Do High Levels of Maternally Derived Antibodies Interfere with the Vaccination of Piglets against Porcine Circovirus Type 2? A Literature Review and Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Questions and General Approach
2.2. Semi-Systematic Review and Data Collection
2.3. Data Analysis
3. Results
3.1. Systematic Literature Search
3.2. Data Analyses
3.2.1. Primary Analysis (Vaccinated Pigs vs. Unvaccinated Pigs, Both with High Levels of MDA at the Age of Vaccination)
3.2.2. Secondary Analysis (Vaccinated Pigs with High Levels of MDA at Vaccination vs. Vaccinated Pigs with Low to Medium Levels of MDA at Vaccination)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Opriessnig, T.; Meng, X.J.; Halbur, P.G. Porcine circovirus type 2-associated disease: Update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J. Vet. Diagn. Investig. 2007, 19, 591–615. [Google Scholar] [CrossRef] [PubMed]
- Segalés, J. Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. Virus Res. 2012, 164, 10–19. [Google Scholar] [CrossRef]
- Karuppannan, A.K.; Opriessnig, T. Porcine circovirus type 2 (PCV2) vaccines in the context of current molecular epidemiology. Viruses 2017, 9, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueras-Gourgues, S.; Fraile, L.; Segalés, J.; Hernández-Caravaca, I.; L’opez-Úbeda, R.; Garcia-Vázquez, F.A.; Gomez-Duran, O.; Grosse-Liesner, B. Effect of Porcine circovirus 2 (PCV-2) maternally derived antibodies on performance and PCV-2 viremia in vaccinated piglets under field conditions. Porc. Health Manag. 2019, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Fraile, L.; Grau-Roma, L.; Sarasola, P.; Sinovas, N.; Nofrarías, M.; López-Jimenez, R.; López-Soria, S.; Sibila, M.; Segalés, J. Inactivated PCV2 one shot vaccine applied in 3-week-old piglets: Improvement of production parameters and interaction with maternally derived immunity. Vaccine 2012, 30, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Fort, M.; Sibila, M.; Pérez-Martin, E.; Nofrarias, M.; Mateu, E.; Segalés, J. One dose of a porcine circovirus 2 (PCV2) sub-unit vaccine administered to 3-week-old conventional piglets elicits cell-mediated immunity and significantly reduces PCV2 viremia in an experimental model. Vaccine 2009, 27, 4031–4037. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Segalés, J.; Fraile, L.; López-Soria, S.; Sibila, M. Effect of high and low levels of maternally derived antibodies on porcine circovirus type 2 (PCV2) infection dynamics and production parameters in PCV2 vaccinated pigs under field conditions. Vaccine 2016, 34, 3044–3050. [Google Scholar] [CrossRef] [Green Version]
- Haake, M.; Palzer, A.; Rist, B.; Weissenbacher-Lang, C.; Fachinger, V.; Eggen, A.; Ritzmann, M.; Eddicks, M. Influence of age on the effectiveness of PCV2 vaccination in piglets with high levels of maternally derived antibodies. Vet. Microbiol. 2014, 168, 272–280. [Google Scholar] [CrossRef]
- Deeks, J.J.; Higgins, J.P.T.; Altman, D.G. On behalf of the Cochrane Statistical Methods Group. Chapter 9: Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Green, S., Eds.; John Wiley & Sons: West Sussex, UK, 2008; pp. 243–296. [Google Scholar]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons, Ltd.: West Sussex, UK, 2009. [Google Scholar]
- Rosenthal, R. The “file drawer problem” and tolerance for null results. Psych. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
- Csank, T.; Pistl, J.; Polláková, J.; Bhide, K.; Herich, R.; Levkut, M. Dynamics of antibody response and viremia following natural infection of porcine circovirus 2 (PCV-2) in a conventional pig herd. APMIS 2013, 121, 1207–1213. [Google Scholar] [CrossRef]
- Fraile, L.; Sibila, M.; Nofrias, M.; López-Jimenez, R.; Huerta, E.; Llorens, A.; López-Soria, S.; Pérez, D.; Segalés, J. Effect of sow and piglet porcine circovirus type 2 (PCV2) vaccination on piglet mortality, viraemia, antibody titre and production parameters. Vet. Microbiol. 2012, 161, 229–234. [Google Scholar] [CrossRef]
- Martelli, P.; Saleri, R.; Ferrarini, G.; De Angelis, E.; Cavalli, V.; Benetti, M.; Ferrari, L.; Canelli, E.; Bonilauri, P.; Arioli, E.; et al. Impact of maternally derived immunity on piglets’ immune response and protection against circovirus type 2 (PCV2) after vaccination against PCV2 at different age. BMC Vet. Res. 2016, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Paphavasit, T.; Lehrbach, P.; Navasakuljinda, W.; Kedkovid, R.; Lacharoje, S.; Thanawongnuwech, R.; Teankum, K. Efficacy of a chimeric PCV2 vaccine: A field trial. Thai J. Vet. Med. 2009, 39, 145–155. [Google Scholar]
- Stevančević, O.; Stojanac, N.; Potkonjak, A.; Gagrčin, M.; Savić, B.; Stančić, I.; Vračar, V. Immune response and production performance in piglets vaccinated at 15 and 21 days old against circovirus infection. Kafkas Univ. Vet. Fak. Derg. 2014, 20, 465–468. [Google Scholar]
- Tassis, P.D.; Tsakmmakidis, I.; Papatsiros, V.G.; Koulialis, D.; Nell, T.; Brellou, G.; Tzika, E.D. A randomized controlled study on the efficacy of a novel combination vaccine against enzootic pneumonia (Mycoplasma hyopneumoniae) and porcine Circovirus type 2 (PCV2) in the presence of strong maternally derived PCV2 immunity in pigs. BMC Vet. Res. 2017, 13, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzika, E.D.; Tassis, P.D.; Koulialis, D.; Papatsiros, V.G.; Nell, T.; Brellou, G.; Tsakmakidis, I. Field efficacy study of a novel ready-to-use vaccine against mycoplasma hyopneumoniae and porcine circovirus type 2 in a Greek farm. Porc. Health Manag. 2015, 1, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Bermudez, D.S.; Diaz, A.; Mogollón, J.D.; Jaime, J. Longitudinal comparison of the humoral immune response and viral load of Porcine Circovirus Type 2 in pigs with different vaccination schemes under field conditions. F1000Res 2018, 7, 42. [Google Scholar] [CrossRef]
- Villa-Mancera, A.; Hernández-Guzmán, K.; Olivares-Pérez, J.; Molina-Mendoza, P. Influence of four commercial porcine circovirus type 2 (PCV2) vaccines on the improvement of production parameters in pigs with maternally derived antibodies. Livest. Sci. 2016, 190, 10–15. [Google Scholar] [CrossRef]
- López-Soria, S.; Marina, S.; Nofrarias, M.; Calsamiglia, M.; Manzanilla, E.G.; Ramirez-Mendoza, H.; Mínguez, A.; Serrano, J.; Marín, O.; Joisel, F.; et al. Effect of porcine circovirus type 2 (PCV2) load in serum on average daily weight gain during the postweaning period. Vet. Microbiol. 2014, 174, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmermann, J.J.; Rotto, H.F.; Yoder, T.K.; Wang, C.; Yeske, P.E.; Mowrer, C.L.; Haley, C.A. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork Producers. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar]
- Balasch, M.; Fort, M.; Taylor, L.P.; Diaz, P.; Mateu, E.; Calvert, J.G. Immune response development after vaccination of 1-day-old naΪve pigs with a Porcine Reproductive and Respiratory Syndrome 1-based modified live virus vaccine. Porc. Health Manag. 2019, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Van Brussel, L.; Saunders, G.; Taylor, L.; Zimmermann, L.; Heinritzi, K.; Ritzmann, M.; Banholzer, E.; Eddicks, M. Vaccination of piglets at 1 week of age with an inactivated Mycoplasma hyopneumoniae vaccine reduces lung lesions and improves average daily gain in body weight. Vaccine 2012, 30, 7625–7629. [Google Scholar] [CrossRef]
- Lin, C.N.; Ke, N.J.; Chiou, M.T. Cross-sectional study on the sero- and viral dynamics of porcine circovirus type 2 in the field. Vaccines 2020, 8, 339. [Google Scholar] [CrossRef] [PubMed]
- Base, I. Log Value Conversion Table. Available online: https://i-base.info/log-value-conversion-table/ (accessed on 20 November 2020).
- Li, W.; Jia, L.; Zhao, X.; Wu, X.; Tang, H. Efficacy and safety of tenofovir in preventing mother-to-infant transmission of hepatitis B virus: A meta-analysis based on 6 studies from China and 3 studies from other countries. BMC Gastroent. 2018, 18, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beller, E.M.; Chen, J.K.H.; Wang, U.L.H.; Glasziou, P.P. Are systematic reviews up-to-date at the time of publication? Syst. Rev. 2013, 2, 36. [Google Scholar] [CrossRef] [Green Version]
Study | Study Characteristics | Number of Comparisons | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Ref. | Separate Groups (If Applicable) | Country | Type of Vaccine | Age at Vacc. (Weeks) | MDA Level (All ≥ 8 log2) | Seroconversion | ADWG | Mortality | Max. % Viremic | Max. Viral Load | Min. AB Titer |
Csank et al., 2013 | [12] | Slovak Rep. | Inact. subunit ORF2 | 2 | ≥10 log2 | Yes | 0 | 0 | 0 | 0 | 1 | |
Feng et al., 2016 | [7] | Spain | Inact. subunit ORF2 | 3 | ≥10 log2 | No | 1 | 1 | 1 | 1 | 1 | |
Figueras-Gourgues et al., 2019 | [4] | Germany, UK, France | Inact. subunit ORF2 | 3 | <10 log2 | n.r. * | 1 | 1 | 0 | 0 | 0 | |
Fraile et al., 2012 | [13] | Sows vacc. | Spain | Inact. subunit ORF2 | 4 | ≥10 log2 | Yes | 1 | 1 | 1 | 1 | 1 |
Sows unvacc. | Spain | Inact. subunit ORF2 | 4 | <10 log2 | n.a. # | 1 | 1 | 1 | 1 | 1 | ||
Fraile et al., 2012 | [5] | Farm A | Spain | Inact. whole virus | 3 | <10 log2 | Yes | 1 | 1 | 1 | 1 | 1 |
Haake et al., 2014 | [8] | Study 1a | Europe | Inact. subunit ORF2 | 1 | ≥10 log2 | No | 1 | 1 | 1 | 0 | 1 |
Study 1b | Europe | Inact. subunit ORF2 | 3 | ≥10 log2 | No | 1 | 1 | 1 | 0 | 1 | ||
Study 2a | Europe | Inact. subunit ORF2 | 1 | ≥10 log2 | No | 1 | 1 | 1 | 0 | 1 | ||
Study 2b | Europe | Inact. subunit ORF2 | 3 | <10 log2 | Yes | 1 | 1 | 1 | 0 | 1 | ||
Martelli et al., 2016 | [14] | Rep. 1-A | Italy | Inact. subunit ORF2 | 4 | ≥10 log2 | Yes | 1 | 1 | 0 | 0 | 1 |
Rep. 2-A | Italy | Inact. subunit ORF2 | 4 | ≥10 log2 | No | 1 | 1 | 0 | 0 | 1 | ||
Rep. 2-B | Italy | Inact. subunit ORF2 | 6 | ≥10 log2 | Yes | 1 | 1 | 0 | 0 | 1 | ||
Rep. 2-C | Italy | Inact. subunit ORF2 | 8 | <10 log2 | Yes | 1 | 1 | 0 | 0 | 1 | ||
Rep. 3-A | Italy | Inact. subunit ORF2 | 4 | ≥10 log2 | No | 1 | 1 | 0 | 0 | 1 | ||
Rep. 3-B | Italy | Inact. subunit ORF2 | 6 | ≥10 log2 | No | 1 | 1 | 1 | 0 | 1 | ||
Paphavasit et al., 2009 | [15] | Thailand | Inact. chimeric PCV1-2 | 4 | ≥10 log2 | Yes | 0 | 1 | 1 | 0 | 1 | |
Stevancevic et al., 2014 | [16] | Serbia | Inact. subunit ORF2 | 2 | <10 log2 | Yes | 0 | 1 | 0 | 0 | 1 | |
Inact. subunit ORF2 | 3 | <10 log2 | Yes | 0 | 1 | 0 | 0 | 1 | ||||
Tassis et al., 2017 | [17] | Greece | Inact. subunit ORF2 | 3 | ≥10 log2 | No | 1 | 1 | 0 | 1 | 0 | |
Tzika et al., 2015 | [18] | Greece | Inact. subunit ORF2 | 3 | <10 log2 | No | 1 | 1 | 1 | 0 | 1 | |
Vagas-Bermudez et al., 2018 | [19] | Colombia | Inact. subunit ORF2 | 3 | ≥10 log2 | No | 0 | 0 | 0 | 1 | 1 | |
Villa-Mancera et al., 2016 | [20] | Mexico | Inact. chimeric PCV1-2 | 3 | ≥10 log2 | No | 1 | 1 | 1 | 1 | 1 | |
Mexico | Inact. PCV2 whole virus | 3 | ≥10 log2 | No | 1 | 1 | 1 | 1 | 1 | |||
Mexico | Inact. subunit ORF2 | 3 | ≥10 log2 | No | 1 | 1 | 1 | 1 | 1 | |||
Mexico | Inact. subunit ORF2 | 3+ 6 | ≥10 log2 | No | 1 | 1 | 1 | 1 | 1 |
Study | Study Characteristics | Number of Comparisons | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Ref. | Study Location(s) | Type of Vaccine | Age at Vacc. (High Level Group) | Age at Vacc. (Low to Medium Level Group) | MDA Level (High Level Group) | MDA Level (Low to Medium Level Group) | ADWG | Mortality | Max. % Viremic | Max. Viral Load |
Feng et al., 2016 | [7] | Spain | Inact. subunit ORF2 | 3 weeks | 3 weeks | ≥10 log2 | 3.8 log2 | 1 | 1 | 1 | 1 |
Fraile et al., 2012 | [5] | Spain | Inact. PCV2 whole virus | 3 weeks | 3 weeks | ≥8 log2 | 7.1 log2 | 1 | 1 | 1 | 0 |
Martelli et al., 2016 (4 comparisons) | [14] | Italy | Inact. subunit ORF2 | 4–6 weeks | 6–8 weeks | ≥10 log2 | ≤4.1 log2 | 4 | 4 | 0 | 0 |
ADWG (g/day) | Mortality | ||||||
---|---|---|---|---|---|---|---|
n | Mean Difference (95% CI) | Significance (p-Value) | n | Risk Ratio (95% CI) | Significance (p-Value) | ||
Overall Analysis | 21 | +20.32 (14.97; 25.68) | <0.001 | 24 | 0.66 (0.57; 0.77) | <0.001 | |
Subgroup Analyses | n | Mean Difference | Heterogeneity between Subgroups (p-Value) | n | Risk Ratio | Heterogeneity between Subgroups (p-Value) | |
Vaccine used in piglets | Inact. chimeric PCV1-2 | 1 | +32.00 | <0.001 | 2 | 0.63 | 0.492 |
Inact. subunit ORF2 | 18 | +14.74 | 20 | 0.66 | |||
Inact. PCV2 whole virus | 2 | +24.95 | 2 | 0.51 | |||
Age at vaccination (weeks) | <3 | 2 | −0.78 | 0.001 | 3 | 1.14 | 0.030 |
3 | 10 | +24.88 | 11 | 0.61 | |||
>3 | 8 | −6.31 | 9 | 0.77 | |||
3 + 6 * | 1 | +32.00 | 1 | 0.41 | |||
MDA titer (IPMA) at vaccination | ≥8 and <10 log2 | 6 | +13.28 | 0.162 | 8 | 0.67 | 0.822 |
≥10 log2 | 15 | +24.41 | 16 | 0.65 | |||
Seroconversion after vaccination | Yes | 6 # | +3.18 | 0.001 | 9 # | 0.82 | 0.175 |
No | 13 # | +27.41 | 13 # | 0.63 |
Max. % of Viremic Pigs | Max. PCV2 DNA Copies (log10) | ||||||
---|---|---|---|---|---|---|---|
n | Risk Ratio (95% CI) | Significance (p-Value) | n | Mean Difference (95% CI) | Significance (p-Value) | ||
Overall Analysis | 15 | 0.37 (0.27; 0.53) | <0.001 | 10 | –0.72 (–0.90; –0.54) | <0.001 | |
Subgroup Analyses | n | Risk Ratio | Heterogeneity between Subgroups (p-Value) | n | Mean Difference | Heterogeneity between Subgroups (p-Value) | |
Vaccine used in piglets | Inact. chimeric PCV1-2 | 2 | 0.32 | 0.967 | 1 | –1.03 | 0.004 |
Inact. subunit ORF2 | 11 | 0.37 | 7 | –0.59 | |||
Inact. PCV2 whole virus | 2 | 0.39 | 2 | –0.86 | |||
Age at vaccination (weeks) | <3 | 2 | 0.67 | 0.026 | 0 | 0.012 | |
3 | 8 | 0.37 | 7 | –0.97 | |||
>3 | 4 | 0.22 | 2 | +0.03 | |||
3 + 6 * | 1 | 0.58 | 1 | –0.87 | |||
MDA titer (IPMA) at vaccination | ≥8 and <10 log2 | 4 | 0.29 | 0.164 | 2 | –0.10 | 0.193 |
≥10 log2 | 11 | 0.41 | 8 | –0.89 | |||
Seroconversion after vaccination | Yes | 4 # | 0.28 | 0.065 | 2 # | –0.45 | 0.003 |
No | 10 # | 0.45 | 7 # | –0.93 |
Min. PCV2 AB Titer (log2) | ||||
---|---|---|---|---|
n | Mean Difference (95% CI) | Significance (p-Value) | ||
Overall Analysis | 24 | +1.46 (1.19; 1.73) | <0.001 | |
Subgroup Analyses | n | Mean Difference | Heterogeneity between Subgroups (p-Value) | |
Vaccine used in piglets | Inact. chimeric PCV1-2 | 2 | +0.95 | 0.091 |
Inact. subunit ORF2 | 10 | +1.76 | ||
Inact. PCV2 whole virus | 2 | +0.48 | ||
Age at vaccination (weeks) | <3 | 4 | +1.65 | <0.001 |
3 | 10 | +0.49 | ||
>3 | 9 | +2.42 | ||
3 + 6 * | 1 | +0.06 | ||
MDA titer (IPMA) at vaccination | ≥8 and <10 log2 | 7 | +2.13 | 0.194 |
≥10 log2 | 17 | +1.31 | ||
Seroconversion after vaccination | Yes | 10 # | +2.51 | 0.003 |
No | 13 # | +0.85 |
Parameter | n | Analyses | ||
---|---|---|---|---|
Effect Size | Result (95% CI) | Significance (p-Value) | ||
ADWG (g/d) | 6 | Mean Difference | +2.24 (−37.0–41.5) | 0.911 |
Mortality | 6 | Risk Ratio | 0.77 (0.53–1.13) | 0.179 |
Max. % viremic pigs | 2 | Risk Ratio | 1.14 (0.60–2.15) | 0.694 |
Max. viral load (log10 PCV2 DNA copies) | 1 | Mean Difference | +0.45 (0.10–0.80) | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poulsen Nautrup, B.; Van Vlaenderen, I.; Mah, C.; Angulo, J. Do High Levels of Maternally Derived Antibodies Interfere with the Vaccination of Piglets against Porcine Circovirus Type 2? A Literature Review and Data Analysis. Vaccines 2021, 9, 923. https://doi.org/10.3390/vaccines9080923
Poulsen Nautrup B, Van Vlaenderen I, Mah C, Angulo J. Do High Levels of Maternally Derived Antibodies Interfere with the Vaccination of Piglets against Porcine Circovirus Type 2? A Literature Review and Data Analysis. Vaccines. 2021; 9(8):923. https://doi.org/10.3390/vaccines9080923
Chicago/Turabian StylePoulsen Nautrup, Barbara, Ilse Van Vlaenderen, Choewkong Mah, and Jose Angulo. 2021. "Do High Levels of Maternally Derived Antibodies Interfere with the Vaccination of Piglets against Porcine Circovirus Type 2? A Literature Review and Data Analysis" Vaccines 9, no. 8: 923. https://doi.org/10.3390/vaccines9080923
APA StylePoulsen Nautrup, B., Van Vlaenderen, I., Mah, C., & Angulo, J. (2021). Do High Levels of Maternally Derived Antibodies Interfere with the Vaccination of Piglets against Porcine Circovirus Type 2? A Literature Review and Data Analysis. Vaccines, 9(8), 923. https://doi.org/10.3390/vaccines9080923