Zika E Glycan Loop Region and Guillain–Barré Syndrome-Related Proteins: A Possible Molecular Mimicry to Be Taken in Account for Vaccine Development
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Patent
Conflicts of Interest
Abbreviations
BeH819015 | Clinical isolate of ZIKV collected in Brazil in 2015 |
Cav1.2 | Calcium channel voltage-dependent L-type α-1C subunit |
GBS | Guillain–Barré Syndrome |
HSP70 12A | Heat Shock 70 kDa protein 12A |
MR766-NIID | Laboratory-adapted ZIKV strain isolated in Uganda in 1947 |
VDCC | Voltage-dependent calcium channel |
ZIKV | Zika Virus |
References
- Gubler, D.J. The Global Emergence/Resurgence of Arboviral Diseases as Public Health Problems. Arch. Med. Res. 2002, 33, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [Green Version]
- Song, B.-H.; Yun, S.-I.; Woolley, M.; Lee, Y.-M. Zika Virus: History, Epidemiology, Transmission, and Clinical Presentation. J. Neuroimmunol. 2017, 308, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Mlakar, J.; Korva, M.; Tul, N.; Popović, M.; Poljšak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Resman Rus, K.; Vesnaver Vipotnik, T.; Fabjan Vodušek, V.; et al. Zika Virus Associated with Microcephaly. N. Engl. J. Med. 2016, 374, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Krauer, F.; Riesen, M.; Reveiz, L.; Oladapo, O.T.; Martínez-Vega, R.; Porgo, T.V.; Haefliger, A.; Broutet, N.J.; Low, N.; WHO Zika Causality Working Group. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain–Barré Syndrome: Systematic Review. PLoS Med. 2017, 14, e1002203. [Google Scholar] [CrossRef] [Green Version]
- Saiz, J.-C.; Vazquez-Calvo, A.; Blazquez, A.B.; Merino-Ramos, T.; Escribano-Romero, E.; Martin-Acebes, M.A. Zika Virus: The Latest Newcomer. Front. Microbiol. 2016, 7, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbi, L.; Coelho, A.V.C.; de Alencar, L.C.A.; Crovella, S. Prevalence of Guillain-Barré Syndrome among Zika Virus Infected Cases: A Systematic Review and Meta-Analysis. Braz. J. Infect. Dis. 2018, 22, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Munoz, L.S.; Barreras, P.; Pardo, C.A. Zika Virus-Associated Neurological Disease in the Adult: Guillain-Barre Syndrome, Encephalitis, and Myelitis. Semin. Reprod. Med. 2016, 34, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musso, D.; Roche, C.; Robin, E.; Nhan, T.; Teissier, A.; Cao-Lormeau, V.-M. Potential Sexual Transmission of Zika Virus. Emerg. Infect. Dis. 2015, 21, 359. [Google Scholar] [CrossRef] [PubMed]
- Oster, A.M. Interim Guidelines for Prevention of Sexual Transmission of Zika Virus—United States, 2016. MMWR Morb Mortal Wkly. Rep. 2016, 65. [Google Scholar] [CrossRef] [Green Version]
- Calvet, G.; Aguiar, R.S.; Melo, A.S.O.; Sampaio, S.A.; de Filippis, I.; Fabri, A.; Araujo, E.S.M.; de Sequeira, P.C.; de Mendonça, M.C.L.; de Oliveira, L.; et al. Detection and Sequencing of Zika Virus from Amniotic Fluid of Fetuses with Microcephaly in Brazil: A Case Study. Lancet Infect. Dis. 2016, 16, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Brasil, P.; Pereira, J.P.; Moreira, M.E.; Ribeiro Nogueira, R.M.; Damasceno, L.; Wakimoto, M.; Rabello, R.S.; Valderramos, S.G.; Halai, U.-A.; Salles, T.S.; et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. N. Engl. J. Med. 2016, 375, 2321–2334. [Google Scholar] [CrossRef] [PubMed]
- Bos, S.; Viranaicken, W.; Turpin, J.; El-Kalamouni, C.; Roche, M.; Krejbich-Trotot, P.; Desprès, P.; Gadea, G. The Structural Proteins of Epidemic and Historical Strains of Zika Virus Differ in Their Ability to Initiate Viral Infection in Human Host Cells. Virology 2018, 516, 265–273. [Google Scholar] [CrossRef]
- Frumence, E.; Haddad, J.G.; Vanwalscappel, B.; Andries, J.; Decotter, J.; Viranaicken, W.; Gadea, G.; Desprès, P. Immune Reactivity of a 20-Mer Peptide Representing the Zika E Glycan Loop Involves the Antigenic Determinants E-152/156/158. Viruses 2020, 12, 1258. [Google Scholar] [CrossRef] [PubMed]
- Frumence, E.; Viranaicken, W.; Bos, S.; Alvarez-Martinez, M.-T.; Roche, M.; Arnaud, J.-D.; Gadea, G.; Desprès, P. A Chimeric Zika Virus between Viral Strains MR766 and BeH819015 Highlights a Role for E-Glycan Loop in Antibody-Mediated Virus Neutralization. Vaccines 2019, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, S.; Viranaicken, W.; Frumence, E.; Li, G.; Desprès, P.; Zhao, R.Y.; Gadea, G. The Envelope Residues E152/156/158 of Zika Virus Influence the Early Stages of Virus Infection in Human Cells. Cells 2019, 8, 1444. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Bos, S.; Tsetsarkin, K.A.; Pletnev, A.G.; Desprès, P.; Gadea, G.; Zhao, R.Y. The Roles of PrM-E Proteins in Historical and Epidemic Zika Virus-Mediated Infection and Neurocytotoxicity. Viruses 2019, 11, 157. [Google Scholar] [CrossRef] [Green Version]
- Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de Novo Structure Prediction for Linear Peptides in Solution and in Complex. Nucleic Acids Res. 2016, 44, W449–454. [Google Scholar] [CrossRef] [Green Version]
- Yuki, N. Infectious Origins of, and Molecular Mimicry in, Guillain-Barré and Fisher Syndromes. Lancet Infect. Dis. 2001, 1, 29–37. [Google Scholar] [CrossRef]
- Wim Ang, C.; Jacobs, B.C.; Laman, J.D. The Guillain–Barré Syndrome: A True Case of Molecular Mimicry. Trends Immunol. 2004, 25, 61–66. [Google Scholar] [CrossRef]
- Kohm, A.P.; Fuller, K.G.; Miller, S.D. Mimicking the Way to Autoimmunity: An Evolving Theory of Sequence and Structural Homology. Trends Microbiol. 2003, 11, 101–105. [Google Scholar] [CrossRef]
- Berger, S.M.; Bartsch, D. The Role of L-Type Voltage-Gated Calcium Channels Cav1.2 and Cav1.3 in Normal and Pathological Brain Function. Cell Tissue Res. 2014, 357, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Barzan, R.; Pfeiffer, F.; Kukley, M. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve. Front. Cell. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Radons, J. The Human HSP70 Family of Chaperones: Where Do We Stand? Cell Stress Chaperones 2016, 21, 379–404. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-San Martín, C.; Li, T.; Bouquet, J.; Streithorst, J.; Yu, G.; Paranjpe, A.; Chiu, C.Y. Differentiation Enhances Zika Virus Infection of Neuronal Brain Cells. Sci. Rep. 2018, 8, 14543. [Google Scholar] [CrossRef] [PubMed]
- Kucukural, A.; Yukselen, O.; Ozata, D.M.; Moore, M.J.; Garber, M. DEBrowser: Interactive Differential Expression Analysis and Visualization Tool for Count Data. BMC Genom. 2019, 20, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Striessnig, J.; Koschak, A.; Sinnegger-Brauns, M.J.; Hetzenauer, A.; Nguyen, N.K.; Busquet, P.; Pelster, G.; Singewald, N. Role of Voltage-Gated L-Type Ca2+ Channel Isoforms for Brain Function. Biochem. Soc. Trans. 2006, 34, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, Y.; Hotta, S.; Utsunomiya, I.; Tanaka, K.; Hoshi, K.; Ariga, T.; Yu, R.K.; Miyatake, T.; Taguchi, K. Cav2.1 Voltage-Dependent Ca2+ Channel Current Is Inhibited by Serum from Select Patients with Guillain-Barré Syndrome. Neurochem. Res. 2009, 34, 149–157. [Google Scholar] [CrossRef]
- Hotta, S.; Nakatani, Y.; Kambe, T.; Abe, K.; Masuda, Y.; Utsumomiya, I.; Taguchi, K. Effects of IgG Anti-GM1 Monoclonal Antibodies on Neuromuscular Transmission and Calcium Channel Binding in Rat Neuromuscular Junctions. Exp. Ther. Med. 2015, 10, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Helgeland, G.; Petzold, A.; Hoff, J.M.; Gilhus, N.E.; Plant, G.T.; Romi, F.R. Anti-Heat Shock Protein 70 Antibody Levels Are Increased in Myasthenia Gravis and Guillain-Barré Syndrome. J. Neuroimmunol. 2010, 225, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Murshid, A.; Gong, J.; Calderwood, S.K. The Role of Heat Shock Proteins in Antigen Cross Presentation. Front. Immunol. 2012, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asea, A.; Kraeft, S.-K.; Kurt-Jones, E.A.; Stevenson, M.A.; Chen, L.B.; Finberg, R.W.; Koo, G.C.; Calderwood, S.K. HSP70 Stimulates Cytokine Production through a CD14-Dependant Pathway, Demonstrating Its Dual Role as a Chaperone and Cytokine. Nat. Med. 2000, 6, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Romi, F.; Helgeland, G.; Gilhus, N.E. Heat-Shock Proteins in Clinical Neurology. ENE 2011, 66, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Yonekura, K.; Yokota, S.; Tanaka, S.; Kubota, H.; Fujii, N.; Matsumoto, H.; Chiba, S. Prevalence of Anti-Heat Shock Protein Antibodies in Cerebrospinal Fluids of Patients with Guillain–Barré Syndrome. J. Neuroimmunol. 2004, 156, 204–209. [Google Scholar] [CrossRef] [PubMed]
Query Sequence | Substitutions Associated | Output |
---|---|---|
IVNDT | T152I/I156T | Calcium channel voltage-dependent L type α-1C subunit Heat Shock 70 kDa protein 12A Pecanexlike protein 2Cyclin-C Adhesion G-protein coupled receptor V1 Coagulation factor VIII HEAT repeat-containing protein 5B Sodium leak channel nonselective protein Hexokinase-1, -2, -3, HKDC1 |
DTGHE | I156T/Y158H | Macrophage colony-stimulating factor 1 Collagen and calcium-binding EGF domain-containing protein 1 Transcription factor COE1 Cytoplasmic FMR1-interacting protein 1 A disintegrin and metalloproteinase with thrombospondin motifs 2 Folliculin-interacting protein 1 Ubiquitin-associated protein 2-like Prolyl endopeptidaselike Adapter protein CIKS Dermokine Immunity-related GTPase family M protein Tyrosine-protein kinase ABL2 Zinc finger protein 491 Obscurin Protein prune homolog 2 Otogelin eIF-2-alpha kinase activator GCN1 BAH and coiled-coil domain-containing protein 1 Centrosome-associated protein CEP250 Supervillin Ankyrin-1 |
GRLSS | K283R/F285S | Pikachurin precursor Hamartin Ankyrin repeat and LEM domain-containing protein 2 Testis-expressed protein 10 GRB2-associated and regulator of MAPK protein 2 Low-density lipoprotein receptor-related protein 3 Ligand of Numb protein X 2 Synaptotagminlike protein 4 Chromodomain Y-like protein 2 Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial precursor Sodium- and chloride-dependent GABA transporter 2 Acetyl-CoA acetyltransferase, cytosolic ER membrane protein complex subunit 10 Histamine H4 receptor Protein GOLM2 Protein FAM83A Uncharacterized protein C9orf163 Uncharacterized protein C3orf18 Mucin-16 Obscurin Nesprin-1 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma E3 ubiquitin-protein ligase HERC2 Histone-lysine N-methyltransferase 2A Serine/threonine-protein kinase mTOR Myosin light chain kinase, smooth muscle |
VPAQM | I341V/V343A | Zinc finger protein 646, 292, 831, GLI1 Galactoside alpha-(1,2)-fucosyltransferase 2 Tensin-2 Neurolysin, mitochondrial Filamin-A Spectrin beta chain, nonerythrocytic 5 Structure-specific endonuclease subunit SLX4 Adhesion G protein-coupled receptor L3 Tau-tubulin kinase 1 IQ domain-containing protein N N-acetylglucosamine-1-phosphotransferase subunits alpha/beta FERM domain-containing protein 4A RE1-silencing transcription factor Protocadherin-8 Protein transport protein Sec24D Adhesion G-protein coupled receptor G2 Protein FAN Kinesinlike protein KIF18B |
GALNS | V437A/F438L | A-kinase anchor protein 12 EMILIN-1 precursor DENN domain-containing protein 1C Gelsolin Tudor domain-containing protein 10 CXXC-type zinc finger protein 4 Obscurin Microtubule-actin cross-linking factor 1 Usherin Ryanodine receptor 2 Dynein heavy chain 8, heavy chain 14, heavy chain 7 Sacsin Basement membrane-specific heparan sulfate proteoglycan core protein DNA-dependent protein kinase catalytic subunit Protein bassoon Transformation/transcription domain-associated protein Xin actin-binding repeat-containing protein 2 Protocadherin-16 precursor |
Start-End | Peptide |
---|---|
5–9 | GVSNR |
66–103 | SDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGN |
126–133 | TGKSIQPE |
146–163 | SQHSGMIVNDTGHETDEN |
193–197 | RTGLD |
218–240 | FHDIPLPWHAGADTGTPHWNNKE |
274–279 | EAEMDG |
312–322 | TFTKIPAETL |
349–352 | MQTL |
368–371 | STEN |
395–408 | KITHHWHRSGSTIG |
428–440 | AWDFGSVGGALNS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebeau, G.; Frumence, E.; Turpin, J.; Begue, F.; Hoarau, J.-J.; Gadea, G.; Krejbich-Trotot, P.; Desprès, P.; Viranaicken, W. Zika E Glycan Loop Region and Guillain–Barré Syndrome-Related Proteins: A Possible Molecular Mimicry to Be Taken in Account for Vaccine Development. Vaccines 2021, 9, 283. https://doi.org/10.3390/vaccines9030283
Lebeau G, Frumence E, Turpin J, Begue F, Hoarau J-J, Gadea G, Krejbich-Trotot P, Desprès P, Viranaicken W. Zika E Glycan Loop Region and Guillain–Barré Syndrome-Related Proteins: A Possible Molecular Mimicry to Be Taken in Account for Vaccine Development. Vaccines. 2021; 9(3):283. https://doi.org/10.3390/vaccines9030283
Chicago/Turabian StyleLebeau, Grégorie, Etienne Frumence, Jonathan Turpin, Floran Begue, Jean-Jacques Hoarau, Gilles Gadea, Pascale Krejbich-Trotot, Philippe Desprès, and Wildriss Viranaicken. 2021. "Zika E Glycan Loop Region and Guillain–Barré Syndrome-Related Proteins: A Possible Molecular Mimicry to Be Taken in Account for Vaccine Development" Vaccines 9, no. 3: 283. https://doi.org/10.3390/vaccines9030283
APA StyleLebeau, G., Frumence, E., Turpin, J., Begue, F., Hoarau, J.-J., Gadea, G., Krejbich-Trotot, P., Desprès, P., & Viranaicken, W. (2021). Zika E Glycan Loop Region and Guillain–Barré Syndrome-Related Proteins: A Possible Molecular Mimicry to Be Taken in Account for Vaccine Development. Vaccines, 9(3), 283. https://doi.org/10.3390/vaccines9030283