liquid membrane contactors for CO2 removal from a gas mixture. Chem. Eng. Process. Process. Intensif. 2016, 102, 202–209. [Google Scholar] [CrossRef]
- Darabi, M.; Rahimi, M.; Dehkordi, A.M. Gas absorption enhancement in hollow fiber membrane contactors using nano fluids: Modeling and simulation. Chem. Eng. Process. Process. Intensif. 2017, 119, 7–15. [Google Scholar] [CrossRef]
- Marzouk, S.A.M.; Al-Marzouqi, M.H.; Teramoto, M.; Abdullatif, N.; Ismail, Z.M. Simultaneous removal of CO2 and H2S from pressurized CO2-H2S-CH4 gas mixture using hollow fiber membrane contactors. Sep. Purif. Technol. 2012, 86, 88–97. [Google Scholar] [CrossRef]
- Quek, V.C.; Shah, N.; Chachuat, B. Modeling for design and operation of high-pressure membrane contactors in natural gas sweetening. Chem. Eng. Res. Des. 2018, 132, 1005–1019. [Google Scholar] [CrossRef]
- Mosadegh-sedghi, S.; Rodrigue, D.; Brisson, J.; Iliuta, M.C. Wetting phenomenon in membrane contactors –Causes and prevention. J. Memb. Sci. 2014, 452, 332–353. [Google Scholar] [CrossRef]
- Bougie, F.; Iliuta, M.C. Analysis of Laplace—Young equation parameters and their influence on efficient CO2 capture in membrane contactors. Sep. Purif. Technol. 2013, 118, 806–815. [Google Scholar] [CrossRef]
- Villeneuve, K.; Hernandez, A.A.T.; Zaidiza, D.A.; Roizard, D.; Rode, S. Effects of water condensation on hollow fiber membrane contactor performance for CO2 capture by absorption into a chemical solvent. J. Memb. Sci. 2018, 556, 365–373. [Google Scholar] [CrossRef]
- Guillen-burrieza, E.; Mavukkandy, M.O.; Bilad, M.R.; Arafat, H.A. Understanding wetting phenomena in membrane distillation and how operational parameters can affect it. J. Memb. Sci. 2016, 515, 163–174. [Google Scholar] [CrossRef]
- Fang, M.; Wang, Z.; Yan, S.; Cen, Q.; Luo, Z. CO2 desorption from rich alkanolamine solution by using membrane vacuum regeneration technology. Int. J. Greenh. Gas Control 2012, 9, 507–521. [Google Scholar] [CrossRef]
- Mosadegh-Sedghi, S.; Brisson, J.; Rodrigue, D.; Iliuta, M.C. Morphological, chemical and thermal stability of microporous LDPE hollow fiber membranes in contact with single and mixed amine based CO2 absorbents. Sep. Purif. Technol. 2012, 96, 117–123. [Google Scholar] [CrossRef]
- DeMontigny, D.; Tontiwachwuthikul, P.; Chakma, A. Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption. J. Memb. Sci. 2006, 277, 99–107. [Google Scholar] [CrossRef]
- Jo, H.; Hwang, K.W.; Kim, D.; Kiyofumi, M.; Park, H.S.; Kim, M.H.; Ahn, H.S. Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation. Sci. Rep. 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kang, G.; Chan, Z.P.; Saleh, S.B.M.; Cao, Y. Removal of high concentration CO2 from natural gas using high pressure membrane contactors. Int. J. Greenh. Gas Control 2017, 60, 1–9. [Google Scholar] [CrossRef]
- Al-Marzouqi, M.H.; Marzouk, S.A.M.; Abdullatif, N. High pressure removal of acid gases using hollow fiber membrane contactors: Further characterization and long-term operational stability. J. Nat. Gas Sci. Eng. 2017, 37, 192–198. [Google Scholar] [CrossRef]
- Faiz, R.; Al-marzouqi, M. CO2 removal from natural gas at high pressure using membrane contactors: Model validation and membrane parametric studies. J. Memb. Sci. 2010, 365, 232–241. [Google Scholar] [CrossRef]
- Pfitzner, J. Poiseuille and his law. Anaesthesia 1976, 31, 273–275. [Google Scholar] [CrossRef]
- Fairbanks, D.F.; Wilke, C.R. Diffusion Coefficients in Multicomponent Gas Mixtures. Ind. Eng. Chem. 1950, 42, 471–475. [Google Scholar] [CrossRef]
- Coker, A.K. Ludwig’s Applied Process Design for Chemzcal and Petrochemical Plants, 4th ed.; Gulf Professional Publishing: Houston, TX, USA, 2007. [Google Scholar] [CrossRef]
- Fuller, E.N.; Schettler, P.D.; Giddings, J.C. A new method for prediction of binary gas-phase diffusion. Ind. Eng. Chem. 1966, 58, 18–27. [Google Scholar] [CrossRef]
- Kato, S.; Yamaguchi, S.; Yoshimune, W.; Matsuoka, Y.; Kato, A.; Nagai, Y.; Suzuki, T. Ex-situ visualization of the wet domain in the microporous layer in a polymer electrolyte fuel cell by X-ray computed tomography under water vapor supply. Electrochem. Commun. 2020, 111, 106644. [Google Scholar] [CrossRef]
- Arnold, K.; Stewart, M. Surface Production Operation, 2nd ed.; Elsevier Science: Burlington, NJ, USA, 1999; Volume 2. [Google Scholar]
- Leach, R.N.; Stevens, F.; Langford, S.C.; Dickinson, J.T. Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 2006, 22, 8864–8872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rongwong, W.; Fan, C.; Liang, Z.; Rui, Z.; Idem, R.O. Investigation of the effects of operating parameters on the local mass transfer coefficient and membrane wetting in a membrane gas absorption process. J. Memb. Sci. 2015, 490, 236–246. [Google Scholar] [CrossRef]
- Rezaei, M.; Warsinger, D.M.; Lienhard, J.; Duke, M.; Matsuura, T.; Samhaber, W.M. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Res. 2018, 139, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Lan, Z.; Peng, B.; Wen, R.; Ma, X. Evolution of transient cluster/droplet size distribution in a heterogeneous nucleation process. RSC Adv. 2014, 4, 31692–31699. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Fiber outer diameter (mm) | 0.93 |
Fiber inner diameter(mm) | 0.42 |
Porosity of fibers (%) | 40 |
Average pore radius (μm) | 0.10 |
Maximum pore radius (μm) | 0.38 |
Number of hollow fibers in membrane module | 120 |
Module inner diameter (mm) | 15 |
Packing density (%) | 46 |
Effective length of membrane module (m) | 1 |
Membrane area (m2) | 0.35 |
Parameters | Value |
---|---|
Inlet gas CO2 content, % | 26 |
Inlet gas pressure, MPa | 5.310 ± 0.015 |
Inlet gas temperature, K | 301.0 ± 0.1 |
Inlet gas flow rate, kg/h | 1.45 ± 0.05 |
Inlet gas water vapor content, ppmv | 28 ± 1 |
Outlet gas pressure, MPa | 5.298 ± 0.015 |
Inlet liquid CO2 loading, mol CO2/mol amine | 0.40–0.42 |
Inlet liquid pressure, MPa | 5.334 ± 0.015 |
Inlet liquid temperature, K | 346 ± 3.5 |
Inlet liquid flow rate, kg/h | 12.20 ± 0.60 |
Inlet liquid amine concentration, wt% | 36 |
Parameters | 24 h Experiment |
---|---|
, m3/s | 2.3 10−8 |
at liquid inlet, Pa | 3.5 104 |
at liquid outlet, Pa | 2.0 104 |
Log mean , Pa | 2.7 104 |
at liquid inlet, Pas | 2.3 10−3 |
at liquid outlet, Pas | 2.1 10−3 |
Average , Pas | 2.2 10−3 |
, s−1 | 1.2 107 |
, m3 | 1.8 10−15 |
Parameters | Original Gas Flow 1.45 kg/h | Reduced Gas Flow 0.40 kg/h | Return to Original Gas Flow 1.45 kg/h |
---|---|---|---|
, m3/s | 2.3 10−8 | 5.0 10−8 | 4.9 10−8 |
Log mean , Pa | 2.7 104 | 2.9 104 | 2.7 104 |
Average , Pas | 2.2 10−3 | 2.2 10−3 | 2.2 10−3 |
, m3 | 1.8 10−15 | 3.9 10−15 | 3.9 10−15 |
Parameters | Feed Gas Flow 1.45 kg/h | Feed Gas Flow 0.40 kg/h |
---|---|---|
Liquid inlet temperature, K | 346.4 | 346.4 |
Liquid outlet temperature, K | 355.8 | 349.5 |
Liquid inlet H2O , kPa | 32.43 | 32.43 |
Liquid inlet H2O , kPa | 32.45 | 32.45 |
Liquid outlet H2O , kPa | 60.33 | 46.10 |
Liquid outlet H2O , kPa | 60.36 | 46.12 |
Parameters | Original Liquid Flow 12.2 kg/h | Reduced Liquid Flow 8.0 kg/h | Return to Original Liquid Flow 12.2 kg/h |
---|---|---|---|
, m3/s | 2.3 10−8 | 2.0 10−8 | 3.3 10−8 |
Log mean , Pa | 2.7 104 | 2.6 104 | 2.7 104 |
Average , Pas | 2.2 10−3 | 2.0 10−3 | 2.2 10−3 |
, m3 | 1.8 10−15 | 1.6 10−15 | 2.6 10−15 |
Parameters | Liquid Flow 12.20 kg/h | Liquid Flow 8.00 kg/h |
---|---|---|
Liquid inlet temperature, K | 346.4 | 350.2 |
Liquid outlet temperature, K | 355.8 | 360.0 |
Liquid inlet H2O , kPa | 32.43 | 38.08 |
Liquid inlet H2O , kPa | 32.45 | 38.11 |
Liquid outlet H2O , kPa | 60.33 | 72.21 |
Liquid outlet H2O , kPa | 60.36 | 72.25 |
Parameters | Original Temperature 75 °C | Original Temperature 66 °C | Return to Original Temperature 66 °C |
---|---|---|---|
, m3/s | 2.3 10−8 | 2.1 10−8 | 2.5 10−8 |
Log mean , Pa | 2.7 104 | 2.7 104 | 2.7 104 |
Average , Pas | 2.2 10−3 | 2.4 10−3 | 2.2 10−3 |
, m3 | 1.8 10−15 | 1.9 10−15 | 2.0 10−15 |
Parameters | Liquid Inlet 75 °C | Liquid Inlet 66 °C |
---|---|---|
Liquid inlet temperature, K | 348.2 | 339.2 |
Liquid outlet temperature, K | 357.2 | 349.8 |
Liquid inlet H2O , kPa | 35.03 | 23.66 |
Liquid inlet H2O , kPa | 35.05 | 23.67 |
Liquid outlet H2O , kPa | 63.96 | 47.56 |
Liquid outlet H2O , kPa | 63.99 | 47.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, Z.P.; Li, L.; Kang, G.; Ab Manan, N.; Cao, Y.; Wang, T. Discussion on Water Condensation in Membrane Pores during CO2 Absorption at High Temperature. Membranes 2020, 10, 407. https://doi.org/10.3390/membranes10120407
Chan ZP, Li L, Kang G, Ab Manan N, Cao Y, Wang T. Discussion on Water Condensation in Membrane Pores during CO2 Absorption at High Temperature. Membranes. 2020; 10(12):407. https://doi.org/10.3390/membranes10120407
Chicago/Turabian StyleChan, Zhe Phak, Lin Li, Guodong Kang, Norfaizah Ab Manan, Yiming Cao, and Tonghua Wang. 2020. "Discussion on Water Condensation in Membrane Pores during CO2 Absorption at High Temperature" Membranes 10, no. 12: 407. https://doi.org/10.3390/membranes10120407
APA StyleChan, Z. P., Li, L., Kang, G., Ab Manan, N., Cao, Y., & Wang, T. (2020). Discussion on Water Condensation in Membrane Pores during CO2 Absorption at High Temperature. Membranes, 10(12), 407. https://doi.org/10.3390/membranes10120407