Preparation and Evaluation of Nanocomposite Sodalite/α-Al2O3 Tubular Membranes for H2/CO2 Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SOD Membranes
2.3. Membrane Characterization
2.4. Gas Permeation Measurements
3. Results and Discussion
3.1. Membrane Characterization
3.2. Single Gas Permeation
3.2.1. Effect of Temperature
3.2.2. Effect of Feed Pressure
3.2.3. Ideal Selectivity
3.3. Mixture Separation Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kita, H.; Horii, K.; Ohtoshi, Y.; Tanaka, K.; Okamoto, K.-I. Synthesis of a Zeolite NaA Membrane for Pervaporation of Water/Organic Liquid Mixtures. J. Mater. Sci. Lett. 1995, 14, 206–208. [Google Scholar] [CrossRef]
- Masuda, T.; Hara, H.; Kouno, M.; Kinoshita, H.; Hashimoto, K. Preparation of an A-Type Zeolite Film on the Surface of an Alumina Ceramic Filter. Microporous Mater. 1995, 3, 565–571. [Google Scholar] [CrossRef]
- Kondo, M.; Komori, M.; Kita, H.; Okamoto, K. Tubular-Type Pervaporation Module with Zeolite NaA Membrane. J. Membr. Sci. 1997, 133, 133–141. [Google Scholar] [CrossRef]
- Duke, M.C.; Zhu, B.; Doherty, C.M.; Hill, M.R.; Hill, A.J.; Carreon, M.A. Structural Effects on SAPO-34 and ZIF-8 Materials Exposed to Seawater Solutions, and Their Potential as Desalination Membranes. Desalination 2016, 377, 128–137. [Google Scholar] [CrossRef]
- Li, H.; Haas-Santo, K.; Schygulla, U.; Dittmeyer, R. Inorganic Microporous Membranes for H2 and CO2 Separation—Review of Experimental and Modeling Progress. Chem. Eng. Sci. 2015, 127, 401–417. [Google Scholar] [CrossRef]
- Dong, J.; Lin, Y.S.; Kanezashi, M.; Tang, Z. Microporous Inorganic Membranes for High Temperature Hydrogen Purification. J. Appl. Phys. 2008, 104, 121301. [Google Scholar] [CrossRef]
- Gallucci, F.; Fernandez, E.; Corengia, P.; van Sint Annaland, M. Recent Advances on Membranes and Membrane Reactors for Hydrogen Production. Chem. Eng. Sci. 2013, 92, 40–66. [Google Scholar] [CrossRef]
- Smart, S.; Beltramini, J.; Diniz da Costa, J.C.; Katikaneni, S.P.; Pham, T. Microporous Silica Membranes: Fundamentals and Applications in Membrane Reactors for Hydrogen Separation. In Handbook of Membrane Reactors; Basile, A., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, Cambridge, UK, 2013; Volume 1, pp. 337–369. [Google Scholar] [CrossRef]
- Van Niekerk, A.; Zah, J.; Breytenbach, J.C.; Krieg, H.M. Direct Crystallization of a Hydroxy Sodalite Membrane without Seeding Using a Conventional Oven. J. Membr. Sci. 2007, 300, 156–164. [Google Scholar] [CrossRef]
- Vaezi, M.; Babaluo, A.A. Effect of Dehydration Temperature on the H2 Separation Potential of Hydroxy Sodalite Zeolite Membranes. Iran. J. Hydrog. Fuel Cell 2014, 1. [Google Scholar] [CrossRef]
- Fasolin, S.; Romano, M.; Boldrini, S.; Ferrario, A.; Fabrizio, M.; Armelao, L.; Barison, S. Single-Step Process to Produce Alumina Supported Hydroxy-Sodalite Zeolite Membranes. J Mater. Sci. 2019, 54, 2049–2058. [Google Scholar] [CrossRef]
- Guan, L.; Wang, Z.; Lu, D. Evolution of Zeolite Crystals in Self-Supporting Faujasite Blocks: Effects of Hydrothermal Conditions. Materials 2019, 12, 1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, G.; Tanaka, T.; Kusakabe, K.; Sotowa, K.-I.; Morooka, S. Characterization of AlPO4-Type Molecular Sieving Membranes Formed on a Porous α-Alumina Tube. J. Membr. Sci. 2003, 214, 191–198. [Google Scholar] [CrossRef]
- Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Molecular-Sieve Membrane with Hydrogen Permselectivity: ZIF-22 in LTA Topology Prepared with 3-Aminopropyltriethoxysilane as Covalent Linker. Angew. Chem. 2010, 122, 5078–5081. [Google Scholar] [CrossRef]
- Kalantari, N.; Vaezi, M.J.; Yadollahi, M.; Babaluo, A.A.; Bayati, B.; Kazemzadeh, A. Synthesis of Nanostructure Hydroxy Sodalite Composite Membranes via Hydrothermal Method: Support Surface Modification and Synthesis Method Effects. Asia-Pac. J. Chem. Eng. 2015, 10, 45–55. [Google Scholar] [CrossRef]
- Yang, S.; Cao, Z.; Arvanitis, A.; Sun, X.; Xu, Z.; Dong, J. DDR-Type Zeolite Membrane Synthesis, Modification and Gas Permeation Studies. J. Membr. Sci. 2016, 505, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Kazemimoghadam, M.; Rigi, Z.A. Evaluation and Synthesis of Nano-Pore Hydroxysodalite (HS) Zeolite Membranes: Application to Pervaporation of Ethanol/Water Mixture. J. Water Environ. Nanotechnol. 2018, 3, 173–190. [Google Scholar]
- Alshebani, A.; Pera-Titus, M.; Yeung, K.L.; Miachon, S.; Dalmon, J.-A. Influence of Desorption Conditions before Gas Separation Studies in Nanocomposite MFI–Alumina Membranes. J. Membr. Sci. 2008, 314, 143–151. [Google Scholar] [CrossRef]
- Daramola, M.O.; Deng, Z.; Pera-Titus, M.; Giroir-Fendler, A.; Miachon, S.; Burger, A.J.; Lorenzen, L.; Guo, Y. Nanocomposite MFI–Alumina Membranes Prepared via Pore-Pugging Synthesis: Application as Packed-Bed Membrane Reactors for m-Xylene Isomerization over a Pt-HZSM-5 Catalyst. Catal. Today 2010, 156, 261–267. [Google Scholar] [CrossRef]
- Miachon, S.; Ciavarella, P.; van Dyk, L.; Kumakiri, I.; Fiaty, K.; Schuurman, Y.; Dalmon, J.-A. Nanocomposite MFI-Alumina Membranes via Pore-Plugging Synthesis: Specific Transport and Separation Properties. J. Membr. Sci. 2007, 298, 71–79. [Google Scholar] [CrossRef]
- Akhtar, F.; Sjöberg, E.; Korelskiy, D.; Rayson, M.; Hedlund, J.; Bergström, L. Preparation of Graded Silicalite-1 Substrates for All-Zeolite Membranes with Excellent CO2/H2 Separation Performance. J. Membr. Sci. 2015, 493, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Coronas, J.; Santamaría, J. Separations Using Zeolite Membranes. Sep. Purif. Methods 1999, 28, 127–177. [Google Scholar] [CrossRef]
- Li, Y.; Pera-Titus, M.; Xiong, G.; Yang, W.; Landrivon, E.; Miachon, S.; Dalmon, J.-A. Nanocomposite MFI-Alumina Membranes via Pore-Plugging Synthesis: Genesis of the Zeolite Material. J. Membr. Sci. 2008, 325, 973–981. [Google Scholar] [CrossRef]
- Miachon, S.; Landrivon, E.; Aouine, M.; Sun, Y.; Kumakiri, I.; Li, Y.; Prokopová, O.P.; Guilhaume, N.; Giroir-Fendler, A.; Mozzanega, H.; et al. Nanocomposite MFI-Alumina Membranes via Pore-Plugging Synthesis: Preparation and Morphological Characterisation. J. Membr. Sci. 2006, 281, 228–238. [Google Scholar] [CrossRef]
- Alshebani, A.; Pera-Titus, M.; Landrivon, E.; Schiestel, T.; Miachon, S.; Dalmon, J.-A. Nanocomposite MFI–Ceramic Hollow Fibres: Prospects for CO2 Separation. Microporous Mesoporous Mater. 2008, 115, 197–205. [Google Scholar] [CrossRef]
- Daramola, M.O.; Burger, A.J.; Pera-Titus, M.; Giroir-Fendler, A.; Miachon, S.; Lorenzen, L.; Dalmon, J.-A. Nanocomposite MFI–Ceramic Hollow Fibre Membranes via Pore-Plugging Synthesis: Prospects for Xylene Isomer Separation. J. Membr. Sci. 2009, 337, 106–112. [Google Scholar] [CrossRef]
- Lafleur, M.; Bougie, F.; Guilhaume, N.; Larachi, F.; Fongarland, P.; Iliuta, M.C. Development of a Water-Selective Zeolite Composite Membrane by a New Pore-Plugging Technique. Microporous Mesoporous Mater. 2017, 237, 49–59. [Google Scholar] [CrossRef]
- Julbe, A.; Motuzas, J.; Cazevielle, F.; Volle, G.; Guizard, C. Synthesis of Sodalite/αAl2O3 Composite Membranes by Microwave Heating. Sep. Purif. Technol. 2003, 32, 139–149. [Google Scholar] [CrossRef]
- Felsche, J.; Luger, S.; Baerlocher, C. Crystal Structures of the Hydro-Sodalite Na6[AlSiO4]6 8H2O and of the Anhydrous Sodalite Na6[AlSiO4]6. Zeolites 1986, 6, 367–372. [Google Scholar] [CrossRef]
- Khajavi, S.; Jansen, J.C.; Kapteijn, F. Preparation and Performance of H-SOD Membranes: A New Synthesis Procedure and Absolute Water Separation. In Studies in Surface Science and Catalysis; Xu, R., Gao, Z., Chen, J., Yan, W., Eds.; From Zeolites to Porous MOF Materials—The 40th Anniversary of International Zeolite Conference; Elsevier: Amsterdam, The Netherlands, 2007; Volume 170, pp. 1028–1035. [Google Scholar] [CrossRef]
- Khajavi, S.; Kapteijn, F.; Jansen, J.C. Synthesis of Thin Defect-Free Hydroxy Sodalite Membranes: New Candidate for Activated Water Permeation. J. Membr. Sci. 2007, 299, 63–72. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites Fifth, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Jansen, J.C.; Kapteijn, F.; Strous, S.A. Chemical Reaction and Separation Method. U.S. Patent 7214719B2, 8 May 2007. [Google Scholar]
- Xu, X.; Bao, Y.; Song, C.; Yang, W.; Liu, J.; Lin, L. Synthesis, Characterization and Single Gas Permeation Properties of NaA Zeolite Membrane. J. Membr. Sci. 2005, 249, 51–64. [Google Scholar] [CrossRef]
- Daramola, M.O.; Aransiola, E.F.; Ojumu, T.V. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes. Materials 2012, 5, 2101–2136. [Google Scholar] [CrossRef]
- Daramola, M.O.; Oloye, O.; Yaya, A. Nanocomposite Sodalite/Ceramic Membrane for Pre-Combustion CO2 Capture: Synthesis and Morphological Characterization. Int. J. Coal Sci. Technol. 2017, 4, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Daramola, M.O.; Dinat, A.; Hasrod, S. Synthesis and Characterization of Nanocomposite Hydroxy-Sodalite/Ceramic Membrane via Pore-Plugging Hydrothermal Synthesis Technique. J. Memb. Separ. Tech. 2015, 4, 1. [Google Scholar] [CrossRef]
- Oloye, O.; Eterigho-Ikelegbe, O.; Daramola, M.O. Synthesis and Evaluation of a Nanocomposite Hydroxy Sodalite/Ceramic (HS/Ceramic) Membrane for Pre-Combustion CO2 Capture: Characterization and Permeation Test during CO2/H2 Separation. Mater. Sci. Energy Technol. 2020, 3, 225–231. [Google Scholar] [CrossRef]
- Eterigho-Ikelegbe, O.; Bada, S.; Daramola, M.O.; Falcon, R. Synthesis of High Purity Hydroxy Sodalite Nanoparticles via Pore-Plugging Hydrothermal Method for Inorganic Membrane Development: Effect of Synthesis Variables on Crystallinity, Crystal Size and Morphology. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Nabavi, M.S.; Mohammadi, T.; Kazemimoghadam, M. Hydrothermal Synthesis of Hydroxy Sodalite Zeolite Membrane: Separation of H2/CH4. Ceram. Int. 2014, 40, 5889–5896. [Google Scholar] [CrossRef]
- Fan, W.; Morozumi, K.; Kimura, R.; Yokoi, T.; Okubo, T. Synthesis of Nanometer-Sized Sodalite without Adding Organic Additives. Langmuir 2008, 24, 6952–6958. [Google Scholar] [CrossRef]
- Naskar, M.K.; Kundu, D.; Chatterjee, M. Effect of Process Parameters on Surfactant-Based Synthesis of Hydroxy Sodalite Particles. Mater. Lett. 2011, 65, 436–438. [Google Scholar] [CrossRef]
- Poshusta, J.C.; Tuan, V.A.; Falconer, J.L.; Noble, R.D. Synthesis and Permeation Properties of SAPO-34 Tubular Membranes. Ind. Eng. Chem. Res. 1998, 37, 3924–3929. [Google Scholar] [CrossRef]
- Xu, X.; Yang, W.; Liu, J.; Lin, L. Synthesis of NaA Zeolite Membranes from Clear Solution. Microporous Mesoporous Mater. 2001, 43, 299–311. [Google Scholar] [CrossRef]
- Algieri, C.; Bernardo, P.; Golemme, G.; Barbieri, G.; Drioli, E. Permeation Properties of a Thin Silicalite-1 (MFI) Membrane. J. Membr. Sci. 2003, 222, 181–190. [Google Scholar] [CrossRef]
- Shafie, A.H.; An, W.; Hosseinzadeh Hejazi, S.A.; Sawada, J.A.; Kuznicki, S.M. Natural Zeolite-Based Cement Composite Membranes for H2/CO2 Separation. Sep. Purif. Technol. 2012, 88, 24–28. [Google Scholar] [CrossRef]
- Kanezashi, M.; Lin, Y.S. Gas Permeation and Diffusion Characteristics of MFI-Type Zeolite Membranes at High Temperatures. Available online: https://pubs.acs.org/doi/full/10.1021/jp804586q (accessed on 22 August 2019).
- Coronas, J.; Falconer, J.L.; Noble, R.D. Characterization and Permeation Properties of ZSM-5 Tubular Membranes. AIChE J. 1997, 43, 1797–1812. [Google Scholar] [CrossRef]
- Martínez Galeano, Y.; Cornaglia, L.; Tarditi, A.M. NaA Zeolite Membranes Synthesized on Top of APTES-Modified Porous Stainless-Steel Substrates. J. Membr. Sci. 2016, 512, 93–103. [Google Scholar] [CrossRef]
- Hosseinzadeh Hejazi, S.A.; Avila, A.M.; Kuznicki, T.M.; Weizhu, A.; Kuznicki, S.M. Characterization of Natural Zeolite Membranes for H2/CO2 Separations by Single Gas Permeation. Ind. Eng. Chem. Res. 2011, 50, 12717–12726. [Google Scholar] [CrossRef]
- Farjoo, A.; Kuznicki, S.M. Separation Using Tubular Stainless Steel Supported Natural Clinoptilolite Membranes. Can. J. Chem. Eng. 2016, 94, 2219–2224. [Google Scholar] [CrossRef]
- Lindmark, J.; Hedlund, J. Carbon Dioxide Removal from Synthesis Gas Using MFI Membranes. J. Membr. Sci. 2010, 360, 284–291. [Google Scholar] [CrossRef]
- Huang, A.; Liang, F.; Steinbach, F.; Caro, J. Preparation and Separation Properties of LTA Membranes by Using 3-Aminopropyltriethoxysilane as Covalent Linker. J. Membr. Sci. 2010, 350, 5–9. [Google Scholar] [CrossRef]
- Yin, X.; Zhu, G.; Wang, Z.; Yue, N.; Qiu, S. Zeolite P/NaX Composite Membrane for Gas Separation. Microporous Mesoporous Mater. 2007, 105, 156–162. [Google Scholar] [CrossRef]
- Das, J.K.; Das, N.; Bandyopadhyay, S. Highly Selective SAPO 34 Membrane on Surface Modified Clay–Alumina Tubular Support for H2/CO2 Separation. Int. J. Hydrogen Energy 2012, 37, 10354–10364. [Google Scholar] [CrossRef]
- Wang, H.; Dong, X.; Lin, Y.S. Highly Stable Bilayer MFI Zeolite Membranes for High Temperature Hydrogen Separation. J. Membr. Sci. 2014, 450, 425–432. [Google Scholar] [CrossRef]
- Chang, H.; Wang, Y.; Xiang, L.; Liu, D.; Wang, C.; Pan, Y. Improved H2/CO2 Separation Performance on Mixed-Linker ZIF-7 Polycrystalline Membranes. Chem. Eng. Sci. 2018, 192, 85–93. [Google Scholar] [CrossRef]
- Jang, E.; Kim, E.; Kim, H.; Lee, T.; Yeom, H.-J.; Kim, Y.-W.; Choi, J. Formation of ZIF-8 Membranes inside Porous Supports for Improving Both Their H2/CO2 Separation Performance and Thermal/Mechanical Stability. J. Membr. Sci. 2017, 540, 430–439. [Google Scholar] [CrossRef]
- Sen, M.; Dana, K.; Das, N. Development of LTA Zeolite Membrane from Clay by Sonication Assisted Method at Room Temperature for H2-CO2 and CO2-CH4 Separation. Ultrason. Sonochem. 2018, 48, 299–310. [Google Scholar] [CrossRef]
- Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. Zeolitic Imidazolate Framework ZIF-7 Based Molecular Sieve Membrane for Hydrogen Separation. J. Membr. Sci. 2010, 354, 48–54. [Google Scholar] [CrossRef]
- Huang, A.; Liang, F.; Steinbach, F.; Gesing, T.M.; Caro, J. Neutral and Cation-Free LTA-Type Aluminophosphate (AlPO4) Molecular Sieve Membrane with High Hydrogen Permselectivity. J. Am. Chem. Soc. 2010, 132, 2140–2141. [Google Scholar] [CrossRef] [PubMed]
- Eden, C.L.; Daramola, M.O. Evaluation of Silica Sodalite Infused Polysulfone Mixed Matrix Membranes during H2/CO2 Separation. Mater. Today Proc. 2020, in press. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Membrane Ref. | Synthesis Technique | H2 Permeance | CO2 Permeance | N2 Permeance |
---|---|---|---|---|
(10−7 mol·s−1·m−2·Pa−1) | ||||
M1 | PPH (1-interruption) | 7.99 | 2.58 | 2.21 |
M2 | PPH (1-interruption) | 8.00 | 7.78 | 2.91 |
M3 | PPH (2-interruptions) | 7.95 | 9.63 | 2.71 |
M4 | PPH (2-interruptions) | 8.03 | 4.01 | 2.68 |
B1 | Direct hydrothermal | 7.97 | 1.04 | 2.63 |
B2 | Direct hydrothermal | 7.97 | 2.60 | 2.65 |
Zeolite | Support | Preparation Technique | Temp (°C) | TMP (KPa) | H2: CO2 | Permeance (10−8 mol·s−1·m−2·Pa−1) | SF | Ref. | |
---|---|---|---|---|---|---|---|---|---|
H2 | CO2 | ||||||||
LTA | α-Al2O3 disk | DH | 20 | W-K | 50:50 | 30 | 6.80 | 5.3 | [53] |
ZIF-22 | TiO2 disk | SR | 50 | 100 W-K | 50:50 | 16.6 | 2.30 | 7.2 | [14] |
ZIF-7-NH2 | α-Al2O3 disk | SSG | 25 | W-K, N2 sweep | 50:50 | 10 | 0.6 | 19 | [57] |
ZIF-8 | γ-/α-Al2O3 disc | CD | 250 | W-K, He sweep | 50:50 | 9 | - | 8.2 | [58] |
LTA | Clay–Al2O3 | SG/UI | 25 | 300 | 50:50 | - | - | 15.3 | [59] |
ZIF-7 | α-Al2O3 disk | SSG | 220 | W-K, N2 sweep | 50:50 | 4.55 | 0.33 | 13.6 | [60] |
NaX | Stainless-steel net | SSG | 16 | - | 50:50 | 10.1 | - | 4.57 | [54] |
SAPO-34 | Clay- Al2O3 tube | SSG | 25 | 200 | 70:30 | - | - | 4.2 | [55] |
MFI | α-Al2O3 disk | SSG | 100 | 100 | 50:50 | 174 | - | 1.02 | [56] |
LTA/AlPO4 | α-Al2O3 disk | SSG | 20 | 100 | 50:50 | 24 | 3.17 | 7.6 | [61] |
SSOD/PSF | - | PI | 25 | 100 | 60:40 | 49.2 | 42.2 | 2.2 | [62] |
SOD (M4) | α-Al2O3 tube | PPH | 25 | 220 | 60:40 | 10.6 | 1.79 | 4.24 | This study |
SOD (B1) | α-Al2O3 tube | DH | 25 | 220 | 60:40 | 11.9 | 2.55 | 4.13 | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eterigho-Ikelegbe, O.; Bada, S.O.; Daramola, M.O. Preparation and Evaluation of Nanocomposite Sodalite/α-Al2O3 Tubular Membranes for H2/CO2 Separation. Membranes 2020, 10, 312. https://doi.org/10.3390/membranes10110312
Eterigho-Ikelegbe O, Bada SO, Daramola MO. Preparation and Evaluation of Nanocomposite Sodalite/α-Al2O3 Tubular Membranes for H2/CO2 Separation. Membranes. 2020; 10(11):312. https://doi.org/10.3390/membranes10110312
Chicago/Turabian StyleEterigho-Ikelegbe, Orevaoghene, Samson O. Bada, and Michael O. Daramola. 2020. "Preparation and Evaluation of Nanocomposite Sodalite/α-Al2O3 Tubular Membranes for H2/CO2 Separation" Membranes 10, no. 11: 312. https://doi.org/10.3390/membranes10110312
APA StyleEterigho-Ikelegbe, O., Bada, S. O., & Daramola, M. O. (2020). Preparation and Evaluation of Nanocomposite Sodalite/α-Al2O3 Tubular Membranes for H2/CO2 Separation. Membranes, 10(11), 312. https://doi.org/10.3390/membranes10110312