The Potential Role of Nonhuman Primate Models to Better Comprehend Early Life Immunity and Maternal Antibody Transfer
Abstract
:1. Introduction
1.1. Early Life Immune Responses
1.1.1. Animal Models Reflecting Human Early Life Responses
1.1.2. What Nonhuman Primate Models Can Add
1.1.3. Next Steps to the Use of NHPs in Assessing Early Life Responses
1.2. Transfer of Maternal Antibodies
1.2.1. Animal Models to Study Kinetics and Quality of Maternal Antibody Transfer
1.2.2. Role of NHP in Studying Maternal Antibody Transfer
1.2.3. Next Steps to the Use of NHPs in Assessing Transfer and Influence of Maternal Antibodies
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wassenaar, T.M.; Panigrahi, P. Is a foetus developing in a sterile environment? Lett. Appl. Microbiol. 2014, 59, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Kollmann, T.R.; Levy, O.; Montgomery, R.R.; Goriely, S. Innate immune function by Toll-like receptors: Distinct responses in newborns and the elderly. Immunity 2012, 37, 771–783. [Google Scholar] [CrossRef][Green Version]
- World Health Organization. World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization. Available online: https://apps.who.int/iris/handle/10665/332070 (accessed on 27 November 2020).
- Dowling, D.J.; Levy, O. Ontogeny of early life immunity. Trends Immunol. 2014, 35, 299–310. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. IgG Placental Transfer in Healthy and Pathological Pregnancies. Clin. Dev. Immunol. 2012, 2012, 1–13. [Google Scholar] [CrossRef]
- Kollmann, T.R.; Crabtree, J.; Rein-Weston, A.; Blimkie, D.; Thommai, F.; Wang, X.Y.; Lavoie, P.M.; Furlong, J.; Fortuno, E.S.; Hajjar, A.M.; et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J. Immunol. 2009, 183, 7150–7160. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kollmann, T.R.; Levy, O.; Hanekom, W. Vaccine-induced immunity in early life. Vaccine 2013, 31, 2481–2482. [Google Scholar] [CrossRef][Green Version]
- Mohr, E.; Siegrist, C.-A. Vaccination in early life: Standing up to the challenges. Curr. Opin. Immunol. 2016, 41, 1–8. [Google Scholar] [CrossRef]
- PrabhuDas, M.; Adkins, B.; Gans, H.; King, C.; Levy, O.; Ramilo, O.; Siegrist, C.-A. Challenges in infant immunity: Implications for responses to infection and vaccines. Nat. Immunol. 2011, 12, 189–194. [Google Scholar] [CrossRef]
- Siegrist, C.-A. Neonatal and early life vaccinology. Vaccine 2001, 19, 3331–3346. [Google Scholar] [CrossRef]
- Vono, M.; Eberhardt, C.S.; Auderset, F.; Mastelic-Gavillet, B.; Lemeille, S.; Christensen, D.; Andersen, P.; Lambert, P.-H.; Siegrist, C.-A. Maternal Antibodies Inhibit Neonatal and Infant Responses to Vaccination by Shaping the Early-Life B Cell Repertoire within Germinal Centers. Cell Rep. 2019, 28, 1773–1784.e5. [Google Scholar] [CrossRef][Green Version]
- Pihlgren, M.; Tougne, C.; Bozzotti, P.; Fulurija, A.; Duchosal, M.A.; Lambert, P.-H.; Siegrist, C.-A. Unresponsiveness to lymphoid-mediated signals at the neonatal follicular dendritic cell precursor level contributes to delayed germinal center induction and limitations of neonatal antibody responses to T-dependent antigens. J. Immunol. 2003, 170, 2824–2832. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gavillet, B.M.; Eberhardt, C.S.; Auderset, F.; Castellino, F.; Seubert, A.; Tregoning, J.S.; Lambert, P.-H.; de Gregorio, E.; Giudice, G.D.; Siegrist, C.-A. MF59 Mediates Its B Cell Adjuvanticity by Promoting T Follicular Helper Cells and Thus Germinal Center Responses in Adult and Early Life. J. Immunol. 2015, 194, 4836–4845. [Google Scholar] [CrossRef][Green Version]
- Mastelic, B.; Kamath, A.T.; Fontannaz, P.; Tougne, C.; Rochat, A.F.; Belnoue, E.; Combescure, C.; Auderset, F.; Lambert, P.H.; Tacchini-Cottier, F.; et al. Environmental and T cell-intrinsic factors limit the expansion of neonatal follicular T helper cells but may be circumvented by specific adjuvants. J. Immunol. 2012, 189, 5764–5772. [Google Scholar] [CrossRef] [PubMed]
- Belnoue, E.; Pihlgren, M.; McGaha, T.L.; Tougne, C.; Rochat, A.-F.; Bossen, C.; Schneider, P.; Huard, B.; Lambert, P.-H.; Siegrist, C.-A. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 2008, 111, 2755–2764. [Google Scholar] [CrossRef] [PubMed]
- Chirico, G.; Belloni, C.; Gasparoni, A.; Cerbo, R.M.; Rondini, G.; Klersy, C.; Orsolini, P.; Filice, G. Hepatitis B Immunization in Infants of Hepatitis B Surface Antigen-Negative Mothers. Pediatrics 1993, 92, 717–719. [Google Scholar] [PubMed]
- André, F.E.; Zuckerman, A.J. Review: Protective efficacy of hepatitis B vaccines in neonates. J. Med. Virol. 1994, 44, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, M.; Miller, M.M.; Zaghouani, A.A.; Sherman, M.P.; Zaghouani, H. Neonatal Basophils Stifle the Function of Early-Life Dendritic Cells To Curtail Th1 Immunity in Newborn Mice. J. Immunol. 2015, 195, 507–518. [Google Scholar] [CrossRef][Green Version]
- Aradottir Pind, A.A.; Dubik, M.; Thorsdottir, S.; Meinke, A.; Harandi, A.M.; Holmgren, J.; Del Giudice, G.; Jonsdottir, I.; Bjarnarson, S.P. Adjuvants Enhance the Induction of Germinal Center and Antibody Secreting Cells in Spleen and Their Persistence in Bone Marrow of Neonatal Mice. Front. Immunol. 2019, 10, 2214. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pihlgren, M.; Schallert, N.; Tougne, C.; Bozzotti, P.; Kovarik, J.; Fulurija, A.; Kosco-Vilbois, M.; Lambert, P.-H.; Siegrist, C.-A. Delayed and deficient establishment of the long-term bone marrow plasma cell pool during early life. Eur. J. Immunol. 2001, 31, 939–946. [Google Scholar] [CrossRef]
- Vaccinology: Principles and Practice|Wiley. Available online: https://www.wiley.com/en-us/Vaccinology%3A+Principles+and+Practice-p-9781405185745 (accessed on 8 January 2021).
- Colby, L.A.; Quenee, L.E.; Zitzow, L.A. Considerations for Infectious Disease Research Studies Using Animals. Comp. Med. 2017, 67, 222–231. [Google Scholar]
- Traggiai, E.; Chicha, L.; Mazzucchelli, L.; Bronz, L.; Piffaretti, J.-C.; Lanzavecchia, A.; Manz, M.G. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004, 304, 104–107. [Google Scholar] [CrossRef]
- Martinov, T.; McKenna, K.M.; Tan, W.H.; Collins, E.J.; Kehret, A.R.; Linton, J.D.; Olsen, T.M.; Shobaki, N.; Rongvaux, A. Building the Next Generation of Humanized Hemato-Lymphoid System Mice. Front. Immunol. 2021, 12, 643852. [Google Scholar] [CrossRef]
- Messaoudi, I.; Estep, R.; Robinson, B.; Wong, S.W. Nonhuman Primate Models of Human Immunology. Antioxid. Redox Signal. 2011, 14, 261–273. [Google Scholar] [CrossRef][Green Version]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef]
- Broeckel, R.; Haese, N.; Messaoudi, I.; Streblow, D.N. Nonhuman Primate Models of Chikungunya Virus Infection and Disease (CHIKV NHP Model). Pathogens 2015, 4, 662–681. [Google Scholar] [CrossRef]
- Kaushal, D.; Mehra, S.; Didier, P.J.; Lackner, A.A. The non-human primate model of tuberculosis. J. Med. Primatol. 2012, 41, 191–201. [Google Scholar] [CrossRef] [PubMed][Green Version]
- MacPhail, M.; Schickli, J.H.; Tang, R.S.; Kaur, J.; Robinson, C.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Spaete, R.R.; Haller, A.A. Identification of small-animal and primate models for evaluation of vaccine candidates for human metapneumovirus (hMPV) and implications for hMPV vaccine design. J. Gen. Virol. 2004, 85, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Sibal, L.R.; Samson, K.J. Nonhuman Primates: A Critical Role in Current Disease Research. ILAR J. 2001, 42, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Warfel, J.M.; Merkel, T.J. The baboon model of pertussis: Effective use and lessons for pertussis vaccines. Expert Rev. Vaccines 2014, 13, 1241–1252. [Google Scholar] [CrossRef][Green Version]
- Warfel, J.M.; Zimmerman, L.I.; Merkel, T.J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl. Acad. Sci. USA 2013, 111, 787–792. [Google Scholar] [CrossRef][Green Version]
- Batchelder, C.A.; Duru, N.; Lee, C.I.; Baker, C.A.R.; Swainson, L.; Mccune, J.M.; Tarantal, A.F. Myeloid-lymphoid ontogeny in the rhesus monkey (Macaca mulatta). Anat. Rec. (Hoboken) 2014, 297, 1392–1406. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Salisch, N.C.; Izquierdo Gil, A.; Czapska-Casey, D.N.; Vorthoren, L.; Serroyen, J.; Tolboom, J.; Saeland, E.; Schuitemaker, H.; Zahn, R.C. Adenovectors encoding RSV-F protein induce durable and mucosal immunity in macaques after two intramuscular administrations. NPJ Vaccines 2019, 4, 1–13. [Google Scholar] [CrossRef][Green Version]
- Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 2020, 383, 1544–1555. [Google Scholar] [CrossRef]
- Solans, L.; Locht, C. The Role of Mucosal Immunity in Pertussis. Front. Immunol. 2019, 9, 3068. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chege, G.K.; Steele, A.D.; Hart, C.A.; Snodgrass, D.R.; Omolo, E.O.; Mwenda, J.M. Experimental infection of non-human primates with a human rotavirus isolate. Vaccine 2005, 23, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Sestak, K.; McNeal, M.M.; Choi, A.; Cole, M.J.; Ramesh, G.; Alvarez, X.; Aye, P.P.; Bohm, R.P.; Mohamadzadeh, M.; Ward, R.L. Defining T-Cell-Mediated Immune Responses in Rotavirus-Infected Juvenile Rhesus Macaques. J. Virol. 2004, 78, 10258–10264. [Google Scholar] [CrossRef][Green Version]
- Newell, K.W.; Dueñas Lehmann, A.; LeBlanc, D.R.; Garces Osorio, N. The use of toxoid for the prevention of tetanus neonatorum. Final report of a double-blind controlled field trial. Bull. World Health Organ. 1966, 35, 863–871. [Google Scholar]
- Thwaites, C.L.; Beeching, N.J.; Newton, C.R. Maternal and neonatal tetanus. Lancet 2015, 385, 362–370. [Google Scholar] [CrossRef][Green Version]
- Gitlin, D.; Kumate, J.; Urrusti, J.; Morales, C. The Selectivity of the Human Placenta in the Transfer of Plasma Proteins from Mother to Fetus*. J. Clin. Investig. 1964, 43, 1938–1951. [Google Scholar] [CrossRef][Green Version]
- De Moraes-Pinto, M.I.; Almeida, A.C.; Kenj, G.; Filgueiras, T.E.; Tobias, W.; Santos, A.M.; Carneiro-Sampaio, M.M.; Farhat, C.K.; Milligan, P.J.; Johnson, P.M.; et al. Placental transfer and maternally acquired neonatal IgG immunity in human immunodeficiency virus infection. J. Infect. Dis. 1996, 173, 1077–1084. [Google Scholar] [CrossRef][Green Version]
- Jennewein, M.F.; Goldfarb, I.; Dolatshahi, S.; Cosgrove, C.; Noelette, F.J.; Krykbaeva, M.; Das, J.; Sarkar, A.; Gorman, M.J.; Fischinger, S.; et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell 2019, 178, 202–215.e14. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Atyeo, C.; Pullen, K.M.; Bordt, E.A.; Fischinger, S.; Burke, J.; Michell, A.; Slein, M.D.; Loos, C.; Shook, L.L.; Boatin, A.A.; et al. Compromised SARS-CoV-2-specific placental antibody transfer. Cell 2021, 184, 628–642.e10. [Google Scholar] [CrossRef] [PubMed]
- Twisselmann, N.; Bartsch, Y.C.; Pagel, J.; Wieg, C.; Hartz, A.; Ehlers, M.; Härtel, C. IgG Fc Glycosylation Patterns of Preterm Infants Differ With Gestational Age. Front. Immunol. 2019, 9, 3166. [Google Scholar] [CrossRef] [PubMed]
- Palfi, M.; Selbing, A. Placental Transport of Maternal Immunoglobulin G. Am. J. Reprod. Immunol. 1998, 39, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, J.P.; Westerbeek, E.A.M.; Smits, G.P.; van der Klis, F.R.M.; Berbers, G.A.M.; van Elburg, R.M. Lower Transplacental Antibody Transport for Measles, Mumps, Rubella and Varicella Zoster in Very Preterm Infants. PLoS ONE 2014, 9, e94714. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lessa, A.L.S.; Krebs, V.L.J.; Brasil, T.B.; Pontes, G.N.; Carneiro-Sampaio, M.; Palmeira, P. Preterm and term neonates transplacentally acquire IgG antibodies specific to LPS from Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 2011, 62, 236–243. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Doroudchi, M.; Samsami Dehaghani, A.; Emad, K.; Ghaderi, A. Placental transfer of rubella-specific IgG in fullterm and preterm newborns. Int. J. Gynaecol. Obstet. 2003, 81, 157–162. [Google Scholar] [CrossRef]
- Eberhardt, C.S.; Blanchard-Rohner, G.; Lemaître, B.; Boukrid, M.; Combescure, C.; Othenin-Girard, V.; Chilin, A.; Petre, J.; de Tejada, B.M.; Siegrist, C.-A. Maternal Immunization Earlier in Pregnancy Maximizes Antibody Transfer and Expected Infant Seropositivity Against Pertussis. Clin. Infect. Dis. 2016, 62, 829–836. [Google Scholar] [CrossRef][Green Version]
- Eberhardt, C.S.; Blanchard-Rohner, G.; Lemaître, B.; Combescure, C.; Othenin-Girard, V.; Chilin, A.; Petre, J.; Martinez de Tejada, B.; Siegrist, C.-A. Pertussis Antibody Transfer to Preterm Neonates after Second- versus Third-Trimester Maternal Immunization. Clin. Infect. Dis. 2017, 64, 1129–1132. [Google Scholar] [CrossRef][Green Version]
- Barug, D.; Pronk, I.; van Houten, M.A.; Versteegh, F.G.A.; Knol, M.J.; van de Kassteele, J.; Berbers, G.A.M.; Sanders, E.A.M.; Rots, N.Y. Maternal pertussis vaccination and its effects on the immune response of infants aged up to 12 months in the Netherlands: An open-label, parallel, randomised controlled trial. Lancet Infect. Dis. 2019, 19, 392–401. [Google Scholar] [CrossRef]
- Siegrist, C.A. Mechanisms by which maternal antibodies influence infant vaccine responses: Review of hypotheses and definition of main determinants. Vaccine 2003, 21, 3406–3412. [Google Scholar] [CrossRef]
- Kachikis, A.; Englund, J.A. Maternal immunization: Optimizing protection for the mother and infant. J. Infect. 2016, 72, S83–S90. [Google Scholar] [CrossRef]
- Saji, F.; Samejima, Y.; Kamiura, S.; Koyama, M. Dynamics of immunoglobulins at the feto-maternal interface. Rev. Reprod. 1999, 4, 81–89. [Google Scholar] [CrossRef]
- Simister, N.E.; Story, C.M.; Chen, H.L.; Hunt, J.S. An IgG-transporting Fc receptor expressed in the syncytiotrophoblast of human placenta. Eur. J. Immunol. 1996, 26, 1527–1531. [Google Scholar] [CrossRef]
- Hodgins, D.C.; Shewen, P.E. Vaccination of neonates: Problem and issues. Vaccine 2012, 30, 1541–1559. [Google Scholar] [CrossRef]
- Borghi, S.; Bournazos, S.; Thulin, N.K.; Li, C.; Gajewski, A.; Sherwood, R.W.; Zhang, S.; Harris, E.; Jagannathan, P.; Wang, L.-X.; et al. FcRn, but not FcγRs, drives maternal-fetal transplacental transport of human IgG antibodies. Proc. Natl. Acad. Sci. USA 2020, 117, 12943–12951. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.M. Animal models of human placentation—A review. Placenta 2007, 28, S41–S47. [Google Scholar] [CrossRef] [PubMed]
- Pentsuk, N.; van der Laan, J.W. An interspecies comparison of placental antibody transfer: New insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res. B Dev. Reprod. Toxicol. 2009, 86, 328–344. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.M. Antitoxin transfer from mother to fœtus in the guinea-pig. J. Pathol. Bacteriol. 1959, 77, 371–380. [Google Scholar] [CrossRef]
- Struble, E.B.; Ma, L.; Zhong, L.; Lesher, A.; Beren, J.; Zhang, P. Human Antibodies Can Cross Guinea Pig Placenta and Bind Its Neonatal Fc Receptor: Implications for Studying Immune Prophylaxis and Therapy during Pregnancy. Clin. Dev. Immunol. 2012, 2012, 538701. [Google Scholar] [CrossRef]
- Ramos, L.; Obregon-Henao, A.; Henao-Tamayo, M.; Bowen, R.; Izzo, A.; Lunney, J.K.; Gonzalez-Juarrero, M. Minipigs as a neonatal animal model for tuberculosis vaccine efficacy testing. Vet. Immunol. Immunopathol. 2019, 215, 109884. [Google Scholar] [CrossRef] [PubMed]
- Coe, C.L.; Kemnitz, J.W.; Schneider, M.L. Vulnerability of placental antibody transfer and fetal complement synthesis to disturbance of the pregnant monkey. J. Med Primatol. 1993, 22, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.; Terao, K.; Cho, F.; Honjo, S. The placental transfer of IgG in the cynomolgus monkey. Jpn. J. Med. Sci. Biol. 1983, 36, 171–176. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Coe, C.L.; Lubach, G.R.; Izard, K.M. Progressive improvement in the transfer of maternal antibody across the order Primates. Am. J. Primatol. 1994, 32, 51–55. [Google Scholar] [CrossRef]
- Scheffer-Mendoza, S.; Espinosa-Padilla, S.E.; López-Herrera, G.; Mujica-Guzmán, F.; López-Padilla, M.G.; Berrón-Ruiz, L. Reference values of leukocyte and lymphocytes populations in umbilical cord and capillary blood in healthy Mexican newborns. Allergol. Immunopathol. 2020, 48, 295–305. [Google Scholar] [CrossRef]
Model | Human-Like Early Life Immunity | Type of Placenta (No of Layers) | Human-Like FcRn | Pros | Cons | Potential Use |
---|---|---|---|---|---|---|
Human | Hemochorial (1) | Yes | Limited samples Not useable for vaccine and adjuvant development and mechanistic in vivo studies | TAT ELI | ||
Mouse Conventional Strains * Engineered ° | Yes, but corrected for age (neonate = 1 weeks old pups, vs. infant = 2–3 weeks old pups) | Hemochorial (3) | No (°) | -Well-established -Cost-effective compared to large animals | -Breeding facility needed to study specific mouse crosses -Not adequate for assessing antibody transfer at birth as transfer through breastmilk (peak only after around 2 weeks) -By respecting an interval of 3 weeks for vaccine booster doses, mice are already adult -Short life span | ELI |
Rabbit/Sheep | NA | Hemochorial (2: rabbit) (1: sheep) | No | Inadequate model for early life and antibody transfer | None | |
Guinea pig | NA | Hemochorial (1, with a subplacenta) | Yes | Cost-effective | Guinea pig FcRn transfer is less efficient than human FcRn | TAT (?) |
Piglets | Shown for example in BCG vaccination [63] | Epitheliochorial | No | Similar responses as humans to some pathogens | Large animal-model | ELI |
NHP (Baboons, macaques) | Unknown yet | Hemochorial (1) | Yes | Same response as humans to many pathogens and vaccines | Costly, special care facilities needed and trained personal Similarity in early life immunity needs to be proven before its use | TAT ELI (?) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sartoretti, J.; Eberhardt, C.S. The Potential Role of Nonhuman Primate Models to Better Comprehend Early Life Immunity and Maternal Antibody Transfer. Vaccines 2021, 9, 306. https://doi.org/10.3390/vaccines9040306
Sartoretti J, Eberhardt CS. The Potential Role of Nonhuman Primate Models to Better Comprehend Early Life Immunity and Maternal Antibody Transfer. Vaccines. 2021; 9(4):306. https://doi.org/10.3390/vaccines9040306
Chicago/Turabian StyleSartoretti, Julie, and Christiane S. Eberhardt. 2021. "The Potential Role of Nonhuman Primate Models to Better Comprehend Early Life Immunity and Maternal Antibody Transfer" Vaccines 9, no. 4: 306. https://doi.org/10.3390/vaccines9040306