Factors Affecting COVID-19 Vaccine Acceptance: An International Survey among Low- and Middle-Income Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Materials
2.3. Procedure
2.4. Weighting
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 3 March 2021).
- COVID-19 Vaccine Tracker. 2021 (Updated 5 April 2021). Available online: https://covid19.trackvaccines.org/vaccines/ (accessed on 23 April 2021).
- Torjesen, I. Covid-19: Pre-purchasing vaccine—Sensible or selfish? BMJ 2020, 370, m3226. [Google Scholar] [CrossRef]
- WHO. COVID-19 Vaccines. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines (accessed on 3 March 2021).
- Persad, G.; Peek, M.E.; Emanuel, E.J. Fairly prioritizing groups for access to COVID-19 vaccines. JAMA 2020, 324, 1601–1602. [Google Scholar] [CrossRef] [PubMed]
- Dooling, K.; McClung, N.; Chamberland, M.; Marin, M.; Wallace, M.; Bell, B.P.; Lee, G.M.; Talbot, H.K.; Romero, J.R.; Oliver, S.E. The Advisory Committee on Immunization Practices’ Interim Recommendation for Allocating Initial Supplies of COVID-19 Vaccine—United States, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1857. [Google Scholar] [CrossRef] [PubMed]
- Dror, A.A.; Eisenbach, N.; Taiber, S.; Morozov, N.G.; Mizrachi, M.; Zigron, A.; Srouji, S.; Sela, E. Vaccine hesitancy: The next challenge in the fight against COVID-19. Eur. J. Epidemiol. 2020, 35, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Hacquin, A.S.; Altay, S.; de Araujo, E.; Chevallier, C.; Mercier, H. Sharp rise in vaccine hesitancy in a large and representative sample of the French population: Reasons for vaccine hesitancy. PsyArXiv 2020. [Google Scholar] [CrossRef]
- Latkin, C.A.; Dayton, L.; Yi, G.; Colon, B.; Kong, X. Mask usage, social distancing, racial, and gender correlates of COVID-19 vaccine intentions among adults in the US. PLoS ONE 2021, 16, e0246970. [Google Scholar] [CrossRef]
- Murphy, J.; Vallières, F.; Bentall, R.P.; Shevlin, M.; McBride, O.; Hartman, T.K.; McKay, R.; Bennett, K.; Mason, L.; Gibson-Miller, J.; et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat. Commun. 2021, 12, 29. [Google Scholar] [CrossRef]
- Flanagan, K.L.; Fink, A.L.; Plebanski, M.; Klein, S.L. Sex and gender differences in the outcomes of vaccination over the life course. Annu. Rev. Cell Dev. Biol. 2017, 33, 577–599. [Google Scholar] [CrossRef]
- He, J.; He, L. Knowledge of HPV and acceptability of HPV vaccine among women in western China: A cross-sectional survey. BMC Women’s Health 2018, 18, 130. [Google Scholar] [CrossRef] [Green Version]
- Yeung, M.P.; Lam, F.L.; Coker, R. Factors associated with the uptake of seasonal influenza vaccination in adults: A systematic review. J. Public Health 2016, 38, 746–753. [Google Scholar] [CrossRef] [Green Version]
- Jarrett, C.; Wilson, R.; O’Leary, M.; Eckersberger, E.; Larson, H.J. Strategies for addressing vaccine hesitancy–A systematic review. Vaccine 2015, 33, 4180–4190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, H.J.; Cooper, L.Z.; Eskola, J.; Katz, S.L.; Ratzan, S. Addressing the vaccine confidence gap. Lancet 2011, 378, 526–535. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The Patient Health Questionnaire-2: Validity of a two-item depression screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W.; Monahan, P.O.; Löwe, B. Anxiety disorders in primary care: Prevalence, impairment, comorbidity, and detection. Ann. Intern. Med. 2007, 146, 317–325. [Google Scholar] [CrossRef]
- World Bank Open Data. Available online: https://data.worldbank.org/ (accessed on 3 March 2021).
- Biemer, P.P.; Christ, S.L. International Handbook of Survey Methodology: Weighting Survey Data; Routledge Handbooks Online: Abingdon, UK, 2008. [Google Scholar]
- Yansaneh, I.S. Construction and Use of Sample Weights; United Nations: New York, NY, USA, 2003. [Google Scholar]
- Peck, J. Extension Commands and Rim Weighting with IBM® SPSS® Statistics: Theory and Practice; IBM Corporation: Armonk, NY, USA, 2011. [Google Scholar]
- Pogue, K.; Jensen, J.L.; Stancil, C.K.; Ferguson, D.G.; Hughes, S.J.; Mello, E.J.; Burgess, R.; Berges, B.K.; Quaye, A.; Poole, B.D. Influences on attitudes regarding potential COVID-19 vaccination in the United States. Vaccines 2020, 8, 582. [Google Scholar] [CrossRef] [PubMed]
- Reiter, P.L.; Pennell, M.L.; Katz, M.L. Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine 2020, 38, 6500–6507. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, Z.; Zhao, Q.; Alias, H.; Danaee, M.; Wong, L.P. Understanding COVID-19 vaccine demand and hesitancy: A nationwide online survey in China. PLoS Negl. Trop. Dis. 2020, 14, e0008961. [Google Scholar] [CrossRef]
- Mo, P.K.-h.; Luo, S.; Wang, S.; Zhao, J.; Zhang, G.; Li, L.; Li, L.; Xie, L.; Lau, J.T.F. Intention to Receive the COVID-19 Vaccination in China: Application of the Diffusion of Innovations Theory and the Moderating Role of Openness to Experience. Vaccines 2021, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M. COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines 2021, 9, 160. [Google Scholar] [CrossRef]
- The Lancet. COVID-19 in Brazil: “So what”? Lancet 2020, 395, 1461. [Google Scholar] [CrossRef]
- Short-Term Forecasts of COVID-19 Deaths in Multiple Countries. Available online: https://mrc-ide.github.io/covid19-short-term-forecasts/ (accessed on 3 March 2021).
- Ditekemena, J.D.; Nkamba, D.M.; Mutwadi, A.; Mavoko, H.M.; Siewe Fodjo, J.N.; Luhata, C.; Obimpeh, M.; Van Hees, S.; Nachega, J.B.; Colebunders, R. COVID-19 Vaccine Acceptance in the Democratic Republic of Congo: A Cross-Sectional Survey. Vaccines 2021, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Nzaji, M.K.; Ngombe, L.K.; Mwamba, G.N.; Ndala, D.B.; Miema, J.M.; Lungoyo, C.L.; Mwimba, B.L.; Bene, A.C.; Musenga, E.M. Acceptability of Vaccination Against COVID-19 Among Healthcare Workers in the Democratic Republic of the Congo. Pragmat. Obs. Res. 2020, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.A.; McFadden, S.M.; Elharake, J.; Omer, S.B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine 2020, 26, 100495. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2020, 20, 225–228. [Google Scholar] [CrossRef]
- Dash, S.; Parray, A.A.; De Freitas, L.; Mithu, M.I.; Rahman, M.M.; Ramasamy, A.; Pandya, A.K. Combating the COVID-19 infodemic: A three-level approach for low and middle-income countries. BMJ Glob. Health 2021, 6, e004671. [Google Scholar] [CrossRef] [PubMed]
- Jay, J.; Bor, J.; Nsoesie, E.; Lipson, S.K.; Jones, D.K.; Galea, S.; Raifman, J. Neighborhood income and physical distancing during the COVID-19 pandemic in the US. medRxiv 2020. [Google Scholar] [CrossRef]
- Mein, S.A. COVID-19 and health disparities: The reality of “the Great Equalizer”. J. Gen. Intern. Med. 2020, 35, 2439–2440. [Google Scholar] [CrossRef] [PubMed]
- Harapan, H.; Wagner, A.L.; Yufika, A.; Winardi, W.; Anwar, S.; Gan, A.K.; Setiawan, A.M.; Rajamoorthy, Y.; Sofyan, H.; Mudatsir, M. Acceptance of a COVID-19 vaccine in southeast Asia: A cross-sectional study in Indonesia. Front. Public Health 2020, 8, 381. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Wong, P.F.; Lee, H.Y.; AbuBakar, S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum. Vaccin. Immunother. 2020, 16, 2204–2214. [Google Scholar] [CrossRef] [PubMed]
- Salathé, M.; Althaus, C.L.; Neher, R.; Stringhini, S.; Hodcroft, E.; Fellay, J.; Zwahlen, M.; Senti, G.; Battegay, M.; Wilder-Smith, A.; et al. COVID-19 epidemic in Switzerland: On the importance of testing, contact tracing and isolation. Swiss Med. Wkly. 2020, 150, w20225. [Google Scholar] [CrossRef]
- Wu, D.C.; Jha, P.; Lam, T.; Brown, P.; Gelband, H.; Nagelkerke, N.; Birnboim, H.C.; Reid, A. Action to Beat Coronavirus in Canada/Action pour Battre le Coronavirus (Ab-C) Study Group. Predictors of self-reported symptoms and testing for COVID-19 in Canada using a nationally representative survey. PLoS ONE 2020, 15, e0240778. [Google Scholar] [CrossRef]
- Salali, G.D.; Uysal, M.S. COVID-19 vaccine hesitancy is associated with beliefs on the origin of the novel coronavirus in the UK and Turkey. Psychol. Med. 2020, 1–3. [Google Scholar] [CrossRef]
- Schwarzinger, M.; Watson, V.; Arwidson, P.; Alla, F.; Luchini, S. COVID-19 vaccine hesitancy in a representative working-age population in France: A survey experiment based on vaccine characteristics. Lancet Public Health 2021, 6, e210–e221. [Google Scholar] [CrossRef]
- Neumann-Böhme, S.; Varghese, N.E.; Sabat, I.; Barros, P.P.; Brouwer, W.; van Exel, J.; Schreyögg, J.; Stargardt, T. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19. Eur. J. Health Econ. 2020, 21, 977–982. [Google Scholar] [CrossRef]
- Sallam, M.; Dababseh, D.; Eid, H.; Al-Mahzoum, K.; Al-Haidar, A.; Taim, D.; Yaseen, A.; Ababneh, N.A.; Bakri, F.G.; Mahafzah, A. High Rates of COVID-19 Vaccine Hesitancy and Its Association with Conspiracy Beliefs: A Study in Jordan and Kuwait among Other Arab Countries. Vaccines 2021, 9, 42. [Google Scholar] [CrossRef]
- Williams, L.; Gallant, A.J.; Rasmussen, S.; Brown Nicholls, L.A.; Cogan, N.; Deakin, K.; Young, D.; Flowers, P. Towards intervention development to increase the uptake of COVID-19 vaccination among those at high risk: Outlining evidence-based and theoretically informed future intervention content. Brit. J. Health Psychol. 2020, 25, 1039–1054. [Google Scholar] [CrossRef]
- Peter Mwa. COVID-19 Africa: What is Happening with Vaccines? 23 April BBC News. Available online: https://www.bbc.com/news/56100076 (accessed on 3 May 2021).
- Our World in Data. Coronavirus (COVID-19) Vaccinations; 2021. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 6 May 2021).
- De Man, J.; Campbell, L.; Tabana, H.; Wouters, E. The pandemic of online research in times of COVID-19. BMJ Open 2021, 11, e043866. [Google Scholar] [CrossRef]
- Bethlehem, J. Selection bias in web surveys. Int. Stat. Rev. 2010, 78, 161–188. [Google Scholar] [CrossRef]
Variable | Total n = 10183 | Brazil n = 6470 | Malaysia n = 1738 | Thailand n = 1124 | Bangladesh n = 230 | DR Congo n = 219 | Benin n = 159 | Uganda n = 107 | Malawi n = 81 | Mali n = 55 |
---|---|---|---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Demographics | ||||||||||
Gender | ||||||||||
Male | 3579 (35.1) | 2125 (32.8) | 600 (34.5) | 343 (30.5) | 93 (40.4) | 169 (77.2) | 112 (70.4) | 55 (51.4) | 35 (43.2) | 47 (85.5) |
Female | 6604 (64.9) | 4345 (67.2) | 1138 (65.5) | 781 (69.5) | 137 (59.6) | 50 (22.8) | 47 (29.6) | 52 (48.6) | 46 (56.8) | 8 (14.5) |
Age, years | ||||||||||
Mean ± SD | 45.06 ± 15.01 | 48.07 ± 14.57 | 41.05 ± 15.85 | 43.58 ± 12.76 | 28.62 ± 6.53 | 35.20 ± 8.96 | 28.50±10.24 | 33.79 ± 8.84 | 37.80 ± 8.63 | 37.44 ± 8.99 |
Median (Min, Max) | 45 (18, 93) | 49 (18, 93) | 38 (18, 87) | 45 (18, 81) | 27 (18, 60) | 35 (20, 65) | 25 (18, 65) | 32 (20, 63) | 38 (18, 69) | 36 (25, 65) |
18–29 | 3206 (31.5) | 424 (11.6) | 166 (31.2) | 245 (19.4) | 1590 (61.3) | 225 (29.7) | 342 (62.3) | 138 (37.4) | 41 (14.7) | 35 (18.4) |
30–39 | 2707 (26.6) | 734 (20.1) | 116 (21.8) | 205 (16.2) | 891 (34.3) | 308 (40.6) | 121 (22.0) | 138 (37.4) | 114 (40.9) | 80 (42.1) |
40–49 | 1621 (15.9) | 708 (19.4) | 74 (13.9) | 300 (23.7) | 68 (2.6) | 173 (22.8) | 59 (10.7) | 66 (17.9) | 111 (39.8) | 62 (32.6) |
50–59 | 1490 (14.6) | 836 (22.9) | 79 (14.8) | 446 (35.2) | 23 (0.9) | 38 (5.0) | 24 (4.4) | 24 (6.5) | 10 (3.6) | 10 (5.3) |
60 and above | 1157 (11.4) | 941 (25.8) | 97 (18.2) | 70 (5.5) | 23 (0.9) | 14 (1.8) | 3 (0.5) | 3 (0.8) | 3 (1.1) | 3 (1.6) |
Highest education level attained | ||||||||||
Primary/Secondary | 1316 (13.0) | 760 (11. 8) | 328 (18.9) | 177 (15.7) | 23 (10.0) | 7 (3.2) | 11 (6.9) | 3 (2.8) | 6 (7.4) | 1 (1.8) |
Completed undergraduate degree | 4028 (39.5) | 2041 (31.5) | 890 (51.2) | 647 (57.6) | 123 (53.5) | 150 (68.5) | 79 (49.7) | 54 (50.5) | 39 (48.2) | 5 (9.1) |
Completed postgraduate degree | 4839 (47.5) | 3669 (56.7) | 520 (29.9) | 300 (26.7) | 84 (36.5) | 62 (28.3) | 69 (43.4) | 50 (46.7) | 36 (44.4) | 49 (89.1) |
Socio-economic category | ||||||||||
Low | 839 (8.2) | 283 (4.4) | 245 (14.1) | 242 (21.5) | 6 (2.6) | 14 (6.4) | 13 (8.2) | 27 (25.2) | 6 (7.4) | 3 (5.5) |
Lower middle | 4459 (43.9) | 2599 (40.2) | 710 (40.9) | 690 (61.4) | 89 (38.7) | 147 (67.1) | 101 (63.5) | 52 (48.6) | 36 (44.4) | 35 (63.6) |
Upper middle | 4381 (43.0) | 3187 (49.2) | 723 (41.6) | 175 (15.6) | 128 (55.7) | 54 (24.7) | 40 (25.2) | 26 (24.3) | 33 (40.8) | 15 (27.3) |
High | 504 (4.9) | 401 (6.2) | 60 (3.4) | 17 (1.5) | 7 (3.0) | 4 (1.8) | 5 (3.1) | 2 (1.9) | 6 (7.4) | 2 (3.6) |
Residential setting | ||||||||||
Rural | 812 (8.0) | 139 (2.1) | 202 (11.6) | 433 (38.5) | 4 (1.7) | 11 (5.1) | 10 (6.3) | 8 (7.5) | 3 (3.7) | 2 (3.7) |
Suburban/Slum | 1185 (11.6) | 698 (10.8) | 238 (13.7) | 121 (10.8) | 34 (14.8) | 13 (5.9) | 30 (18.9) | 31 (29.0) | 13 (16.0) | 7 (12.7) |
Urban | 8186 (80.4) | 5633 (87.1) | 1298 (74.7) | 570 (50.7) | 192 (83.5) | 195 (89.0) | 119 (74.8) | 68 (63.5) | 65 (80.3) | 46 (83.6) |
Student or worker in the health sector (Yes) | 3500 (34.4) | 1964 (30.4) | 371 (21.3) | 618 (55.0) | 133 (57.8) | 142 (64.8) | 88 (55.3) | 91 (85.0) | 49 (60.5) | 44 (80.0) |
Health status | ||||||||||
COVID-19 testing/Infection status | ||||||||||
Not tested/Does not know test results | 6078 (59.7) | 3283 (50.7) | 1246 (71.7) | 1017 (90.4) | 133 (57.8) | 122 (55.7) | 113 (71.1) | 71 (66.4) | 63 (77.7) | 30 (54.5) |
Tested, negative | 3362 (33.0) | 2526 (39.1) | 473 (27.2) | 104 (9.3) | 60 (26.1) | 89 (40.6) | 42 (26.4) | 31 (29.0) | 16 (19.8) | 21 (38.2) |
Tested, positive | 743 (7.3) | 661 (10.2) | 19 (1.1) | 3 (0.3) | 37 (16.1) | 8 (3.7) | 4 (2.5) | 5 (4.6) | 2 (2.5) | 4 (7.3) |
Presence of chronic disease(s) | ||||||||||
Yes | 2958 (29.0) | 2192 (33.9) | 415 (23.0) | 219 (19.5) | 49 (21.3) | 23 (10.5) | 11 (6.9) | 13 (12.1) | 26 (32.1) | 10 (18.2) |
Psychological distress | ||||||||||
Depression symptoms (PHQ-2 score ≥3) | 2058 (20.2) | 1448 (22.4) | 438 (25.2) | 44 (3.9) | 68 (29.6) | 22 (10.0) | 11 (6.9) | 14 (13.1) | 8 (9.9) | 5 (9.1) |
Anxiety symptoms (GAD-2 score ≥3) | 2212 (21.7) | 1806 (27.9) | 260 (15.0) | 48 (4.3) | 47 (20.4) | 15 (6.8) | 6 (3.8) | 15 (14.0) | 6 (7.4) | 9 (16.4) |
Variables | Total n = 10183 | Brazil n = 6470 | Malaysia n = 1738 | Thailand n = 1124 | Bangladesh n = 230 | DR Congo n = 219 | Benin n = 159 | Uganda n = 107 | Malawi n = 81 | Mali n = 55 |
---|---|---|---|---|---|---|---|---|---|---|
Worry/fear about COVID-19 (Likert score, 1–5) | ||||||||||
Mean ± SD | 3.49 ± 1.13 | 3.71 ± 1.06 | 3.45 ± 1.06 | 3.06 ± 1.13 | 2.70 ± 1.02 | 2.22 ± 1.10 | 1.82 ± 0.99 | 3.34 ± 1.18 | 2.85 ± 1.21 | 2.89 ± 1.08 |
Median (Min, Max) | 4 (1, 5) | 4 (1, 5) | 3 (1, 5) | 3 (1, 5) | 3 (1, 5) | 2 (1, 5) | 2 (1, 5) | 3 (1, 5) | 3 (1, 5) | 3 (1, 5) |
Participant’s knowledge of COVID-19 vaccine (Yes): n (%) | ||||||||||
Can be reinfected after recovering from COVID-19 infection? | 8419 (82.7%) | 5535 (85.5%) | 1328 (76.4%) | 898 (79.9%) | 200 (87.0%) | 156 (71.2%) | 95 (59.7%) | 95 (88.8%) | 66 (81.5%) | 46 (83.6%) |
COVID-19 can be prevented by vaccine? | 7986 (78.4%) | 5822 (90.0%) | 951 (54.7%) | 721 (64.1%) | 116 (50.4%) | 129 (58.9%) | 89 (56.0%) | 86 (80.4%) | 39 (48.1%) | 33 (60.0%) |
There is currently an effective vaccine against COVID-19? | 6317 (62%) | 4899 (75.7%) | 550 (31.6%) | 588 (52.3%) | 96 (41.7%) | 54 (24.7%) | 30 (18.9%) | 55 (51.4%) | 24 (29.6%) | 21 (38.2%) |
Knowledge about COVID-19 (composite score, 0–3) * | ||||||||||
Mean ± SD | 2.23 ± 0.92 | 2.51 ± 0.78 | 1.63 ± 0.94 | 1.96 ± 0.92 | 1.79 ± 0.92 | 1.55 ± 0.92 | 1.35 ± 0.95 | 2.21 ± 0.83 | 1.59 ± 0.87 | 1.82 ± 1.01 |
Median (Min, Max) | 3 (0, 3) | 3 (0, 3) | 2 (0, 3) | 2 (0, 3) | 2 (0, 3) | 2 (0, 3) | 1 (0, 3) | 2 (0, 3) | 2 (0, 3) | 2 (0, 3) |
Importance of taking COVID-19 vaccine to protect self (Likert score, 1–5) | ||||||||||
Mean ± SD | 4.37 ± 1.01 | 4.67 ± 0.75 | 3.90 ± 1.12 | 4.01 ± 1.06 | 4.02 ± 0.98 | 3.11 ± 1.46 | 2.93 ± 1.41 | 4.13 ± 1.15 | 3.01 ± 1.57 | 3.82 ± 1.23 |
Median (Min, Max) | 4 (1, 5) | 5 (1, 5) | 4 (1, 5) | 4 (1, 5) | 4 (1, 5) | 4 (1, 5) | 3 (1, 5) | 4 (1, 5) | 3 (1, 5) | 4 (1, 5) |
Importance of taking COVID-19 vaccine to protect others (Likert score, 1–5) | ||||||||||
Mean ± SD | 4.47 ± 0.94 | 4.75 ± 0.67 | 4.04 ± 1.06 | 4.15 ± 0.96 | 4.12 ± 0.91 | 3.3 ± 1.49 | 3.18 ± 1.37 | 4.30 ± 1.07 | 3.20 ± 1.62 | 4.04 ± 1.20 |
Median (Min, Max) | 5 (1, 5) | 5 (1, 5) | 4 (1, 5) | 4 (1, 5) | 4 (1, 5) | 4 (1, 5) | 4 (1, 5) | 5 (1, 5) | 4 (1, 5) | 4 (1, 5) |
Participant’s Willingness to Take the COVID-19 Vaccine … | Total n = 10183 | Brazil n = 6470 | Malaysia n = 1738 | Thailand n = 1124 | Bangladesh n = 230 | DR Congo n = 219 | Benin n = 159 | Uganda n = 107 | Malawi n = 81 | Mali n = 55 |
---|---|---|---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
At 90% effectiveness | 7775 (76.4) | 5753 (88.9) | 962 (55.4) | 658 (58.5) | 163 (70.9) | 72 (32.9) | 36 (22.6) | 70 (65.4) | 36 (44.4) | 25 (45.5) |
At 95% effectiveness | 9041 (88.8) | 6095 (94.2) | 1366 (78.6) | 981 (87.3) | 206 (89.6) | 130 (59.4) | 77 (48.4) | 95 (88.8) | 50 (61.7) | 41 (74.5) |
Possible reasons for refusing to take the COVID-19 vaccine | ||||||||||
I don’t think COVID-19 exists | 272 (2.7) | 9 (0.1) | 18 (1.0) | 224 (19.9) | 0 (0.0) | 8 (3.7) | 7 (44) | 2 (1.9) | 3 (3.7) | 1 (1.8) |
I think the vaccine is not effective | 1540 (15.1) | 428 (6.6) | 410 (23.6) | 500 (44.5) | 44 (19.1) | 65 (29.7) | 37 (23.3) | 19 (17.8) | 17 (21.0) | 20 (36.4) |
I think the vaccine is designed to harm us | 456 (4.5) | 101 (1.6) | 142 (8.2) | 53 (4.7) | 5 (2.2) | 44 (20.1) | 59 (37.1) | 21 (19.6) | 23 (28.4) | 8 (14.5) |
I am scared of side-effects of the vaccine | 4198 (41.2) | 1775 (27.4) | 1287 (74.1) | 665 (59.2) | 155 (67.4) | 107 (48.9) | 92 (57.9) | 54 (50.5) | 34 (42.0) | 29 (52.7) |
My body is naturally strong, I don’t need a vaccine to fight COVID-19 | 365 (3.6) | 60 (0.9) | 101 (5.8) | 102 (9.1) | 23 (10.0) | 37 (16.9) | 16 (10.1) | 6 (5.6) | 14 (17.3) | 6 (10.9) |
I already had COVID-19, so I think I am immune to the disease | 114 (1.1) | 79 (1.2) | 8 (0.5) | 5 (0.4) | 14 (6.1) | 5 (23) | 1 (0.6) | 0 (0.0) | 1 (1.2) | 1 (1.8) |
The COVID-19 pandemic is finished in my country, no need for a vaccine now | 71 (0.7) | 19 (0.3) | 12 (0.7) | 16 (1.4) | 4 (1.7) | 6 (2.7) | 5 (3.1) | 0 (0.0) | 6 (7.4) | 3 (5.5) |
Importance of taking COVID-19 vaccine to protect self | ||||||||||
Strongly disagree | 370 (3.6) | 111 (1.7) | 82 (4.7) | 41 (3.7) | 6 (2.7) | 54 (24.7) | 40 (25.2) | 6 (5.7) | 24 (29.6) | 6 (10.9) |
Disagree | 334 (3.3) | 86 (1.4) | 119 (6.8) | 61 (5.4) | 7 (3.0) | 21 (9.7) | 22 (13.8) | 7 (6.5) | 9 (11.1) | 2 (3.6) |
Neutral | 831 (8.2) | 177 (2.7) | 328 (18.9) | 199 (17.7) | 50 (21.7) | 30 (13.7) | 27 (17.0) | 7 (6.5) | 8 (9.9) | 5 (9.1) |
Agree | 2289 (22.5) | 1057 (16.3) | 575 (33.1) | 372 (33.1) | 81 (35.2) | 74 (33.8) | 49 (30.8) | 34 (31.8) | 22 (27.2) | 25(45.5) |
Strongly agree | 6359 (62.4) | 5039 (77.9) | 634 (36.5) | 451 (40.1) | 86 (37.4) | 40 (18.3) | 21 (13.2) | 53 (49.5) | 18 (22.2) | 17 (30.9) |
Importance of taking COVID-19 vaccine to protect others | ||||||||||
Strongly disagree | 313 (3.1) | 99 (1.5) | 66 (3.8) | 29 (2.6) | 5 (2.2) | 49 (22.4) | 32 (20.1) | 5 (4.7) | 23 (28.4) | 5 (9.1) |
Disagree | 221 (2.2) | 47 (0.8) | 92 (5.3) | 34 (3.0) | 4 (1.7) | 18 (8.2) | 15 (9.4) | 4 (3.7) | 5 (6.2) | 2 (3.6) |
Neutral | 673 (6.6) | 119 (1.8) | 267 (15.4) | 173 (15.4) | 41 (17.8) | 24 (11.0) | 30 (18.9) | 7 (6.5) | 10 (12.3) | 2 (3.7) |
Agree | 2111 (20.7) | 837 (12.9) | 589 (33.9) | 395 (35.1) | 88 (38.3) | 75 (34.2) | 56 (35.2) | 29 (27.1) | 19 (23.5) | 23 (41.8) |
Strongly agree | 6865 (67.4) | 5368 (83.0) | 724 (41.6) | 493 (43.9) | 92 (40.0) | 53 (24.2) | 26 (16.4) | 62 (57.8) | 24 (29.6) | 23 (41.8) |
Variable | I Don’t Think COVID-19 Exists | I Think the Vaccine Is Not Effective | I Think the Vaccine Is Designed to Harm Us | I Am Scared of Side-Effects of the Vaccine | My Body Is Naturally Strong, I Don’t Need a Vaccine to Fight COVID-19 | I Already Had COVID-19, so I Think I Am Immune to the Disease | The COVID-19 Pandemic Is Finished in My Country, No Need for a Vaccine Now |
---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Gender | |||||||
Male | 132 (3.1) | 918 (21.5) | 409 (9.6) | 2005 (47.1) | 394 (9.2) | 120 (2.8) | 830 (1.9) |
Female | 203 (3.4) | 1054 (17.8) | 343 (5.8) | 2978 (52.9) | 318 (5.4) | 118 (2.0) | 64 (1.1) |
χ2, p-value | 0.85, p = 0.357 | 22.3, p < 0.001 | 52.5, p < 0.001 | 10.4, p = 0.001 | 52.3, p < 0.001 | 7.4, p = 0.007 | 13.1, p < 0.001 |
Age, years | |||||||
18–29 | 108 (3.4) | 651 (20.3) | 332 (10.4) | 1816 (56.6) | 299 (9.3) | 91 (2.8) | 57 (1.8) |
30–39 | 67 (2.5) | 571 (21.1) | 201 (7.4) | 1462 (54.0) | 216 (8.0) | 94 (3.5) | 37 (1.4) |
40–49 | 76 (4.7) | 348 (21.5) | 122 (7.5) | 700 (43.2) | 112 (6.9) | 33 (2.0) | 41 (2.5) |
50–59 | 75 (5.0) | 295 (19.8) | 63 (4.2) | 634 (42.5) | 59 (4.0) | 10 (0.7) | 8 (0.5) |
60 and above | 11 (0.9) | 107 (9.2) | 34 (2.9) | 371 (32.0) | 27 (2.3) | 10 (0.9) | 3 (0.3) |
χ2, p-value | 49.5, p < 0.001 | 87.8, p < 0.001 | 96.7, p < 0.001 | 281.9, p < 0.001 | 90.6, p < 0.001 | 48.6, p < 0.001 | 36.4, p < 0.001 |
Highest education level attained | |||||||
Primary/Secondary | 77 (7.1) | 173 (16.0) | 61 (5.6) | 543 (50.1) | 37 (3.4) | 13 (1.2) | 8 (0.7) |
Completed undergraduate degree | 195 (4.2) | 1043 (22.3) | 453 (9.7) | 2546 (54.5) | 469 (10.0) | 150 (3.2) | 98 (2.1) |
Completed postgraduate degree | 63 (1.4) | 756 (17.1) | 238 (5.4) | 1895 (42.8) | 205 (4.6) | 75 (1.7) | 41 (0.9) |
χ2, p-value | 109.7, p < 0.001 | 49.6, p < 0.001 | 67.8, p < 0.001 | 126.3, p < 0.001 | 126.6, p < 0.001 | 29.9, p < 0.001 | 26.3, p < 0.001 |
Socioeconomic category | |||||||
Low | 88 (11.1) | 200 (25.2) | 92 (11.6) | 415 (52.3) | 72 (9.1) | 5 (0.6) | 21 (2.6) |
Lower middle | 192 (4.0) | 1057 (22.3) | 460 (9.7) | 2497 (52.6) | 340 (7.2) | 95 (2.0) | 64 (1.3) |
Upper middle | 45 (1.1) | 664 (15.7) | 174 (4.1) | 1947 (46.0) | 273 (6.4) | 121 (2.9) | 45 (1.1) |
High | 11 (2.7) | 51 (12.5) | 26 (6.4) | 125 (30.6) | 28 (6.9) | 16 (3.9) | 17 (4.2) |
χ2, p-value | 226.4, p < 0.001 | 92.6, p < 0.001 | 125.0, p < 0.001 | 99.3, p < 0.001 | 7.5, p = 0.057 | 22.0, p < 0.001 | 34.0, p < 0.001 |
Residential setting | |||||||
Rural | 137 (17.3) | 243 (30.7) | 60 (7.6) | 419 (53.0) | 76 (9.6) | 5 (0.6) | 11 (1.4) |
Suburban/Slum | 45 (3.4) | 264 (20.1) | 124 (9.5) | 656 (50.0) | 138 (10.5) | 38 (2.9) | 19 (1.4) |
Urban | 154 (1.9) | 1466 (18.1) | 569 (7.0) | 3908 (48.4) | 498 (6.2) | 194 (2.4) | 116 (1.4) |
χ2, p-value | 537.5, p < 0.001 | 73.6, p < 0.001 | 9.7, p = 0.008 | 7.0, p = 0.030 | 42.2, p < 0.001 | 12.1, p = 0.002 | 0.01, p = 0.994 |
Student or worker in the health sector | |||||||
Yes | 192 (4.0) | 1017 (21.0) | 374 (7.7) | 2492 (51.4) | 378 (7.8) | 136 (2.8) | 85 (1.8) |
No | 143 (2.7) | 956 (17.9) | 378 (7.1) | 2491 (46.7) | 334 (6.3) | 102 (1.9) | 62 (1.2) |
χ2, p-value | 13.1, p < 0.001 | 15.3, p < 0.001 | 1.5, p = 0.223 | 22.7, p < 0.001 | 9.3, p = 0.002 | 8.9, p = 0.003 | 6.3, p = 0.012 |
COVID-19 testing/Infection status | |||||||
Not tested/Does not know test results | 292 (4.7) | 1392 (22.3) | 524 (8.4) | 3166 (50.6) | 486 (4.8) | 64 (1.1) | 85 (1.4) |
Tested, but negative | 37 (1.2) | 475 (15.6) | 181 (5.9) | 1371 (45.0) | 142 (4.7) | 41 (1.3) | 21 (0.7) |
Tested, but positive | 6 (0.4) | 105 (12.0) | 47 (5.3) | 446 (50.8) | 85 (9.7) | 134 (15.2) | 41 (4.7) |
χ2, p-value | 97.4, p < 0.001 | 92.3, p < 0.001 | 24.0, p < 0.001 | 27.4, p < 0.001 | 41.1, p < 0.001 | 699.3, p < 0.001 | 76.8, p < 0.001 |
Presence of chronic disease(s) | |||||||
Yes | 59 (2.4) | 452 (18.5) | 126 (5.1) | 1099 (44.9) | 116 (4.7) | 76 (3.1) | 38 (1.6) |
No | 276 (3.6) | 1520 (19.7) | 627 (8.1) | 3885 (50.2) | 597 (7.7) | 162 (2.1) | 109 (1.4) |
χ2, p-value | 7.8, p = 0.005 | 1.7, p = 0.198 | 23.8, p < 0.001 | 21.2, p < 0.001 | 25.3, p < 0.001 | 8.3, p = 0.004 | 0.268, p = 0.605 |
Depression symptoms (PHQ-2 score ≥3) | |||||||
Yes | 24 (1.2) | 268 (13.6) | 92 (4.7) | 952 (48.2) | 132 (6.7) | 93 (4.7) | 35 (1.8) |
No | 311 (3.8) | 17.4 (20.8) | 661 (8.1) | 4032 (49.1) | 580 (7.1) | 145 (1.8) | 112 (1.4) |
χ2, p-value | 33.1, p < 0.001 | 52.6, p < 0.001 | 26.7, p < 0.001 | 0.5, p = 0.481 | 0.4, p = 0.554 | 60.5, p < 0.001 | 1.9, p = 0.171 |
Anxiety symptoms (GAD-2 score ≥3) | |||||||
Yes | 20 (1.1) | 238 (12.8) | 90 (4.8) | 832 (44.8) | 104 (5.6) | 83 (4.5) | 47 (2.5) |
No | 316 (3.8) | 1735 (20.8) | 663 (8.0) | 4151 (49.9) | 608 (7.3) | 115 (1.9) | 100 (1.2) |
χ2, p-value | 35.2, p < 0.001 | 62.5, p < 0.001 | 21.5, p < 0.001 | 15.5, p < 0.001 | 6.8, p = 0.009 | 45.2, p < 0.001 | 18.9, p < 0.001 |
Variables | 90% Effectiveness a | 95% Effectiveness b | ||||||
---|---|---|---|---|---|---|---|---|
aOR | 95% CI | p-Value | aOR | 95% CI | p-Value | |||
Upper | Lower | Upper | Lower | |||||
Constant | 0.03 | 0.02 | ||||||
Age (years) | ||||||||
18–29 | 1.49 | 1.17 | 1.91 | 0.001 | 1.62 | 1.14 | 2.28 | 0.007 |
30–39 | 1.33 | 1.05 | 1.69 | 0.017 | 1.53 | 1.10 | 2.15 | 0.013 |
40–49 | 0.95 | 0.75 | 1.21 | 0.680 | 0.88 | 0.63 | 1.23 | 0.465 |
50–59 | 0.98 | 0.77 | 1.24 | 0.859 | 0.89 | 0.64 | 1.25 | 0.511 |
60 and above * | ||||||||
Country | ||||||||
Brazil * | ||||||||
Malaysia | 0.32 | 0.25 | 0.41 | <0.001 | 0.73 | 0.53 | 1.00 | 0.048 |
Thailand | 0.37 | 0.30 | 0.45 | <0.001 | 1.54 | 1.14 | 2.10 | 0.006 |
Bangladesh | 0.57 | 0.47 | 0.69 | <0.001 | 1.43 | 1.08 | 1.90 | 0.012 |
African countries† | 0.20 | 0.16 | 0.24 | <0.001 | 0.51 | 0.39 | 0.67 | <0.001 |
Gender | ||||||||
Male* | ||||||||
Female | 1.00 | 0.89 | 1.11 | 0.938 | 0.75 | 0.65 | 0.88 | <0.001 |
Highest education level attained | ||||||||
Primary/Secondary * | ||||||||
Undergraduate | 1.48 | 1.25 | 1.77 | <0.001 | 1.50 | 1.19 | 1.89 | 0.001 |
Postgraduate | 1.31 | 1.09 | 1.58 | 0.005 | 1.30 | 1.02 | 1.68 | 0.037 |
Number of household members | 0.99 | 0.97 | 1.01 | 0.249 | 0.94 | 0.92 | 0.97 | <0.001 |
Income status | ||||||||
Low * | ||||||||
Lower middle | 1.23 | 1.01 | 1.49 | 0.038 | 1.19 | 0.92 | 1.55 | 0.181 |
Higher middle | 1.75 | 1.42 | 2.16 | <0.001 | 1.29 | 0.98 | 1.72 | 0.074 |
High | 1.90 | 1.32 | 2.73 | <0.001 | 1.27 | 0.77 | 2.08 | 0.353 |
Residential setting | ||||||||
Rural * | ||||||||
Suburban/Urban slum | 1.08 | 0.86 | 1.38 | 0.503 | 0.98 | 0.71 | 1.36 | 0.924 |
Urban | 0.97 | 0.79 | 1.20 | 0.795 | 1.04 | 0.79 | 1.38 | 0.768 |
Student or worker in the health sector | ||||||||
No * | ||||||||
Yes | 1.11 | 0.99 | 1.24 | 0.080 | 1.00 | 0.86 | 1.17 | 0.968 |
COVID-19 testing/Infection status | ||||||||
Not tested/ Does not know test results * | ||||||||
Negative | 1.35 | 1.19 | 1.53 | <0.001 | 1.37 | 1.15 | 1.63 | <0.001 |
Positive | 1.05 | 0.86 | 1.28 | 0.627 | 0.92 | 0.70 | 1.20 | 0.536 |
Presence of chronic disease(s) § | ||||||||
No * | ||||||||
Yes | 0.81 | 0.71 | 0.92 | 0.001 | 0.92 | 0.76 | 1.11 | 0.394 |
Worry about being infected with COVID-19 | 1.32 | 1.25 | 1.38 | <0.001 | 1.30 | 1.21 | 1.40 | <0.001 |
Depression symptoms (PHQ-2 score ≥3) | ||||||||
Screened negative * | ||||||||
Screened positive | 1.06 | 0.90 | 1.25 | 0.503 | 1.05 | 0.83 | 1.34 | 0.661 |
Anxiety symptoms (GAD-2 score ≥3) | ||||||||
Screened negative * | ||||||||
Screened positive | 0.89 | 0.75 | 1.06 | 0.200 | 0.91 | 0.70 | 1.17 | 0.444 |
Knowledge of COVID-19 vaccines ⁋ | 2.09 | 1.96 | 2.22 | <0.001 | 2.13 | 1.96 | 2.31 | <0.001 |
Importance of vaccine to protect self | 1.64 | 1.56 | 1.73 | <0.001 | 2.49 | 2.34 | 2.66 | <0.001 |
Country | Total Confirmed Cases as of 9 February 2021 * | Total Deaths as of 9 February 2021 * | Vaccine Roll-Out Date | Vaccine Type | Vaccine Doses Administered as of 9 February 2021 (%) ** | Vaccine Doses Administered as of 27 April 2021 (%) ** |
---|---|---|---|---|---|---|
Brazil | 9,524,640 | 231,534 | 23 January 2021 | Sinovac, AstraZeneca | 3.82 million | 40.17 million |
Malaysia | 245,552 | 896 | 24 February 2021 | Sinovac, Pfizer, AstraZeneca | 0 | 1.37 million |
Thailand | 23,746 | 79 | 28 February 2021 | Sinovac, AstraZeneca | 0 | 1.28 million |
Bangladesh | 538,378 | 8221 | 7 February 2021 | AstraZeneca | 179,318 | 8.40 million |
DR Congo | 23,670 | 681 | 19 April 2021 | AstraZeneca | 0 | 1710 |
Benin | 4193 | 55 | 29 March 2021 | AstraZeneca Sinovac | 0 | ~70,000 *** |
Uganda | 39,860 | 27 | 10 March 2021 | AstraZeneca | 0 | 321,350 |
Malawi | 27,422 | 874 | 16 March 2021 | AstraZeneca | 0 | 281,049 |
Mali | 8181 | 339 | 8 April 2021 | AstraZeneca | 0 | 49,903 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bono, S.A.; Faria de Moura Villela, E.; Siau, C.S.; Chen, W.S.; Pengpid, S.; Hasan, M.T.; Sessou, P.; Ditekemena, J.D.; Amodan, B.O.; Hosseinipour, M.C.; et al. Factors Affecting COVID-19 Vaccine Acceptance: An International Survey among Low- and Middle-Income Countries. Vaccines 2021, 9, 515. https://doi.org/10.3390/vaccines9050515
Bono SA, Faria de Moura Villela E, Siau CS, Chen WS, Pengpid S, Hasan MT, Sessou P, Ditekemena JD, Amodan BO, Hosseinipour MC, et al. Factors Affecting COVID-19 Vaccine Acceptance: An International Survey among Low- and Middle-Income Countries. Vaccines. 2021; 9(5):515. https://doi.org/10.3390/vaccines9050515
Chicago/Turabian StyleBono, Suzanna Awang, Edlaine Faria de Moura Villela, Ching Sin Siau, Won Sun Chen, Supa Pengpid, M Tasdik Hasan, Philippe Sessou, John D. Ditekemena, Bob Omoda Amodan, Mina C. Hosseinipour, and et al. 2021. "Factors Affecting COVID-19 Vaccine Acceptance: An International Survey among Low- and Middle-Income Countries" Vaccines 9, no. 5: 515. https://doi.org/10.3390/vaccines9050515
APA StyleBono, S. A., Faria de Moura Villela, E., Siau, C. S., Chen, W. S., Pengpid, S., Hasan, M. T., Sessou, P., Ditekemena, J. D., Amodan, B. O., Hosseinipour, M. C., Dolo, H., Siewe Fodjo, J. N., Low, W. Y., & Colebunders, R. (2021). Factors Affecting COVID-19 Vaccine Acceptance: An International Survey among Low- and Middle-Income Countries. Vaccines, 9(5), 515. https://doi.org/10.3390/vaccines9050515