Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-Cov-2
Abstract
:1. Introduction
2. Environmental Risk Assessment
2.1. Assessment of the Viral Vector Backbone
2.2. Assessment of the Characteristics of the Inserted Gene Sequences
3. Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-CoV-2
3.1. Replication Deficient Viral Vectors
3.1.1. Adenoviral Vectors
3.1.2. Modified Vaccinia Virus Ankara (MVA) Vectors
3.1.3. Recombinant Influenza Virus Vectors
3.2. Replication Competent Viral Vectors
3.2.1. Live-Attenuated Measles Virus Vector
3.2.2. Vesicular Stomatitis Virus (VSV)-Vectors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 18 March 2021).
- Hodgson, S.H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.R.W.; Pollard, A.J. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect. Dis. 2021, 21, e26–e35. [Google Scholar] [CrossRef]
- Directive 2001/20/CE of the European Parliament and of the Council of 4 April 2001 on the approximation of the laws, regulations and administrative provisions of the Member States relating to the implementation of good clinical practices in the conduct of clinical trials on medicinal products for human use. Off. J. 2001, L121, 34.
- Regulation (EC) N° 726/2004 of the European Parliament and of the Council of 31 March 2004 laying down Community procedures for the authorization and supervision of medicinal products for human and veterinary use and establishing a European Medicines Agency. Off. J. 2004, L136, 1.
- Directive 2001/18/EC of the European parliament and of the Council of 12 March on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. Off. J. 2001, L106, 1.
- Zhu, F.-C.; Li, Y.-H.; Guan, X.-H.; Hou, L.-H.; Wang, W.-J.; Li, J.-X.; Wu, S.-P.; Wang, B.-S.; Wang, Z.; Wang, L.; et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020, 395, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.-C.; Guan, X.-H.; Li, Y.-H.; Huang, J.-Y.; Jiang, T.; Hou, L.-H.; Li, J.-X.; Yang, B.-F.; Wang, L.; Wang, W.-J.; et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomized, double-blind, placebo-controlled, phase 2 trial. Lancet 2020, 396, 479–488. [Google Scholar] [CrossRef]
- Logunov, D.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomized controlled phase 3 trial in Russia. Lancet 2021, 397, 671–681. [Google Scholar] [CrossRef]
- Sadoff, J.; Le Gars, M.; Shukarev, G.; Heerwegh, D.; Truyers, C.; de Groot, A.M.; Stoop, J.; Tete, S.; Van Damme, W.; Leroux-Roels, I.; et al. Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N. Engl. J. Med. 2021. [Google Scholar] [CrossRef]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Gabitzsch, E.; Safrit, J.T.; Verma, M.; Rice, A.; Sieling, P.; Zakin, L.; Shin, A.; Morimoto, B.; Adisetiyo, H.; Wong, R.; et al. Complete protection of nasal and lung airways against SARS-CoV-2 challenge by antibody plus Th1 dominant N- and S-specific T-cell responses to subcutaneous prime and thermally-stable oral boost bivalent hAd5 vaccination in an NHP study. bioRxiv preprint 2021. [Google Scholar] [CrossRef]
- Capone, S.; Raggioli, A.; Gentile, M.; Battella, S.; Lahm, A. Immunogenicity of a new gorilla adenovirus vaccine candidate for COVID-19. bioRxiv preprint 2020. [Google Scholar] [CrossRef]
- Pharmaceutical Technology. Vaxart’s Oral Vaccine Candidate Triggers Immune Response in Covid-19 Trial. Available online: https://www.pharmaceutical-technology.com/news/vaxart-oral-vaccine-candidate/ (accessed on 30 March 2021).
- Tscherne, A.; Schwarz, J.H.; Rohde, C.; Kupke, A.; Kalodimou, G.; Limpinsel, L.; Okba, N.; Bosnjak, B.; Sandrock, I.; Halwe, S.; et al. Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA SARS 2 S in preclinical vaccination. bioRxiv preprint 2021. [Google Scholar] [CrossRef]
- Chiuppesi, F.; d’Alincourt Salazar, M.; Contreras, H.; Nguyen, V.H.; Martinez, J.; Park, Y.; Nguyen, J.; Kha, M.; Iniguez, A.; Zhou, Q.; et al. Development of a multi-antigenic SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. Nat. Commun. 2020, 11, 6121. [Google Scholar] [CrossRef]
- Chinese Clinical Trial Registry (ChiCTR). A Phase I Clinical Trial of Influenza Virus Vector COVID-19 Vaccine for Intranasal Spray (DelNS1-2019-nCoV-RBD-OPT1). Registration Number: ChiCTR2000037782. Available online: www.chictr.org.cn/showprojen.aspx?proj=55421 (accessed on 26 March 2021).
- Chinese Clinical Trial Registry (ChiCTR). A Phase II Clinical Trial of Influenza Virus Vector COVID-19 Vaccine for Intranasal Spray (DelNS1-2019-nCoV-RBD-OPT1). Registration Number: ChiCTR2000039715. Available online: www.chictr.org.cn/showprojen.aspx?proj=63754 (accessed on 26 March 2021).
- U.S. National Institutes of Health; ClinicalTrials.gov. Clinical Trial to Evaluate the Safety and Immunogenicity of the COVID-19 Vaccine (COVID-19-101). Official Title: A Randomized, Placebo-Controlled Trial, to Evaluate the Safety and Immunogenicity of the COVID-19 Vaccine, a Measles Vector-Based Vaccine Candidate against COVID-19 in Healthy Volunteers Consisting of an Unblinded Dose Escalation and a Blinded Treatment Phase. ClinicalTrials.gov Identifier: NCT04497298. Available online: https://clinicaltrials.gov/ct2/show/NCT04497298 (accessed on 26 March 2021).
- U.S. National Institutes of Health; ClinicalTrials.gov. Dose Ranging Trial to Assess Safety and Immunogenicity of V590 (COVID-19 Vaccine) in Healthy adults (V590-001). Official Title: A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Trial to Evaluate the Safety and Immunogenicity of V590 in Healthy Adults. ClinicalTrials.gov Identifier: NCT04569786. Available online: https://clinicaltrials.gov/ct2/show/NCT04569786 (accessed on 26 March 2021).
- U.S. National Institutes of Health; ClinicalTrials.gov. Evaluate the Safety, Immunogenicity and Potential Efficacy of an rVSV-SARS-CoV-2-S Vaccine. Official Title: A Phase I/II Randomized, Multi-center, Placebo-Controlled, Dose-Escalation Study to Evaluate the Safety, Immunogenicity and Potential Efficacy of an rVSV-SARS-CoV-2-S Vaccine (IIBR-100) in Adults. ClinicalTrials.gov Identifier: NCT04608305. Available online: https://clinicaltrials.gov/ct2/show/NCT04608305 (accessed on 26 March 2021).
- Committee for the Medicinal Product for Human Use (CHMP). Guideline on Scientific Requirements for the Environmental Risk Assessment of Gene Therapy Medicinal Products. EMA 2008. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-scientific-requirements-environmental-risk-assessment-gene-therapy-medicinal-products_en.pdf (accessed on 26 March 2021).
- Baldo, A.; van den Akker, E.; Bergmans, H.E.; Lim, F.; Pauwels, K. General considerations on the biosafety of virus-derived vectors used in gene therapy and vaccination. Curr. Gene Ther. 2013, 13, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Linkov, I.; Loney, D.; Cormier, S.; Satterstrom, F.K.; Bridges, T. Weight-of-evidence evaluation in environmental risk assessment: Review of qualitative and quantitative approaches. Sci. Total. Environ. 2009, 407, 5199–5205. [Google Scholar] [CrossRef]
- EC Commission Decision 2002/623/EC of 24 July 2002 establishing guidance notes supplementing Annex II to Directive 2001/18/EC of the European Parliament and of the Council on the Deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EC. Off. J. 2002, L200.
- Schenk-Braat, E.A.; van Mierlo, M.M.; Wagenmaker, G.; Bangma, C.H.; Kaptein, L.C. An inventory of shedding data from clinical gene therapy trials. J. Gene Med. 2007, 9, 910–921. [Google Scholar] [CrossRef]
- Bergmans, H., Logie; van Maanen, K.; Hermsen, H.; Meredyth, M.; van Der Vlugt, C. Identification of potential hazardous human gene products in GMO risk assessment. Environ. Biosafety Res. 2008, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortorici, M.A.; Vleesler, D. Structural insights into coronavirus entry. Adv. Virus Res. 2019, 105, 93–116. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 180, 281–292. [Google Scholar] [CrossRef]
- Case, J.B.; Rothlauf, P.W.; Chen, R.E.; Liu, Z.; Zhao, H.; Kim, A.S.; Bloyet, L.-M.; Zeng, Q.; Tahan, S.; Droit, L. Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2. Cell Host Microbe 2020, 28, 475–485. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Institutes of Health; ClinicalTrials.gov. Safety, Tolerability and Immunogenicity of the Candidate Vaccine MVA-SARS-2-S against COVID-19. Official Title: An Open, Single-Center Phase I Trial to Assess the Safety, Tolerability and Immunogenicity of Two Ascending Doses of the Candidate Vaccine MVA-SARS-2-S. ClinicalTrials.gov Identifier: NCT04569383. Available online: https://clinicaltrials.gov/ct2/show/NCT04569383 (accessed on 26 March 2021).
- U.S. National Institutes of Health; ClinicalTrials.gov. Safety and Immunogenicity Trial of an Oral SARS-CoV-2 Vaccine (VXA-CoV2-1) for Prevention of COVID-19 in Healthy Adults. Official Title: A Phase 1 Open-Label, Dose-Ranging Trial to Determine the Safety and Immunogenicity of an Adenoviral-Vector Based Vaccine (VXA-CoV2-1) Expressing a SARS-CoV-2 Antigen and dsRNA Adjuvant Administered Orally to Healthy Adult Volunteers. ClinicalTrials.gov Identifier: NCT04563702. Available online: https://clinicaltrials.gov/ct2/show/NCT04563702 (accessed on 26 March 2021).
- Dutta, N.K.; Mazumdar, K.; Gordy, J.T. The nucleocapsid protein of SARS-CoV-2: A target for vaccine development. J. Virol. 2020, 94, e00647-20. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.; Verma, M.; Shin, A.; Zakin, L.; Sieling, P.; Tanaka, S.; Adisetiyo, H.; Taft, J.; Patel, R.; Buta, S.; et al. A next generation bivalent human Ad5 COVID-19 vaccine delivering both spike and nucleocapsid antigens elicits Th1 dominant CD4+, CD8+ T-cell and neutralizing antibody responses. bioRxiv preprint 2020. [Google Scholar] [CrossRef]
- McBride, R.; van Zyl, M.; Fielding, B.C. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014, 6, 2991–3018. [Google Scholar] [CrossRef] [Green Version]
- Giménez-Roig, J.; Núñez-Manchón, E.; Alemany, R.; Villanueva, E.; Fillat, C. Codon usage and adenovirus fitness: Implications for vaccine development. Front. Microbiol. 2021, 12, 633946. [Google Scholar] [CrossRef] [PubMed]
- Mauro, V.P.; Chappell, S.A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 2014, 20, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Hulswit, R.J.G.; de Haan, C.A.M.; Bosch, B.-J. Coronavirus spike protein and tropism changes. Adv. Virus Res. 2016, 96, 29–57. [Google Scholar] [CrossRef]
- COVID-19 Vaccine Tracker. Available online: https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/ (accessed on 26 March 2021).
- Government of Canada—Pathogen Safety Data Sheets: Adenovirus (Excluding Serotypes 40 and 41). Available online: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/adenovirus-types-1-2-3-4-5-7-pathogen-safety-data-sheet.html (accessed on 26 March 2021).
- Lichtenstein, D.L.; Wold, W.S.M. Experimental infections of humans with wild-type adenoviruses and with repication-competent adenovirus vectors: Replication, safety, and transmission. Cancer Gene Ther. 2004, 11, 819–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Kumar, R.; Agrawal, B. Adenoviral vector-based vaccines and gene therapies: Current status and future prospects. In Adenoviruses, 1st ed.; IntechOpen: London, UK, 2018; pp. 1–38. [Google Scholar] [CrossRef] [Green Version]
- Stephen, S.L.; Montini, E.; Sivanandam, V.G.; Al-Dhalimy, M.; Kestler, H.A.; Finegold, M.; Grompe, M.; Kochanek, S. Chromosomal integration of adenoviral vector DNA in vivo. J. Virol. 2010, 84, 9987–9994. [Google Scholar] [CrossRef] [Green Version]
- Harui, A.; Suzuki, S.; Kochanek, S.; Mitani, K. Frequency and stability of chromosomal integration of adenovirus vectors. J. Virol. 1999, 73, 6141–6146. [Google Scholar] [CrossRef] [Green Version]
- Wold, W.S.M.; Toth, K. Adenovirus vectors for gene therapy, vaccination and cancer therapy. Curr. Gene Ther. 2013, 13, 421–433. [Google Scholar] [CrossRef]
- Zahn, R.; Gillisen, G.; Roos, A.; Koning, M.; van der Helm, E.; Spek, D.; Weijtens, M.; Pau, M.G.; Radosevic, K.; Weverling, G.J. Ad35 and Ad26 vaccine vectors induce potent and cross-reactive antibody and T-cell responses to multiple filovirus species. PLoS ONE 2012, 7, e44115. [Google Scholar] [CrossRef]
- Dicks, M.D.J.; Spencer, A.J.; Edwards, N.J.; Wadell, G.; Bojang, K.; Gilbert, S.C.; Hill, A.V.S.; Cottingham, M.G. A novel chimpanzee adenovirus vector with low human seroprevalence: Improved systems for vector derivation and comparative immunogenicity. PLoS ONE 2012, 7, e40385. [Google Scholar] [CrossRef] [Green Version]
- Fallaux, F.J.; Bout, A.; van der Velde, I.; van den Wollenberg, D.J.M.; Hehir, K.M.; Keegan, J.; Auger, C.; Cramer, S.J.; van Ormondt, H.; van der Eb, A.J.; et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene Ther. 1998, 9, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Youil, R.; Toner, T.J.; Su, Q.; Chen, M.; Tang, A.; Bett, A.J.; Casimiro, D. Hexon gene switch strategy for the generation of chimeric recombinant adenovirus. Hum. Gene Ther. 2002, 13, 311–320. [Google Scholar] [CrossRef]
- Brandon, E.F.A.; Tiesjema, B.; van Eijkeren, J.C.H.; Hermsen, H.P.H.; National Institute for Public Health and the Environment, RIVM. Effect of Administration Route on Biodistribution and Shedding of Replication-Deficient Viral Vectors Used in Gene Therapy, A Literature Study. RIVM Report 320001001/2008; RIVM: Bilthoven, The Netherlands, 2008. [Google Scholar]
- Peters, A.H.F.M.; Drumm, J.; Ferrell, C.; Roth, D.A.; Roth, D.M.; McCaman, M.; Novak, P.L.; Friedman, J.; Engler, R. Absence of germline infection in male mice following intraventricular injection of adenovirus. Mol. Ther. 2001, 4, 603–613. [Google Scholar] [CrossRef]
- Schramm, B.; Locker, J.K. Cytoplasmic organization of poxvirus DNA replication. Traffic 2005, 6, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Im, E.J.; Hanke, T. MVA as a vector for vaccines against HIV-1. Expert Rev. Vaccines 2004, 3, S89–S97. [Google Scholar] [CrossRef]
- Gilbert, S.C. Clinical development of modified vaccinia virus Ankara vaccines. Vaccine 2013, 31, 4241–4246. [Google Scholar] [CrossRef] [PubMed]
- Volz, A., Sutter. Modified vaccinia Ankara: History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017, 97, 187–243. [Google Scholar] [CrossRef] [PubMed]
- Förster, R.; Fleige, H.; Sutter, G. Combating COVID-19: MVA vector vaccines applied to the respiratory tract as promising approach toward protective immunity in the lung. Front. Immunol. 2020, 11, 1959. [Google Scholar] [CrossRef]
- Koch, T.; Dahlke, C.; Fathi, A.; Kupke, A.; Krähling, V.; Okba, N.M.A.; Halwe, S.; Rohde, C.; Eickmann, M.; Volz, A.; et al. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: An open-label, phase I trial. Lancet Infect. Dis. 2020, 20, 827–838. [Google Scholar] [PubMed]
- U.S. National Institutes of Health; ClinicalTrials.gov. A Synthetic MVA-Based SARS-CoV-2 Vaccine, COH04S1, for the Prevention of COVID-19. Official Title: Phase 1 Dose Escalation Study to Evaluate the Safety and Biologically Effective Dose of COH04S1, a Synthetic MVA-Based SARS-CoV-2 Vaccine, Administered as one or Two Injections to Healthy Adult Volunteers. ClinicalTrials.gov Identifier: NCT04639466. Available online: https://clinicaltrials.gov/ct2/show/NCT04639466 (accessed on 26 March 2021).
- Verheust, C.; Goossens, M.; Pauwels, K.; Breyer, D. Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination. Vaccine 2012, 30, 2623–2632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goossens, M.; Pauwels, K.; Willemarck, N.; Breyer, D. Environmental risk assessment of clinical trials involving modified virus Ankara (MVA)-based vectors. Curr. Gene Ther. 2013, 13, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, H.; Sutter, G.; Mayr, A. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J. Gen. Virol. 1991, 72, 1031–1038. [Google Scholar] [CrossRef]
- Hansen, H.; Okeke, M.I.; Nilssen, O.; Traavik, T. Recombinant viruses obtained from co-infection in vitro with a live vaccinia-vectored influenza vaccine and a naturally occurring cowpox virus display different plaque phenotypes and loss of the transgene. Vaccine 2004, 23, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Langenmayer, M.C.; Lülf-Averhoff, A.-T.; Adam-Neumair, S.; Fux, R.; Sutter, G.; Volz, A. Distribution and absence of generalized lesions in mice following single dose intramuscular inoculation of the vaccine candidate MVA-MERS-S. Biologicals 2018, 54, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Drumond, B.P.; Leite, J.A.; da Fonseca, F.G.; Bonjardim, C.A.; Ferreira, P.C.; Kroon, E. Brazilian Vaccinia virus strains are genetically divergent from the Lister vaccine strain. Microbes Infect. 2008, 10, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Shang, G.; Padavannil, A.; Wang, J.; Sakthivel, R.; Chen, X.; Kim, M.; Thompson, M.G.; García-Sastre, A.; Lynch, K.W.; et al. Structural-functional interactions of NS1-BP protein with the splicing and mRNA export machineries for viral and host gene expression. Proc. Natl. Acad. Sci. USA 1221, 27, E12218–E12227. [Google Scholar] [CrossRef] [Green Version]
- UW – Madison, FluGen, Bharat Biotech to Develop CoroFlu, a Coronavirus Vaccine. Available online: https://news.wisc.edu/uw-madison-flugen-bharat-biotech-to-develop-coroflu-a-coronavirus-vaccine/ (accessed on 26 March 2021).
- EU Clinical Trial Register. A Phase 2a Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate the Safety, Immunogenicity, and Efficacy of Bris10 M2SR (H3N2 A/Brisbane/10/2007) Vaccine Administered as a Single Intranasal Dose (Versus Placebo) in Healthy Adult Volunteers who are Subsequently Challenged with a Live, Antigenically Different Wild-type Influenza Type A Virus (A/Belgium/4217/2015 H3N2). EudraCT number: 2017-004971-30. Available online: https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-004971-30/results (accessed on 26 March 2021).
- Watanabe, S.; Watanabe, T.; Kawaoka, Y. Influenza A virus lacking M2 protein as a live attenuated vaccine. J. Virol. 2009, 83, 5947–5950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Zheng, M.; Lau, S.-Y.; Chen, P.; Mok, B.W.-Y.; Liu, S.; Liu, H.; Huang, X.; Cremin, C.J.; Song, W.; et al. Generation of DelNS1 influenza viruses: A strategy for optimizing live attenuated influenza vaccines. mBio 2019, 10, e02180-19. [Google Scholar] [CrossRef] [Green Version]
- Sarawar, S.; Hatta, Y.; Watanabe, S.; Dias, P.; Neumann, G.; Kawaoka, Y.; Bilsel, P. M2SR, a novel live single replication influenza virus vaccine, provides effective heterosubtypic protection in mice. Vaccine 2016, 34, 5090–5098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohlgemuth, N.; Ye, Y.; Fenstermacher, K.J.; Liu, H.; Lane, A.P.; Pekosz, A. The M2 protein of live, attenuated influenza vaccine encodes a mutation that reduces replication in human nasal epithelial cells. Vaccine 2017, 35, 6691–6699. [Google Scholar] [CrossRef]
- Combredet, C.; Labrousse, V.; Mollet, L.; Lorin, C.; Delebecque, F.; Hurtrel, B.; McClure, H.; Feinberg, M.B.; Brahic, M.; Tangy, F. A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J. Virol. 2003, 77, 11546–11554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billeter, M.A.; Naim, H.Y.; Udem, S.A. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: Applications of recombinant measles virus. Curr. Top. Microbiol. Immunol. 2009, 329, 129–162. [Google Scholar] [CrossRef]
- Griffin, D.E.; Pan, H. Measles: Old vaccines, new vaccines. Curr. Top. Microbiol. Immunol. 2009, 330, 191–212. [Google Scholar] [CrossRef] [PubMed]
- Baldo, A.; Galanis, E.; Tangy, F.; Herman, P. Biosafety considerations for attenuated measles virus vectors used in virotherapy and vaccination. Hum. Vaccin. Immunother. 2016, 12, 1102–1116. [Google Scholar]
- Escriou, N.; Callendret, B.; Lorin, V.; Combredet, C.; Marianneau, P.; Février, M.; Tangy, F. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology 2014, 452–453, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Liniger, M.; Zuniga, A.; Tamin, A.; Azzouz-Morin, T.N.; Knuchel, M.; Marty, R.; Wiegand, M.; Weibel, S.; Kelvin, D.; Rota, P.A.; et al. Induction of neutralizing antibodies and cellular immune responses against SARS coronavirus by recombinant measles virus. Vaccine 2008, 26, 2164–2174. [Google Scholar] [CrossRef]
- Malczyk, A.H.; Kupke, A.; Prüfer, S.; Scheuplein, V.A.; Hutzler, S.; Kreuz, D.; Beissert, T.; Bauer, S.; Hubich-Rau, S.; Tondera, C.; et al. A highly immunogenic and protective middle east respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform. J. Virol. 2015, 89, 11654–11667. [Google Scholar] [CrossRef] [Green Version]
- Bodmer, B.S.; Fiedler, A.H.; Hanauer, J.R.H.; Prüfer, S.; Mühlebach, M.D. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model. Virology 2018, 521, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Frantz, P.N.; Teeravechyan, S.; Tangy, F. Measles-derived vaccines to prevent emerging viral diseases. Microbes Infect. 2018, 20, 493–500. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Institutes of Health; ClinicalTrials.gov. Study to Evaluate the Dosage and Safety of Two Intramuscular Injections of an Investigational Clade B HIV Vaccine. Official Title: An Open-Label, Phase I, Dose-escalation and Safety Study of Two Intramuscular Injections of a Dose of 2.9 Log or 4 Log CCID50 of the Recombinant HIV I clade B Measles Vaccine Vector in Healthy Adults. ClinicalTrials.gov Identifier: NCT01320176. Available online: https://clinicaltrials.gov/ct2/show/NCT01320176 (accessed on 26 March 2021).
- Ramsauer, K.; Schwameis, M.; Firbas, C.; Müllner, M.; Putnak, R.J.; Thomas, S.J.; Desprès, P.; Tauber, E.; Jilma, B.; Tangy, F. Immunogenicity, safety and tolerability of a recombinant measles virus-based chikungunya vaccine: A randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect. Dis. 2015, 15, 519–527. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Institutes of Health; ClinicalTrials.gov. Zika-Vaccine Dose Finding Study Regarding Safety, Immunogenicity and Tolerability. ClinicalTrials.gov Identifier: NCT02996890. Available online: https://clinicaltrials.gov/ct2/show/NCT02996890 (accessed on 26 March 2021).
- Reisinger, E.C.; Tschismarov, R.; Beubler, E.; Wiedermann, U.; Firbas, C.; Loebermann, M.; Pfeiffer, E.C.; Muellner, M.; Tauber, E.; Ramsauer, K. Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: A double-blind, randomized, placebo-controlled and active-controlled phase 2 trial. Lancet 2019, 392, 2718–2727. [Google Scholar] [CrossRef] [PubMed]
- Bellini, W.J.; Rota, P.A. Genetic diversity of wild-type measles viruses: Implications for global measles elimination programs. Emerg. Infect. Dis. 1998, 4, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.T.; Halsey, N.A. The clinical significance of measles: A review. J. Infect. Dis. 2004, 189, S4–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, W.J. Measles control and the prospect of eradication. Curr. Top. Microbiol. Immunol. 2009, 330, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Moss, W.J., Griffin. Global measles elimination. Nat. Rev. Microbiol. 2006, 12, 900–908. [Google Scholar] [CrossRef]
- Msaouel, P.; Opyrchal, M.; Domingo, M.E.; Galanis, E. Oncolytic measles virus strains as novel anticancer agents. Expert Opin. Biol. Ther. 2013, 13, 483–502. [Google Scholar] [CrossRef]
- Knuchel, M.C.; Marty, R.R.; Azzouz Morin, T.N.; Iter, O.; Zuniga, A.; Naim, H.Y. Relevance of pre-existing measles immunity prior immunization with a recombinant measles virus vector. Hum. Vaccin. Immunother. 2013, 9, 599–660. [Google Scholar] [CrossRef] [Green Version]
- Rager-Zisman, B.; Bazarsky, E.; Skibin, A.; Chamney, S.; Belmaker, I.; Sai, I.; Kordysh, E.; Griffin, D.E. The effect of measles-mumps-rubella (MMR) immunization on the immune responses of previously immunized primary school children. Vaccine 2003, 21, 2580–2588. [Google Scholar] [CrossRef] [PubMed]
- Wong-Chew, R.M.; Beeler, J.A.; Audet, S.; Santos, J.I. Cellular and humoral immune responses to measles in immune adults re-immunized with measles vaccine. J. Med. Virol. 2003, 70, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, W.; Wolfe, S.; Hamborsky, J.; McIntyre, L. Epidemiology and Prevention of Vaccine-Preventable Diseases, 11th ed.; Public Health Foundation: Washington, DC, USA, 2009. [Google Scholar]
- Merck Stops Developing both of Its COVID-19 Vaccine Candidates. Available online: https://www.herald.co.zw/merck-stops-developing-both-of-its-covid-19-vaccine-candidates/ (accessed on 26 March 2021).
- Tell, J.G.; Coller, B.-A.G.; Dubey, S.A.; Jenal, U.; Lapps, W.; Wang, L.; Wolf, J. Environmental risk assessment for rVSVΔG-ZEBOV-GP, a genetically modified live vaccine for Ebola virus disease. Vaccines 2020, 8, 779. [Google Scholar] [CrossRef]
- Rozo-Lopez, P.; Drolet, B.S.; Londoño-Renteria, B. Vesicular stomatitis virus transmission: A comparison of incriminated vectors. Insects 2018, 9, 190. [Google Scholar] [CrossRef] [Green Version]
- Bergren, N.A.; Miller, M.R.; Monath, T.P.; Kading, R.C. Assessment of the ability of V920 recombinant vesicular stomatitis-Zaire ebolavirus vaccine to replicate in relevant arthropod cell cultures and vector species. Hum. Vaccines Immunother. 2018, 14, 994–1002. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P.; Fast, P.E.; Modjarrad, K.; Clarke, D.K.; Martin, B.K.; Fusco, J.; Nichols, R.; Heppner, D.G.; Simon, J.K.; Dubey, S.; et al. rVSVΔ-G-ZEBOV-GP (also designated V920) recombinant vesicular stomatitis virus pseudotyped with Ebola Zaire Glycoprotein: Standardized template with key considerations for a risk/benefit assessment. Vaccine X 2019, 1, 100009. [Google Scholar] [CrossRef]
- Letchworth, G.J.; Rodriguez, L.L.; Del Cbarrera, J. Vesicular stomatitis. Vet. J. 1999, 157, 239–260. [Google Scholar] [CrossRef]
- Government of Canada—Pathogen Safety Data Sheets: Vesicular Stomatitis Virus (VSV). Available online: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/vesicular-stomatitis-virus.html (accessed on 26 March 2021).
- Rodríguez, L.L. Emergence and re-emergence of vesicular stomatitis in the United States. Virus Res. 2002, 85, 211–219. [Google Scholar] [CrossRef]
- Awad, S.S.; Rodriguez, A.H.; Chuang, Y.C.; Marjanek, Z.; Pareigis, A.J.; Reis, G.; Scheeren, T.W.; Sanchez, A.S.; Zhou, X.; Saulay, M. A phase 3 randomized double-blind comparison of Ceftobiprole Medocaril versus Ceftazidime plus Linezolid for the treatment of hospital-acquired pneumonia. Clin. Infect. Dis. 2014, 59, 51–61. [Google Scholar] [CrossRef]
- Lyles, D.S.; Rupprecht, C.E. Rhabdoviridae. Fields Virology; Peter, K.M., David, H.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 1364–1408. [Google Scholar]
- World Organisation for Animal Health (OIE). Animal Health in the World—Overview. Available online: http://www.oie.int/en/animal-health-in-the-world/oie-listed-diseases-2019/ (accessed on 26 March 2021).
- Brown, K.S.; Safronetz, D.; Marzi, A.; Ebihara, H.; Feldmann, H. Vesicular stomatitis virus-based vaccine protects hamsters against lethal challenge with Andes virus. J. Virol. 2011, 85, 12781–12791. [Google Scholar] [CrossRef] [Green Version]
- Furuyama, W.; Reynolds, P.; Haddock, E.; Meade-White, K.; Quynh Le, M.; Kawaoka, Y.; Feldmann, H.; Marzi, A. A single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. NPJ Vaccines 2020, 5. [Google Scholar] [CrossRef]
- Garbutt, M.; Liebscher, R.; Wahl-Jensen, V.; Jones, S.; Moller, P.; Wagner, R.; Volchkov, V.; Klenk, H.D.; Feldmann, H., Stroher. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J. Virol. 2004, 78, 5458–5465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisbert, T.W.; Jones, S.; Fritz, E.A.; Shurtleff, A.C.; Geisbert, J.B.; Liebscher, R.; Grolla, A.; Ströher, U.; Fernando, L.; Daddario, K.M.; et al. Development of a new vaccine for the prevention of Lassa fever. PloS Med. 2005, 2, e183. [Google Scholar] [CrossRef]
- Jones, S.M.; Feldmann, H.; Stroher, U.; Geisbert, J.B.; Fernando, L.; Grolla, A.; Klenk, H.D.; Sullivan, N.J.; Volchkov, V.E.; Fritz, E.A.; et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med. 2005, 11, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.; Dahlke, C.; Addo, M.M. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum. Vaccin. Immunother. 2019, 15, 2269–2285. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Assessment Report. Everbo. Common Name: Ebola Zaire Vaccine (rVSVDG-ZEBOV-GP, Live); European Medicines Agency: Amsterdam, The Netherlands, 2019; Available online: https://www.ema.europa.eu/en/documents/assessment-report/ervebo-epar-public-assessment-report_en.pdf (accessed on 24 March 2021).
- Case, J.B.; Rothlauf, P.W.; Chen, R.E.; Kafai, N.M.; Fox, J.M.; Smith, B.K.; Shrihari, S.; McCune, B.T.; Harvey, I.B.; Keeler, S.P.; et al. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice. Cell Host Microbe 2020, 28, 465.e4–474.e4. [Google Scholar] [CrossRef]
- Geisbert, T.; Feldmann, H. Recombinant vesicular stomatitis virus–based vaccines against Ebola and Marburg virus infections. J. Infect. Dis. 2011, 204, S1075–S1081. [Google Scholar] [CrossRef] [PubMed]
- Coller, B.-A.G.; Blue, G.; Das, R.; Dubey, S.; Finelli, L.; Gupta, S.; Helmond, F.; Grant-Klein, R.J.; Liu, K.; Simon, J. Clinical development of a recombinant Ebola vaccine in the midst of an unprecedented epidemic. Vaccine 2017, 35, 4465–4469. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Daddario-Dicaprio, K.M.; Lewis, M.G.; Geisbert, J.B.; Grolla, A.; Leung, A.; Paragas, J.; Matthias, L.; Smith, M.A.; Jones, S.M.; et al. Vesicular Stomatitis Virus-Based Ebola Vaccine Is Well-Tolerated and Protects Immunocompromised Nonhuman Primates. PLoS Pathog. 2008, 4, e1000225. [Google Scholar] [CrossRef]
- McWilliams, I.L.; Kielczewski, J.L.; Ireland, D.D.C.; Sykes, J.S.; Lewkowicz, A.P.; Konduru, K.; Xu, B.C.; Chan, C.-C.; Caspi, R.R.; Manangeeswaran, M.; et al. Pseudovirus rVSVΔG-ZEBOV-GP Infects Neurons in Retina and CNS, Causing Apoptosis and Neurodegeneration in Neonatal Mice. Cell Rep. 2019, 26, 1718.e4–1726.e4. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.K.; Hendry, R.M.; Singh, V.; Rose, J.K.; Seligman, S.J.; Klug, B.; Kochhar, S.; Mac, L.M.; Carbery, B.; Chen, R.T.; et al. Live Virus Vaccines Based on a Vesicular Stomatitis Virus (VSV) Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment. Vaccine 2016, 34, 6597–6609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, B.; Summermatter, K.; Zimmer, G. Stability and inactivation of vesicular stomatitis virus, a prototype rhabdovirus. Vet. Microbiol. 2013, 162, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, J.; Shao, Y.; Wang, X.; Zhang, H.; Shuai, L.; Ge, J.; Wen, Z.; Bu, Z. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antiviral Res. 2018, 150, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Chare, E.R.; Gould, E.A.; Holmes, E.C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 2003, 84, 2691–2703. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). SARS-CoV-2 Variant Classifications and Definitions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html (accessed on 26 March 2021).
- Regulation (EU) 2020/1043 of the European parliament and of the council of 15 July 2020 on the conduct of clinical trials with and supply of medicinal products for human use containing or consisting of genetically modified organisms intended to treat or prevent coronavirus disease (COVID-19). Off. J. 2020, L 231/12. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R1043&from=EN (accessed on 3 May 2021).
Viral Vector Vaccine Candidate | COVID-19 Vaccine Developer/Manufacturer | Genetic Modifications of the Vector | Inserted Gene Sequences | Route of Administration | Clinical Stage | References |
---|---|---|---|---|---|---|
Ad5-nCov/Convidicea | CaniSino Biologicals Inc., Bejin Institute of Biotechnology CanSino Biologicals Inc/Institute of Biotechnology, Academy of Military Medical Sciences, PLA of China | Nonreplicating human Ad5 E1 and E3 deleted | Optimised Spike coding sequence | Intramuscular (IM) Mucosal administration | Phase III (NCT04526990), Phase I/II (NCT04552366) | [6,7] |
Gam-COVID-Vac/Sputnik V COVID-19 vaccine | Gamaleya Research Institute | Nonreplicating human Ad26 and Ad5 E1 and E3 deleted | Full-length glycoprotein S | IM | Phase III (NCT04530396) | [8] |
Ad26.CoV2.S/COVID-19 vaccine Janssen | Janssen Pharmaceutical Companies | Nonreplicating human Ad26 E1 and E3-deleted | Stabilised wt Spike protein in the prefusion conformation | IM | Authorised for use in the European Union (EU) | [9] |
ChAdOx1- S/COVID-19 vaccine AstraZeneca | AstraZeneca—University of Oxford | Nonreplicating Chimpanzee adenovirus ChAdY25 E1 and E3-deleted exchange the native E4 orf4, orf6 and orf6/7 genes for those from human adenovirus hAd5 | Codon-optimised full-length Spike protein of SARS-CoV-2 | IM | Authorised for use in the EU | [10] |
hAd5-S-Fusion+N-ET SD vaccine | ImmunityBio Inc. | Nonreplicating human Ad5 E1, E2b and E3 deleted | Full length Spike fusion protein and nucleocapsid with an enhanced T-cell stimulation domain | Subcutaneous and sublingual boost | NCT04591717 (Phase I) | [11] |
GRAd-CoV-2 | ReiThera srl Leukocare Univercells | Nonreplicating Gorilla Ad32 | S protein | IM | NCT04528641 (Phase I) | [12] |
VXA-CoV2-1 | Vaxart | Nonreplicating human Ad5 | S and N proteins and dsRNA | Oral tablet | NCT04563702 (Phase I) | [13] |
MVA-SARS-2-S | Universitätsklinikum Hamburg-Eppendorf Ludwig-Maximilians-University of Munich | Modified vaccinia virus Ankara (MVA) | Full length S protein | IM |
NCT04569383 (Phase I) | [14] |
COH04S1 | City of Hope Medical Center | A synthetic MVA | S and N proteins | IM | NCT04639466 (Phase I) | [15] |
DelNS1-2019-nCoV-RBD-OPT1 | Xiamen University, Beijing Wantai Biological Pharmacy | Influenza virus vector: deletion of NS1 gene | Receptor Binding Domain (RBD) of S protein | Intranasal spray |
ChiCTR2000037782 (Phase I) ChiCTR2000039715 (Phase II) | [16,17] |
V591 (TMV-083) | Institut Pasteur Themis Bioscience GmbH University of Pittsburg Merck | Measles virus Schwarz vaccine strain | S glycoprotein in its prefusion conformation | IM | NCT04497298 (Phase I) | [18] |
V590 | IAVI Merck (Merck Sharp & Dohme Corp.) | Vesicular stomatitis virus (VSV) | S protein | IM | NCT04569786 (Phase I) | [19] |
R-VSV-SARS-CoV-2-S | Israel Institute for Biological research (IIBR) | Vesicular stomatitis virus (VSV) | S protein | IM | NCT04608305 (Phase II) | [20] |
Elements of the ERA to be considered related to the backbone |
|
Elements of the ERA to be considered related to the exogenous inserted gene sequences and its product |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldo, A.; Leunda, A.; Willemarck, N.; Pauwels, K. Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-Cov-2. Vaccines 2021, 9, 453. https://doi.org/10.3390/vaccines9050453
Baldo A, Leunda A, Willemarck N, Pauwels K. Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-Cov-2. Vaccines. 2021; 9(5):453. https://doi.org/10.3390/vaccines9050453
Chicago/Turabian StyleBaldo, Aline, Amaya Leunda, Nicolas Willemarck, and Katia Pauwels. 2021. "Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-Cov-2" Vaccines 9, no. 5: 453. https://doi.org/10.3390/vaccines9050453