Monitoring Biofouling Potential Using ATP-Based Bacterial Growth Potential in SWRO Pre-Treatment of a Full-Scale Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of SWRO Plant
2.2. Sample Collection, Measurement, and Transportation
2.3. Water Quality Characteristics
2.3.1. SDI and MFI
2.3.2. Microbial ATP
2.3.3. Bacterial Growth Potential (BGP)
2.3.4. Liquid Chromatography—Organic Carbon Detection (LC-OCD)
2.3.5. Total Organic Carbon (TOC)
2.3.6. Orthophosphate Concentration
3. Results
3.1. Turbidity
3.2. Particulate Fouling Indices
3.2.1. Silt Density Index (SDI)
3.2.2. Modified Fouling Index (MFI-0.45)
3.3. Biomass Quantification
3.4. Organic Matters
3.4.1. Total Organic Carbon
3.4.2. Organic Fraction by LC-OCD Analysis
3.5. Biofouling Indicators
3.5.1. Orthophosphate
3.5.2. Bacterial Growth Potential
4. Discussion
4.1. Turbidity
4.2. Particulate Fouling
4.3. Biomass Quantification
4.4. Biological and Organic Fouling Potential in the Pre-Treatment
4.5. Biological/Organic Fouling Potential in the SWRO Feed
4.6. Investigating the Relation between Membrane Performance and BGP in SWRO Feed Water
5. Conclusions
- Seasonal seawater quality variations were observed in the seawater intake in terms of silt density index (SDI), modified fouling index (MFI), microbial ATP, bacterial growth potential (BGP), orthophosphate and total organic carbon.
- Particulate fouling was well controlled by the SWRO pre-treatment, in which the measured SDI-15 (<3.2%/min), MFI-0.45 (<1.8 s/L2) and turbidity (<0.1 NTU) in the SWRO feed water were all below the recommended values. The highest removal (70–90%) of SDI-15, MFI-0.45 and turbidity was achieved in the first stage of dual media filtration when combined with inline coagulation (0.3–1.5 mg-Fe3+/L).
- Despite achieving more than 75% removal of biological/organic fouling potential along the SWRO pre-treatment, particularly in the dissolved air flotation and the first stage of dual media filtration, BGP and orthophosphate concentrations increased by 35% in the SWRO feed due to chemical addition, and/or due to nutrients present in the water storage tanks or make-up water.
- Investigating the relation between normalized pressure drop in the SWRO system and Bacterial Growth Potential in the SWRO feed water showed that the growth potential measured in the SWRO feed water from 100 to 950 µg-C/L led to an increase in the normalized pressure drop within 3 months. This result may suggest the applicability of using Bacterial Growth Potential of SWRO feed water as a biological fouling indicator in SWRO systems. However, to ensure the validity of this conclusion, more SWRO plants need to be monitored at different locations for longer periods of time.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Goh, S.P.; Lau, J.W.; Othman, D.M.H.; Ismail, F.A. Membrane fouling in desalination and its mitigation strategies. Desalination 2018, 425, 130–155. [Google Scholar] [CrossRef]
- Matin, A.; Khan, Z.; Zaidi, S.; Boyce, M. Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention. Desalination 2011, 281, 1–16. [Google Scholar] [CrossRef]
- Henthorne, L.; Boysen, B. State-of-the-art of reverse osmosis desalination pretreatment. Desalination 2015, 356, 129–139. [Google Scholar] [CrossRef]
- Dietz, K.; Kulinkina, A. The Design of a Desalination Pretreatment System for Brackish Groundwater. Bachelor’s Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2009. [Google Scholar]
- ASTM International. ASTM D4189-14. In Standard Test Method for Silt Density Index (SDI) of Water; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM International. ASTM D8002-15. In Standard Test Method for Modified Fouling Index (MFI-0.45) of Water; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Schippers, J.C.; Verdouw, J. The modified fouling index, a method of determining the fouling characteristics of water. Desalination 1980, 32, 137–148. [Google Scholar] [CrossRef]
- Badruzzaman, M.; Voutchkov, N.; Weinrich, L.; Jacangelo, J.G. Selection of pretreatment technologies for seawater reverse osmosis plants: A review. Desalination 2019, 449, 78–91. [Google Scholar] [CrossRef]
- Jeong, S.; Naidu, G.; Vollprecht, R.; Leiknes, T.; Vigneswaran, S. In-depth analyses of organic matters in a full-scale seawater desalination plant and an autopsy of reverse osmosis membrane. Sep. Purif. Technol. 2016, 162, 171–179. [Google Scholar] [CrossRef]
- Weinrich, L.; Haas, C.N.; LeChevallier, M.W. Recent advances in measuring and modeling reverse osmosis membrane fouling in seawater desalination: A review. J. Water Reuse Desalination 2013, 3, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Naidu, G.; Vigneswaran, S.; Ma, C.H.; Rice, S.A. A rapid bioluminescence-based test of assimilable organic carbon for seawater. Desalination 2013, 317, 160–165. [Google Scholar] [CrossRef]
- Dixon, M.B.; Qiu, T.; Blaikie, M.; Pelekani, C. The application of the bacterial regrowth potential method and flow cytometry for biofouling detection at the Penneshaw desalination plant in South Australia. Desalination 2012, 284, 245–252. [Google Scholar] [CrossRef]
- Kurihara, M.; Ito, Y.; Nakaoki, Y. Innovative Biofouling Prevention on Seawater Desalination Reverse Osmosis Membrane; International Desalination Association: Oxford, UK, 2001. [Google Scholar]
- Abushaban, A.; Salinas-Rodriguez, S.G.; Dhakal, N.; Schippers, J.C.; Kennedy, M.D. Assessing pretreatment and seawater reverse osmosis performance using an ATP-based bacterial growth potential method. Desalination 2019, 467, 210–218. [Google Scholar] [CrossRef]
- Jeong, S.; Vigneswaran, S. Practical use of standard pore blocking index as an indicator of biofouling potential in seawater desalination. Desalination 2015, 365, 8–14. [Google Scholar] [CrossRef]
- Weinrich, L.; LeChevallier, M.; Haas, C. Application of the Bioluminescent Saltwater Assimilable Organic Carbon Test as a Tool for Identifying and Reducing Reverse Osmosis Membrane Fouling in Desalination; Water Reuse Research Foundation: Alexandria, VA, USA, 2015. [Google Scholar]
- Hijnen, W.A.M.; Biraud, D.; Cornelissen, E.R.; Van Der Kooij, D. Threshold concentration of easily assimilable organic carbon in feedwater for biofouling of spiral-wound membranes. Environ. Sci. Technol. 2009, 43, 4890–4895. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, M. Sustainable seawater reverse osmosis desalination as green desalination in the 21st century. J. Membr. Sci. Res. 2020, 6, 20–29. [Google Scholar]
- Voutchkov, N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010, 261, 354–364. [Google Scholar] [CrossRef]
- Edzwald, J.K.; Haarhoff, J. Seawater pretreatment for reverse osmosis: Chemistry, contaminants, and coagulation. Water Res. 2011, 45, 5428–5440. [Google Scholar] [CrossRef]
- Bonnelye, V.; Sanz, M.A.; Durand, J.-P.; Plasse, L.; Gueguen, F.; Mazounie, P. Reverse osmosis on open intake seawater: Pre-treatment strategy. Desalination 2004, 167, 191–200. [Google Scholar] [CrossRef]
- Abushaban, A.; Salinas-Rodriguez, S.G.; Mangal, M.N.; Mondal, S.; Goueli, S.A.; Knezev, A.; Vrouwenvelder, J.S.; Schippers, J.C.; Kennedy, M.D. ATP measurement in seawater reverse osmosis systems: Eliminating seawater matrix effects using a filtration-based method. Desalination 2019, 453, 1–9. [Google Scholar] [CrossRef]
- Jacangelo, J.G.; Voutchkov, N.; Badruzzaman, M.; Weinrich, L.A. Pretreatment for Seawater Reverse Osmosis: Existing Plant Performance and Selection Guidance; The Water Research Foundation: Denver, CO, USA, 2018. [Google Scholar]
- Kim, S.H.; Min, C.S.; Lee, S. Application of dissolved air flotation as pretreatment of seawater desalination. Desalination Water Treat. 2011, 33, 261–266. [Google Scholar] [CrossRef]
- Simon, F.X.; Penru, Y.; Guastalli, A.R.; Esplugas, S.; Llorens, J.; Baig, S. NOM characterization by LC-OCD in a SWRO desalination line. Desalination Water Treat. 2013, 51, 1776–1780. [Google Scholar] [CrossRef]
- Shutova, Y.; Karna, B.L.; Hambly, A.C.; Lau, B.; Henderson, R.K.; Le-Clech, P. Enhancing organic matter removal in desalination pretreatment systems by application of dissolved air flotation. Desalination 2016, 383, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Petry, M.; Sanz, M.A.; Langlais, C.; Bonnelye, V.; Durand, J.-P.; Guevara, D.; Nardes, W.M.; Saemi, C.H. The El Coloso (Chile) reverse osmosis plant. Desalination 2007, 203, 141–152. [Google Scholar] [CrossRef]
- Faujour, H.; Koenig, E.H.; Ventresque, C.; de Vomecourt, C.; Nicholson, M.; Ahmed, Y.; van Leeuw, R. Fujairah 2 RO: Impact of effective seawater pre-treatment on RO membrane performance and replacement. In World Congress on Desalination and Water Reuse; The International Desalination Association: San Diego, CA, USA, 2015. [Google Scholar]
- ASTM International. Standard test method for silt density index (SDI) of Water. In Designation: D 4189–95 (Reapproved 2002); ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Abushaban, A.; Mangal, M.N.; Salinas-Rodriguez, S.G.; Nnebuo, C.; Mondal, S.; Goueli, S.A.; Schippers, J.C.; Kennedy, M.D. Direct measurement of ATP in seawater and application of ATP to monitor bacterial growth potential in SWRO pre-treatment systems. Desalination Water Treat. 2018, 99, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Huber, S.A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography—Organic carbon detection—Organic nitrogen detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Sabiri, N.-E.; Séchet, V.; Jaouen, P.; Pontié, M.; Massé, A.; Plantier, S. Impact of granular filtration on ultrafiltration membrane performance as pre-treatment to seawater desalination in presence of algal blooms. J. Water Reuse Desalination 2017, 8, 262–277. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Jeong, S.; Vigneswaran, S.; Kandasamy, J. Seawater biofiltration pre-treatment system: Comparison of filter media performance. Desalination Water Treat. 2014, 52, 6325–6332. [Google Scholar] [CrossRef]
- Salinas Rodriguez, S.G.; Sithole, N.; Dhakal, N.; Olive, M.; Schippers, J.C.; Kennedy, M.D. Monitoring particulate fouling of North Sea water with SDI and new ASTM MFI0.45 test. Desalination 2019, 454, 10–19. [Google Scholar] [CrossRef]
- Weinrich, L.A.; Schneider, O.D.; LeChevallier, M.W. Bioluminescence-based method for measuring assimilable organic carbon in pretreatment water for reverse osmosis membrane desalination. Appl. Environ. Microbiol. 2011, 77, 1148–1150. [Google Scholar] [CrossRef] [Green Version]
- Poussade, Y.; Vergnolle, F.; Baaklini, D.; Pitt, N.; Gaid, A.; Ventresque, C.; Vigneron-Larosa, N. Impact of Granular Media vs Membrane Filtration on the Pretreatment of SWRO Desalination Plants; International Desalination Association: São Paulo, Brazil, 2017. [Google Scholar]
- Munshi, H.A.; Saeed, M.O.; Green, T.N.; Al-Hamza, A.A.; Farooque, M.A.; Ismail, A.A. Impact of UV irradiation on controlling biofouling problems in NF-SWRO desalination process. In Proceedings of the International Desalination Association (IDA) World Congress, Singapore, 11–16 September 2005. [Google Scholar]
- Nir, T.; Arkhangelsky, E.; Levitsky, I.; Gitis, V. Removal of phosphorus from secondary effluents by coagulation and ultrafiltration. Desalination Water Treat. 2009, 8, 24–30. [Google Scholar] [CrossRef]
- Piontkovski, S.; Al-Azri, A.; Al-Hashmi, K. Seasonal and interannual variability of chlorophyll-a in the Gulf of Oman compared to the open Arabian Sea regions. Int. J. Remote Sens. 2011, 32, 7703–7715. [Google Scholar] [CrossRef]
- Sarma, Y.; Al Azri, A.; Smith, S.L. Inter-annual variability of Chlorophyll-a in the Arabian Sea and its gulfs. Int. J. Marine Sci. 2012, 2, 1–11. [Google Scholar]
- Vrouwenvelder, J.; Manolarakis, S.; Veenendaal, H.; Van der Kooij, D. Biofouling potential of chemicals used for scale control in RO and NF membranes. Desalination 2000, 132, 1–10. [Google Scholar] [CrossRef]
- Schneider, R.P.; Ferreira, L.M.; Binder, P.; Bejarano, E.M.; Góes, K.P.; Slongo, E.; Machado, C.R.; Rosa, G.M.Z. Dynamics of organic carbon and of bacterial populations in a conventional pretreatment train of a reverse osmosis unit experiencing severe biofouling. J. Membr. Sci. 2005, 266, 18–29. [Google Scholar] [CrossRef]
- Peleka, E.N.; Matis, K.A. Application of flotation as a pretreatment process during desalination. Desalination 2008, 222, 1–8. [Google Scholar] [CrossRef]
Parameter | 1st Stage of DMF | 2nd Stage of DMF |
---|---|---|
No. and type of filters | 24 horizontal pressure filters | 16 horizontal pressure filters |
Surface area | 51 m2 | 51 m2 |
Filtration rate | 12.5 m/h | 19.5 m/h |
Filtering media | 0.55 mm sand and 1.50 mm anthracite | 0.28 mm sand and 1.2 mm anthracite |
Filtration cycle duration | ~24 h | >40 h |
Parameter | Feed Water | Potable Water |
---|---|---|
pH | 8.1–8.3 | 6.8–7.1 |
Turbidity | 0.8–2.9 NTU | 0.01–0.06 NTU |
Total dissolved solids | 45–48 g/L | ≤150 |
Temperature | 22–40 °C | 22–40 °C |
Boron | - | 1.1–1.7 mg/L |
Parameter | Statistics | Seawater Intake | After DMF1 | After DMF2 | SWRO Feed | Overall Removal |
---|---|---|---|---|---|---|
Turbidity (NTU) | Min. | 0.4 | NA | <0.1 | <0.1 | 0.3 |
Max. | 2.9 | NA | 0.2 | 0.2 | 2.6 | |
Mean | 1.5 | NA | <0.1 | <0.1 | 1.4 ± 0.9 | |
SDI-15 (%/min) | Min. | 9 * | 3.5 | 2.8 | 2.6 | 6 |
Max. | >15 * | 5.2 | 3.9 | <4 | >11 | |
Mean | >15 * | 4.4 ± 0.5 | 3.3 ± 0.4 | 3.2 ± 0.7 | >11 | |
MFI-0.45 (s/L2) | Min. | 22 | 1.6 | 1.5 | 0.6 | 22 |
Max. | 60 | 4.4 | 2.1 | 1.8 | 59 | |
Mean | 41 ± 20 | 3.4 ± 1.2 | 1.7 ± 0.3 | 1.3 ± 0.5 | 39.7 ± 20 |
Parameter | Seawater intake | After Dissolved Air Flotation (DAF) | After Dual Media Filtration (DMF)1 | After DMF2 | After Cartridge Filtration (CF) | Overall Removal | |
---|---|---|---|---|---|---|---|
Coagulation (mg-Fe3+/L) | - | 1–5 | 0.3–1.5 | - | - | ||
TOC (mg/L) | Mean (%removal) | 2.9 ± 0.8 | 2.3 ± 0.3 (15%) | 2.0 ± 0.2 (13%) | 1.9 ± 0.2 (5%) | 1.8 ± 0.1 (6%) | 0.9 ± 0.6 (33%) |
Chromatography dissolved organic carbon (CDOC ) (µg-C/L) | Min. | 1543 | 1409 | 1400 | 1317 | 1236 | 307 |
Max. | 2026 | 1911 | 1589 | 1711 | 1679 | 573 | |
Mean (%removal) | 1808 ± 244 | 1673 ± 268 (7%) | 1530 ± 90 (9%) | 1468 ± 174 (4%) | 1424 ± 190 (3%) | 384 ± 127 (21%) | |
Biopolymers (µg-C/L) | Min. | 216 | 165 | 160 | 120 | 126 | 89 |
Max. | 339 | 236 | 196 | 152 | 149 | 192 | |
Mean (%removal) | 265 ± 57 | 198 ± 35 (25%) | 177 ± 19 (11%) | 140 ± 15 (21%) | 141 ± 10 (0%) | 124 ± 51 (47%) | |
Humic substances (µg-C/L) | Min. | 577 | 529 | 540 | 511 | 481 | 58 |
Max. | 881 | 796 | 764 | 755 | 755 | 143 | |
Mean (% removal) | 737 ± 165 | 660 ± 147 (10%) | 651 ± 125 (1%) | 635 ± 132 (2%) | 623 ± 143 (2%) | 114 ± 38 (15%) | |
Low molecular weight (LMW)-acid (µg-C/L) | Min. | 115 | 121 | 115 | 106 | 102 | 4 |
Max. | 203 | 192 | 183 | 181 | 175 | 35 | |
Mean (%removal) | 157 ± 47 | 157 ± 37 (0%) | 149 ± 36 (5%) | 144 ± 39 (3%) | 139 ± 38 (3%) | 18 ± 13 (11%) |
Parameter | Seawater Intake | After DAF | After DMF1 | After DMF2 | After CF & Antiscalant | Overall Removal | |
---|---|---|---|---|---|---|---|
Coagulation (mg-Fe3+/L) | - | 1–5 | 0.3–1.5 | - | - | ||
Orthophosphate (µg-PO4-P/L) | Min. | 1.8 | 1.0 | 0.6 | 0.7 | 1.1 | |
Max. | 11 | 2.6 | 1.5 | 1.5 | 2.6 | ||
Mean (%removal) | 5.3 ± 3.7 | 1.7 ± 0.6 (68%) | 1.1 ± 0.4 (35%) | 1.1 ± 0.2 (0%) | 1.5 ± 0.6 (−36%) | 3.8 ± 3.6 (72%) | |
BGP (µg-C/L) | Min. | 105 | 112 | 72 | 65 | 55 | |
Max. | 2500 | 650 | 590 | 330 | 950 | ||
Mean (%removal) | 373 ± 268 | 180 ± 61 (52%) | 106 ± 32 (40%) | 92 ± 25 (14%) | 146 ± 106 (−37%) | 227 ± 660 (62%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abushaban, A.; Salinas-Rodriguez, S.G.; Kapala, M.; Pastorelli, D.; Schippers, J.C.; Mondal, S.; Goueli, S.; Kennedy, M.D. Monitoring Biofouling Potential Using ATP-Based Bacterial Growth Potential in SWRO Pre-Treatment of a Full-Scale Plant. Membranes 2020, 10, 360. https://doi.org/10.3390/membranes10110360
Abushaban A, Salinas-Rodriguez SG, Kapala M, Pastorelli D, Schippers JC, Mondal S, Goueli S, Kennedy MD. Monitoring Biofouling Potential Using ATP-Based Bacterial Growth Potential in SWRO Pre-Treatment of a Full-Scale Plant. Membranes. 2020; 10(11):360. https://doi.org/10.3390/membranes10110360
Chicago/Turabian StyleAbushaban, Almotasembellah, Sergio G. Salinas-Rodriguez, Moses Kapala, Delia Pastorelli, Jan C. Schippers, Subhanjan Mondal, Said Goueli, and Maria D. Kennedy. 2020. "Monitoring Biofouling Potential Using ATP-Based Bacterial Growth Potential in SWRO Pre-Treatment of a Full-Scale Plant" Membranes 10, no. 11: 360. https://doi.org/10.3390/membranes10110360
APA StyleAbushaban, A., Salinas-Rodriguez, S. G., Kapala, M., Pastorelli, D., Schippers, J. C., Mondal, S., Goueli, S., & Kennedy, M. D. (2020). Monitoring Biofouling Potential Using ATP-Based Bacterial Growth Potential in SWRO Pre-Treatment of a Full-Scale Plant. Membranes, 10(11), 360. https://doi.org/10.3390/membranes10110360