Human Papillomavirus Vaccine Efficacy and Effectiveness against Cancer
Abstract
:1. Introduction
2. Human Papillomavirus Vaccine
2.1. Safety
2.2. Immunogenicity
3. Efficacy and Effectiveness of the Human Papillomavirus Vaccine
3.1. Efficacy and Effectiveness of the HPV Vaccine in Young Women (under 26 Years Old)
3.2. Efficacy and Effectiveness of the HPV Vaccine in Adult Women (>26 Years Old)
3.3. Efficacy and Effectiveness of the HPV Vaccine in Male
4. The Real-World Effectiveness
5. Alternative Schedules of the HPV Vaccine
6. HPV Vaccine in Special Population
6.1. HIV Infection
6.2. High-Risk Group: Men Who Have Sex with Men (MSM)
7. Effectiveness of the HPV Vaccine on Other Cancers
8. Therapeutic Vaccine
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cutts, F.T.; Franceschi, S.; Goldie, S.; Castellsague, X.; de Sanjose, S.; Garnett, G.; Edmunds, W.J.; Claeys, P.; Goldenthal, K.L.; Harper, D.M.; et al. Human papillomavirus and HPV vaccines: A review. Bull. World Health Organ. 2007, 85, 719–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HPV and Cancer. Available online: https://www.cdc.gov/cancer/hpv/index.htm (accessed on 23 October 2021).
- Zhang, Q.; Zheng, R.; Fu, Y.; Mu, Q.; Li, J. Mental health consequences during alerting situations and recovering to a new normal of coronavirus epidemic in 2019: A cross-sectional study based on the affected population. BMC Public Health 2021, 21, 1499. [Google Scholar] [CrossRef]
- Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/cervix.htm (accessed on 23 October 2021).
- Basu, P.; Malvi, S.G.; Joshi, S.; Bhatla, N.; Muwonge, R.; Lucas, E.; Verma, Y.; Esmy, P.O.; Poli, U.R.R.; Shah, A.; et al. Vaccine efficacy against persistent human papillomavirus (HPV) 16/18 infection at 10 years after one, two, and three doses of quadrivalent HPV vaccine in girls in India: A multicentre, prospective, cohort study. Lancet Oncol. 2021, 22, 1518–1529. [Google Scholar] [CrossRef]
- Working Group on potential contribution of Human Papillomavirus (HPV) vaccines and immunization towards cervical cancer elimination. Strategic Advisory Group of Experts (SAGE) on Immunizationa, WHO. Available online: https://www.who.int/immunization/sage/meetings/2019/october/1_HPV_SAGE2019WG_for_SAGE.pdf (accessed on 10 October 2021).
- Kjaer, S.K.; Dehlendorff, C.; Belmonte, F.; Baandrup, L. Real-World Effectiveness of Human Papillomavirus Vaccination Against Cervical Cancer. J. Natl. Cancer Inst. 2021, 113, 1329–1335. [Google Scholar] [CrossRef]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef]
- Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem. Available online: https://www.who.int/publications/i/item/9789240014107 (accessed on 27 April 2021).
- Weekly Epidemiological Record. Available online: http://www.who.int/wer/2014/wer8921.pdf?ua=1 (accessed on 23 October 2021).
- Radley, D.; Saah, A.; Stanley, M. Persistent infection with human papillomavirus 16 or 18 is strongly linked with high-grade cervical disease. Hum. Vaccines Immunother. 2016, 12, 768–772. [Google Scholar] [CrossRef] [Green Version]
- Regional Office for South-East Asia. Accelerating the Elimination of Cervical Cancer as a Global Public Health Problem. 2019. Available online: https://apps.who.int/iris/handle/10665/327911 (accessed on 12 October 2021).
- Pinto, L.A.; Dillner, J.; Beddows, S.; Unger, E.R. Immunogenicity of HPV prophylactic vaccines: Serology assays and their use in HPV vaccine evaluation and development. Vaccine 2018, 36, 4792–4799. [Google Scholar] [CrossRef]
- Meites, E.; Szilagyi, P.G.; Chesson, H.W.; Unger, E.R.; Romero, J.R.; Markowitz, L.E. Human Papillomavirus Vaccination for Adults: Updated Recommendations of the Advisory Committee on Immunization Practices. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 698–702. [Google Scholar] [CrossRef] [Green Version]
- Arbyn, M.; Xu, L.; Simoens, C.; Martin-Hirsch, P.P. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst. Rev. 2018, 5, Cd009069. [Google Scholar] [CrossRef]
- Safety of HPV Vaccines. Available online: https://www.who.int/groups/global-advisory-committee-on-vaccine-safety/topics/human-papillomavirus-vaccines/safety (accessed on 23 October 2021).
- HPV Vaccine Safety and Effectiveness. Available online: https://www.cdc.gov/vaccines/vpd/hpv/hcp/safety-effectiveness.html (accessed on 23 October 2021).
- Gee, J.; Naleway, A.; Shui, I.; Baggs, J.; Yin, R.; Li, R.; Kulldorff, M.; Lewis, E.; Fireman, B.; Daley, M.F.; et al. Monitoring the safety of quadrivalent human papillomavirus vaccine: Findings from the Vaccine Safety Datalink. Vaccine 2011, 29, 8279–8284. [Google Scholar] [CrossRef] [PubMed]
- Bonde, U.; Joergensen, J.S.; Lamont, R.F.; Mogensen, O. Is HPV vaccination in pregnancy safe? Hum. Vaccines Immunother. 2016, 12, 1960–1964. [Google Scholar] [CrossRef] [Green Version]
- Angelo, M.-G.; Zima, J.; Tavares Da Silva, F.; Baril, L.; Arellano, F. Post-licensure safety surveillance for human papillomavirus-16/18-AS04-adjuvanted vaccine: More than 4 years of experience. Pharmacoepidemiol. Drug Saf. 2014, 23, 456–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, A.; Patton, L.L.; Giuliano, A.R.; Estrich, C.G.; Pahlke, S.C.; O’Brien, K.K.; Lipman, R.D.; Araujo, M.W.B. Summary of the evidence on the safety, efficacy, and effectiveness of human papillomavirus vaccines: Umbrella review of systematic reviews. J. Am. Dent. Assoc. 2020, 151, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lavín, M.; Amezcua-Guerra, L. Erratum to: Serious adverse events after HPV vaccination: A critical review of randomized trials and post-marketing case series. Clin. Rheumatol. 2017, 36, 2397. [Google Scholar] [CrossRef] [PubMed]
- Donahue, J.G.; Kieke, B.A.; Lewis, E.M.; Weintraub, E.S.; Hanson, K.E.; McClure, D.L.; Vickers, E.R.; Gee, J.; Daley, M.F.; DeStefano, F.; et al. Near Real-Time Surveillance to Assess the Safety of the 9-Valent Human Papillomavirus Vaccine. Pediatrics 2019, 144. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro, T.T.; Su, J.R.; Marquez, P.L.; Mba-Jonas, A.; Arana, J.E.; Cano, M.V. Safety of the 9-Valent Human Papillomavirus Vaccine. Pediatrics 2019, 144, e20191791. [Google Scholar] [CrossRef] [Green Version]
- Verstraeten, T.; Descamps, D.; David, M.P.; Zahaf, T.; Hardt, K.; Izurieta, P.; Dubin, G.; Breuer, T. Analysis of adverse events of potential autoimmune aetiology in a large integrated safety database of AS04 adjuvanted vaccines. Vaccine 2008, 26, 6630–6638. [Google Scholar] [CrossRef]
- Yih, W.K.; Greene, S.K.; Zichittella, L.; Kulldorff, M.; Baker, M.A.; de Jong, J.L.; Gil-Prieto, R.; Griffin, M.R.; Jin, R.; Lin, N.D.; et al. Evaluation of the risk of venous thromboembolism after quadrivalent human papillomavirus vaccination among US females. Vaccine 2016, 34, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Donegan, K.; Beau-Lejdstrom, R.; King, B.; Seabroke, S.; Thomson, A.; Bryan, P. Bivalent human papillomavirus vaccine and the risk of fatigue syndromes in girls in the UK. Vaccine 2013, 31, 4961–4967. [Google Scholar] [CrossRef]
- Grimaldi-Bensouda, L.; Guillemot, D.; Godeau, B.; Bénichou, J.; Lebrun-Frenay, C.; Papeix, C.; Labauge, P.; Berquin, P.; Penfornis, A.; Benhamou, P.Y.; et al. Autoimmune disorders and quadrivalent human papillomavirus vaccination of young female subjects. J. Intern. Med. 2014, 275, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Miranda, S.; Chaignot, C.; Collin, C.; Dray-Spira, R.; Weill, A.; Zureik, M. Human papillomavirus vaccination and risk of autoimmune diseases: A large cohort study of over 2million young girls in France. Vaccine 2017, 35, 4761–4768. [Google Scholar] [CrossRef]
- Willame, C.; Rosillon, D.; Zima, J.; Angelo, M.G.; Stuurman, A.L.; Vroling, H.; Boggon, R.; Bunge, E.M.; Pladevall-Vila, M.; Baril, L. Risk of new onset autoimmune disease in 9- to 25-year-old women exposed to human papillomavirus-16/18 AS04-adjuvanted vaccine in the United Kingdom. Hum. Vaccines Immunother. 2016, 12, 2862–2871. [Google Scholar] [CrossRef] [Green Version]
- Rosillon, D.; Willame, C.; Tavares Da Silva, F.; Guignard, A.; Caterina, S.; Welby, S.; Struyf, F. Meta-analysis of the risk of autoimmune thyroiditis, Guillain-Barré syndrome, and inflammatory bowel disease following vaccination with AS04-adjuvanted human papillomavirus 16/18 vaccine. Pharm. Drug Saf. 2020, 29, 1159–1167. [Google Scholar] [CrossRef]
- Stanley, M.A.; Sudenga, S.L.; Giuliano, A.R. Alternative dosage schedules with HPV virus-like particle vaccines. Expert Rev. Vaccines 2014, 13, 1027–1038. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, X.; He, Y.; Ma, Z.; Xie, Y.; Lu, X.; Xu, Y.; Zhang, Y.; Jiang, Y.; Xiao, H.; et al. Long-term persistence of immune response to the AS04-adjuvanted HPV-16/18 vaccine in Chinese girls aged 9-17 years: Results from an 8-9-year follow-up phase III open-label study. Asia Pac. J. Clin. Oncol. 2020, 16, 392–399. [Google Scholar] [CrossRef]
- Naud, P.S.; Roteli-Martins, C.M.; De Carvalho, N.S.; Teixeira, J.C.; de Borba, P.C.; Sanchez, N.; Zahaf, T.; Catteau, G.; Geeraerts, B.; Descamps, D. Sustained efficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine: Final analysis of a long-term follow-up study up to 9.4 years post-vaccination. Hum. Vaccines Immunother. 2014, 10, 2147–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einstein, M.H.; Takacs, P.; Chatterjee, A.; Sperling, R.S.; Chakhtoura, N.; Blatter, M.M.; Lalezari, J.; David, M.P.; Lin, L.; Struyf, F.; et al. Comparison of long-term immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine and HPV-6/11/16/18 vaccine in healthy women aged 18-45 years: End-of-study analysis of a Phase III randomized trial. Hum. Vaccines Immunother. 2014, 10, 3435–3445. [Google Scholar] [CrossRef] [Green Version]
- Huh, W.K.; Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; de Andrade, R.P.; Ault, K.A.; Bartholomew, D.; Cestero, R.M.; Fedrizzi, E.N.; Hirschberg, A.L.; et al. Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16-26 years: A randomised, double-blind trial. Lancet 2017, 390, 2143–2159. [Google Scholar] [CrossRef]
- Toh, Z.Q.; Kosasih, J.; Russell, F.M.; Garland, S.M.; Mulholland, E.K.; Licciardi, P.V. Recombinant human papillomavirus nonavalent vaccine in the prevention of cancers caused by human papillomavirus. Infect. Drug Resist. 2019, 12, 1951–1967. [Google Scholar] [CrossRef] [Green Version]
- Signorelli, C.; Odone, A.; Ciorba, V.; Cella, P.; Audisio, R.A.; Lombardi, A.; Mariani, L.; Mennini, F.S.; Pecorelli, S.; Rezza, G.; et al. Human papillomavirus 9-valent vaccine for cancer prevention: A systematic review of the available evidence. Epidemiol. Infect. 2017, 145, 1962–1982. [Google Scholar] [CrossRef] [Green Version]
- Garland, S.M.; Kjaer, S.K.; Muñoz, N.; Block, S.L.; Brown, D.R.; DiNubile, M.J.; Lindsay, B.R.; Kuter, B.J.; Perez, G.; Dominiak-Felden, G.; et al. Impact and Effectiveness of the Quadrivalent Human Papillomavirus Vaccine: A Systematic Review of 10 Years of Real-world Experience. Clin. Infect. Dis. 2016, 63, 519–527. [Google Scholar] [CrossRef]
- Paavonen, J.; Naud, P.; Salmerón, J.; Wheeler, C.M.; Chow, S.N.; Apter, D.; Kitchener, H.; Castellsague, X.; Teixeira, J.C.; Skinner, S.R.; et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): Final analysis of a double-blind, randomised study in young women. Lancet 2009, 374, 301–314. [Google Scholar] [CrossRef]
- Kudo, R.; Yamaguchi, M.; Sekine, M.; Adachi, S.; Ueda, Y.; Miyagi, E.; Hara, M.; Hanley, S.J.B.; Enomoto, T. Bivalent Human Papillomavirus Vaccine Effectiveness in a Japanese Population: High Vaccine-Type-Specific Effectiveness and Evidence of Cross-Protection. J. Infect. Dis. 2019, 219, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Bogaards, J.A.; van der Weele, P.; Woestenberg, P.J.; van Benthem, B.H.B.; King, A.J. Bivalent Human Papillomavirus (HPV) Vaccine Effectiveness Correlates With Phylogenetic Distance From HPV Vaccine Types 16 and 18. J. Infect. Dis. 2019, 220, 1141–1146. [Google Scholar] [CrossRef]
- Donken, R.; King, A.J.; Bogaards, J.A.; Woestenberg, P.J.; Meijer, C.; de Melker, H.E. High Effectiveness of the Bivalent Human Papillomavirus (HPV) Vaccine Against Incident and Persistent HPV Infections up to 6 Years After Vaccination in Young Dutch Women. J. Infect. Dis. 2018, 217, 1579–1589. [Google Scholar] [CrossRef] [Green Version]
- Porras, C.; Tsang, S.H.; Herrero, R.; Guillén, D.; Darragh, T.M.; Stoler, M.H.; Hildesheim, A.; Wagner, S.; Boland, J.; Lowy, D.R.; et al. Efficacy of the bivalent HPV vaccine against HPV 16/18-associated precancer: Long-term follow-up results from the Costa Rica Vaccine Trial. Lancet Oncol. 2020, 21, 1643–1652. [Google Scholar] [CrossRef]
- Garland, S.M.; Hernandez-Avila, M.; Wheeler, C.M.; Perez, G.; Harper, D.M.; Leodolter, S.; Tang, G.W.; Ferris, D.G.; Steben, M.; Bryan, J.; et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med. 2007, 356, 1928–1943. [Google Scholar] [CrossRef] [Green Version]
- Garland, S.M.; Pitisuttithum, P.; Ngan, H.Y.S.; Cho, C.H.; Lee, C.Y.; Chen, C.A.; Yang, Y.C.; Chu, T.Y.; Twu, N.F.; Samakoses, R.; et al. Efficacy, Immunogenicity, and Safety of a 9-Valent Human Papillomavirus Vaccine: Subgroup Analysis of Participants From Asian Countries. J. Infect. Dis. 2018, 218, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Sternberg, Á.M.; Moreira, E.D., Jr.; Restrepo, J.A.; Lazcano-Ponce, E.; Cabello, R.; Silva, A.; Andrade, R.; Revollo, F.; Uscanga, S.; Victoria, A.; et al. Efficacy, immunogenicity, and safety of a 9-valent human papillomavirus vaccine in Latin American girls, boys, and young women. Papillomavirus Res. 2018, 5, 63–74. [Google Scholar] [CrossRef]
- Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira, E.D., Jr.; Ngan, Y.; Petersen, L.K.; Lazcano-Ponce, E.; et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 2015, 372, 711–723. [Google Scholar] [CrossRef]
- Malagón, T.; Drolet, M.; Boily, M.C.; Franco, E.L.; Jit, M.; Brisson, J.; Brisson, M. Cross-protective efficacy of two human papillomavirus vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 781–789. [Google Scholar] [CrossRef]
- Lukács, A.; Máté, Z.; Farkas, N.; Mikó, A.; Tenk, J.; Hegyi, P.; Németh, B.; Czumbel, L.M.; Wuttapon, S.; Kiss, I.; et al. The quadrivalent HPV vaccine is protective against genital warts: A meta-analysis. BMC Public Health 2020, 20, 691. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, Q.; Cai, W.; Ruan, W. Trends of cervical cancer at global, regional, and national level: Data from the Global Burden of Disease study 2019. BMC Public Health 2021, 21, 894. [Google Scholar] [CrossRef]
- Rosenblum, H.G.; Lewis, R.M.; Gargano, J.W.; Querec, T.D.; Unger, E.R.; Markowitz, L.E. Declines in Prevalence of Human Papillomavirus Vaccine-Type Infection Among Females after Introduction of Vaccine—United States, 2003–2018. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Safaeian, M.; Sampson, J.N.; Pan, Y.; Porras, C.; Kemp, T.J.; Herrero, R.; Quint, W.; van Doorn, L.J.; Schussler, J.; Lowy, D.R.; et al. Durability of Protection Afforded by Fewer Doses of the HPV16/18 Vaccine: The CVT Trial. J. Natl. Cancer Inst. 2018, 110, 205–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zizza, A.; Banchelli, F.; Guido, M.; Marotta, C.; Di Gennaro, F.; Mazzucco, W.; Pistotti, V.; D’Amico, R. Efficacy and safety of human papillomavirus vaccination in HIV-infected patients: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 4954. [Google Scholar] [CrossRef] [PubMed]
- Castellsagué, X.; Muñoz, N.; Pitisuttithum, P.; Ferris, D.; Monsonego, J.; Ault, K.; Luna, J.; Myers, E.; Mallary, S.; Bautista, O.M.; et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24-45 years of age. Br. J. Cancer 2011, 105, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Quadrivalent Vaccine against Human Papillomavirus to Prevent High-Grade Cervical Lesions. N. Engl. J. Med. 2007, 356, 1915–1927. [CrossRef]
- Muñoz, N.; Manalastas, R., Jr.; Pitisuttithum, P.; Tresukosol, D.; Monsonego, J.; Ault, K.; Clavel, C.; Luna, J.; Myers, E.; Hood, S.; et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24-45 years: A randomised, double-blind trial. Lancet 2009, 373, 1949–1957. [Google Scholar] [CrossRef]
- Dobson, S.R.; McNeil, S.; Dionne, M.; Dawar, M.; Ogilvie, G.; Krajden, M.; Sauvageau, C.; Scheifele, D.W.; Kollmann, T.R.; Halperin, S.A.; et al. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs 3 doses in young women: A randomized clinical trial. JAMA 2013, 309, 1793–1802. [Google Scholar] [CrossRef] [Green Version]
- McCormack, P.L.; Joura, E.A. Spotlight on quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine(Gardasil®) in the prevention of premalignant genital lesions, genital cancer, and genital warts in women. BioDrugs 2011, 25, 339–343. [Google Scholar] [CrossRef]
- Steinau, M.; Unger, E.R.; Hernandez, B.Y.; Goodman, M.T.; Copeland, G.; Hopenhayn, C.; Cozen, W.; Saber, M.S.; Huang, Y.; Peters, E.S.; et al. Human papillomavirus prevalence in invasive anal cancers in the United States before vaccine introduction. J. Low. Genit. Tract Dis. 2013, 17, 397–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canadian Immunization, C. Summary of Canadian Immunization Committee (CIC) Recommendations for Human Papillomavirus Immunization Programs. Can. Commun. Dis. Rep. 2014, 40, 152–153. [Google Scholar] [CrossRef]
- Block, S.L.; Nolan, T.; Sattler, C.; Barr, E.; Giacoletti, K.E.; Marchant, C.D.; Castellsagué, X.; Rusche, S.A.; Lukac, S.; Bryan, J.T.; et al. Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics 2006, 118, 2135–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuliano, A.R.; Palefsky, J.M.; Goldstone, S.; Moreira, E.D., Jr.; Penny, M.E.; Aranda, C.; Vardas, E.; Moi, H.; Jessen, H.; Hillman, R.; et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N. Engl. J. Med. 2011, 364, 401–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palefsky, J.M.; Giuliano, A.R.; Goldstone, S.; Moreira, E.D., Jr.; Aranda, C.; Jessen, H.; Hillman, R.; Ferris, D.; Coutlee, F.; Stoler, M.H.; et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N. Engl. J. Med. 2011, 365, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Spinner, C.; Ding, L.; Bernstein, D.I.; Brown, D.R.; Franco, E.L.; Covert, C.; Kahn, J.A. Human Papillomavirus Vaccine Effectiveness and Herd Protection in Young Women. Pediatrics 2019, 143, e20181902. [Google Scholar] [CrossRef] [Green Version]
- Baandrup, L.; Blomberg, M.; Dehlendorff, C.; Sand, C.; Andersen, K.K.; Kjaer, S.K. Significant decrease in the incidence of genital warts in young Danish women after implementation of a national human papillomavirus vaccination program. Sex. Transm. Dis. 2013, 40, 130–135. [Google Scholar] [CrossRef]
- Chow, E.P.; Read, T.R.; Wigan, R.; Donovan, B.; Chen, M.Y.; Bradshaw, C.S.; Fairley, C.K. Ongoing decline in genital warts among young heterosexuals 7 years after the Australian human papillomavirus (HPV) vaccination programme. Sex. Transm. Infect. 2015, 91, 214–219. [Google Scholar] [CrossRef]
- Herweijer, E.; Sundström, K.; Ploner, A.; Uhnoo, I.; Sparén, P.; Arnheim-Dahlström, L. Quadrivalent HPV vaccine effectiveness against high-grade cervical lesions by age at vaccination: A population-based study. Int. J. Cancer 2016, 138, 2867–2874. [Google Scholar] [CrossRef] [Green Version]
- Baldur-Felskov, B.; Dehlendorff, C.; Junge, J.; Munk, C.; Kjaer, S.K. Incidence of cervical lesions in Danish women before and after implementation of a national HPV vaccination program. Cancer Causes Control 2014, 25, 915–922. [Google Scholar] [CrossRef]
- Baldur-Felskov, B.; Dehlendorff, C.; Munk, C.; Kjaer, S.K. Early impact of human papillomavirus vaccination on cervical neoplasia--nationwide follow-up of young Danish women. J. Natl. Cancer Inst. 2014, 106, djt460. [Google Scholar] [CrossRef] [Green Version]
- Brotherton, J.M.L.; Malloy, M.; Budd, A.C.; Saville, M.; Drennan, K.T.; Gertig, D.M. Effectiveness of less than three doses of quadrivalent human papillomavirus vaccine against cervical intraepithelial neoplasia when administered using a standard dose spacing schedule: Observational cohort of young women in Australia. Papillomavirus Res. 2015, 1, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, L.E.; Hariri, S.; Lin, C.; Dunne, E.F.; Steinau, M.; McQuillan, G.; Unger, E.R. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003–2010. J. Infect. Dis. 2013, 208, 385–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mix, J.M.; Van Dyne, E.A.; Saraiya, M.; Hallowell, B.D.; Thomas, C.C. Assessing Impact of HPV Vaccination on Cervical Cancer Incidence among Women Aged 15-29 Years in the United States, 1999-2017: An Ecologic Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.E.; Unger, E.R.; Lewis, R.; McDaniel, D.; Gargano, J.W.; Steinau, M.; Markowitz, L.E. Prevalence of Human Papillomavirus Among Females After Vaccine Introduction-National Health and Nutrition Examination Survey, United States, 2003–2014. J. Infect. Dis. 2017, 216, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Safaeian, M.; Porras, C.; Pan, Y.; Kreimer, A.; Schiller, J.T.; Gonzalez, P.; Lowy, D.R.; Wacholder, S.; Schiffman, M.; Rodriguez, A.C.; et al. Durable antibody responses following one dose of the bivalent human papillomavirus L1 virus-like particle vaccine in the Costa Rica Vaccine Trial. Cancer Prev. Res. 2013, 6, 1242–1250. [Google Scholar] [CrossRef] [Green Version]
- Kreimer, A.R.; Sampson, J.N.; Porras, C.; Schiller, J.T.; Kemp, T.; Herrero, R.; Wagner, S.; Boland, J.; Schussler, J.; Lowy, D.R.; et al. Evaluation of Durability of a Single Dose of the Bivalent HPV Vaccine: The CVT Trial. J. Natl. Cancer Inst. 2020, 112, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Verdoodt, F.; Dehlendorff, C.; Kjaer, S.K. Dose-related Effectiveness of Quadrivalent Human Papillomavirus Vaccine Against Cervical Intraepithelial Neoplasia: A Danish Nationwide Cohort Study. Clin. Infect. Dis. 2020, 70, 608–614. [Google Scholar] [CrossRef]
- van Aar, F.; Mooij, S.H.; van der Sande, M.A.B.; Speksnijder, A.G.C.L.; Stolte, I.G.; Meijer, C.J.L.M.; Verhagen, D.W.M.; King, A.J.; de Vries, H.J.C.; van der Loeff, M.F.S. Anal and penile high-risk human papillomavirus prevalence in HIV-negative and HIV-infected MSM. AIDS 2013, 27, 2921–2931. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lin, Y.F.; Gao, L.; Dai, J.; Luo, G.; Li, L.; Yuan, T.; Li, P.; Zhan, Y.; Gao, Y.; et al. Human papillomavirus prevalence among men who have sex with men in China: A systematic review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1357–1367. [Google Scholar] [CrossRef]
- Wei, F.; Gaisa, M.M.; D’Souza, G.; Xia, N.; Giuliano, A.R.; Hawes, S.E.; Gao, L.; Cheng, S.H.; Donà, M.G.; Goldstone, S.E.; et al. Epidemiology of anal human papillomavirus infection and high-grade squamous intraepithelial lesions in 29 900 men according to HIV status, sexuality, and age: A collaborative pooled analysis of 64 studies. Lancet HIV 2021, 8, e531–e543. [Google Scholar] [CrossRef]
- Mooij, S.H.; Boot, H.J.; Speksnijder, A.G.; Stolte, I.G.; Meijer, C.J.; Snijders, P.J.; Verhagen, D.W.; King, A.J.; de Vries, H.J.; Quint, W.G.; et al. Oral human papillomavirus infection in HIV-negative and HIV-infected MSM. Aids 2013, 27, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- King, E.M.; Oomeer, S.; Gilson, R.; Copas, A.; Beddows, S.; Soldan, K.; Jit, M.; Edmunds, W.J.; Sonnenberg, P. Oral Human Papillomavirus Infection in Men Who Have Sex with Men: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0157976. [Google Scholar] [CrossRef]
- Edelstein, Z.R.; Carter, J.J.; Garg, R.; Winer, R.L.; Feng, Q.; Galloway, D.A.; Koutsky, L.A. Serum antibody response following genital {alpha}9 human papillomavirus infection in young men. J. Infect. Dis. 2011, 204, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Drolet, M.; Bénard, É.; Boily, M.C.; Ali, H.; Baandrup, L.; Bauer, H.; Beddows, S.; Brisson, J.; Brotherton, J.M.; Cummings, T.; et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: A systematic review and meta-analysis. Lancet Infect. Dis. 2015, 15, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Swedish, K.A.; Goldstone, S.E. Prevention of anal condyloma with quadrivalent human papillomavirus vaccination of older men who have sex with men. PLoS ONE 2014, 9, e93393. [Google Scholar] [CrossRef]
- Swedish, K.A.; Factor, S.H.; Goldstone, S.E. Prevention of recurrent high-grade anal neoplasia with quadrivalent human papillomavirus vaccination of men who have sex with men: A nonconcurrent cohort study. Clin. Infect. Dis. 2012, 54, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, R.J.; Giuliano, A.R.; Palefsky, J.M.; Goldstone, S.; Moreira, E.D., Jr.; Vardas, E.; Aranda, C.; Jessen, H.; Ferris, D.G.; Coutlee, F.; et al. Immunogenicity of the quadrivalent human papillomavirus (type 6/11/16/18) vaccine in males 16 to 26 years old. Clin. Vaccine Immunol. 2012, 19, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Castellsagué, X.; Giuliano, A.R.; Goldstone, S.; Guevara, A.; Mogensen, O.; Palefsky, J.M.; Group, T.; Shields, C.; Liu, K.; Maansson, R.; et al. Immunogenicity and safety of the 9-valent HPV vaccine in men. Vaccine 2015, 33, 6892–6901. [Google Scholar] [CrossRef] [PubMed]
- Public Health England (PHE): Producing Estimates of the Size of the LGB Population of England. Available online: https://www.gov.uk/government/publications/producing-estimates-of-the-size-of-the-lgb-population-of-england (accessed on 10 November 2021).
- You, E.L.; Henry, M.; Zeitouni, A.G. Human papillomavirus-associated oropharyngeal cancer: Review of current evidence and management. Curr. Oncol. 2019, 26, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Diana, G.; Corica, C. Human Papilloma Virus vaccine and prevention of head and neck cancer, what is the current evidence? Oral Oncol. 2021, 115, 105168. [Google Scholar] [CrossRef]
- Pinto, L.A.; Kemp, T.J.; Torres, B.N.; Isaacs-Soriano, K.; Ingles, D.; Abrahamsen, M.; Pan, Y.; Lazcano-Ponce, E.; Salmeron, J.; Giuliano, A.R. Quadrivalent Human Papillomavirus (HPV) Vaccine Induces HPV-Specific Antibodies in the Oral Cavity: Results From the Mid-Adult Male Vaccine Trial. J. Infect. Dis. 2016, 214, 1276–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtinen, M.; Apter, D.; Eriksson, T.; Harjula, K.; Hokkanen, M.; Lehtinen, T.; Natunen, K.; Damaso, S.; Soila, M.; Bi, D.; et al. Effectiveness of the AS04-adjuvanted HPV-16/18 vaccine in reducing oropharyngeal HPV infections in young females-Results from a community-randomized trial. Int. J. Cancer 2020, 147, 170–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, A.K.; Graubard, B.I.; Broutian, T.; Pickard, R.K.L.; Tong, Z.-Y.; Xiao, W.; Kahle, L.; Gillison, M.L. Effect of Prophylactic Human Papillomavirus (HPV) Vaccination on Oral HPV Infections Among Young Adults in the United States. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 262–267. [Google Scholar] [CrossRef]
- Hirth, J.M.; Chang, M.; Resto, V.A. Prevalence of oral human papillomavirus by vaccination status among young adults (18–30 years old). Vaccine 2017, 35, 3446–3451. [Google Scholar] [CrossRef]
- Lin, C.; Franceschi, S.; Clifford, G.M. Human papillomavirus types from infection to cancer in the anus, according to sex and HIV status: A systematic review and meta-analysis. Lancet Infect. Dis. 2018, 18, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Bruggink, S.C.; de Koning, M.N.; Gussekloo, J.; Egberts, P.F.; Ter Schegget, J.; Feltkamp, M.C.; Bavinck, J.N.; Quint, W.G.; Assendelft, W.J.; Eekhof, J.A. Cutaneous wart-associated HPV types: Prevalence and relation with patient characteristics. J. Clin. Virol. 2012, 55, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.S.; Karagas, M.R.; Perry, A.E.; Nelson, H.H. Exposure profiles and human papillomavirus infection in skin cancer: An analysis of 25 genus beta-types in a population-based study. J. Investig. Derm. 2008, 128, 2888–2893. [Google Scholar] [CrossRef] [Green Version]
- Iannacone, M.R.; Gheit, T.; Waterboer, T.; Giuliano, A.R.; Messina, J.L.; Fenske, N.A.; Cherpelis, B.S.; Sondak, V.K.; Roetzheim, R.G.; Ferrer-Gil, S.; et al. Case-control study of cutaneous human papillomavirus infection in Basal cell carcinoma of the skin. J. Investig. Derm. 2013, 133, 1512–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iannacone, M.R.; Gheit, T.; Pfister, H.; Giuliano, A.R.; Messina, J.L.; Fenske, N.A.; Cherpelis, B.S.; Sondak, V.K.; Roetzheim, R.G.; Silling, S.; et al. Case-control study of genus-beta human papillomaviruses in plucked eyebrow hairs and cutaneous squamous cell carcinoma. Int. J. Cancer 2014, 134, 2231–2244. [Google Scholar] [CrossRef] [Green Version]
- Struijk, L.; Hall, L.; van der Meijden, E.; Wanningen, P.; Bavinck, J.N.; Neale, R.; Green, A.C.; Ter Schegget, J.; Feltkamp, M.C. Markers of cutaneous human papillomavirus infection in individuals with tumor-free skin, actinic keratoses, and squamous cell carcinoma. Cancer Epidemiol. Biomark. Prev. 2006, 15, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Bouwes Bavinck, J.N.; Stark, S.; Petridis, A.K.; Marugg, M.E.; Ter Schegget, J.; Westendorp, R.G.; Fuchs, P.G.; Vermeer, B.J.; Pfister, H. The presence of antibodies against virus-like particles of epidermodysplasia verruciformis-associated humanpapillomavirus type 8 in patients with actinic keratoses. Br. J. Derm. 2000, 142, 103–109. [Google Scholar] [CrossRef]
- Harwood, C.A.; Surentheran, T.; McGregor, J.M.; Spink, P.J.; Leigh, I.M.; Breuer, J.; Proby, C.M. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J. Med. Virol. 2000, 61, 289–297. [Google Scholar] [CrossRef]
- Vinzón, S.E.; Braspenning-Wesch, I.; Müller, M.; Geissler, E.K.; Nindl, I.; Gröne, H.-J.; Schäfer, K.; Rösl, F. Protective vaccination against papillomavirus-induced skin tumors under immunocompetent and immunosuppressive conditions: A preclinical study using a natural outbred animal model. PLoS Pathog. 2014, 10, e1003924. [Google Scholar] [CrossRef] [PubMed]
- Vinzón, S.E.; Rösl, F. HPV vaccination for prevention of skin cancer. Hum. Vaccines Immunother. 2015, 11, 353–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alphs, H.H.; Gambhira, R.; Karanam, B.; Roberts, J.N.; Jagu, S.; Schiller, J.T.; Zeng, W.; Jackson, D.C.; Roden, R.B. Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2. Proc. Natl. Acad. Sci. USA 2008, 105, 5850–5855. [Google Scholar] [CrossRef] [Green Version]
- Schellenbacher, C.; Kwak, K.; Fink, D.; Shafti-Keramat, S.; Huber, B.; Jindra, C.; Faust, H.; Dillner, J.; Roden, R.B.S.; Kirnbauer, R. Efficacy of RG1-VLP vaccination against infections with genital and cutaneous human papillomaviruses. J. Investig. Derm. 2013, 133, 2706–2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermaelen, K. Vaccine Strategies to Improve Anti-cancer Cellular Immune Responses. Front. Immunol. 2019, 10, 8. [Google Scholar] [CrossRef]
- Yeo-Teh, N.S.L.; Ito, Y.; Jha, S. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis. Int. J. Mol. Sci. 2018, 19, 1706. [Google Scholar] [CrossRef] [Green Version]
- Araldi, R.P.; Sant’Ana, T.A.; Módolo, D.G.; de Melo, T.C.; Spadacci-Morena, D.D.; de Cassia Stocco, R.; Cerutti, J.M.; de Souza, E.B. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed. Pharm. 2018, 106, 1537–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, Y.; Uemura, Y.; Asai-Sato, M.; Nakao, T.; Nakajima, T.; Iwata, T.; Akiyama, A.; Satoh, T.; Yahata, H.; Kato, K.; et al. Safety and efficacy of mucosal immunotherapy using human papillomavirus (HPV) type 16 E7-expressing Lactobacillus-based vaccine for the treatment of high-grade squamous intraepithelial lesion (HSIL): The study protocol of a randomized placebo-controlled clinical trial (MILACLE study). Jpn. J. Clin. Oncol. 2019, 49, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, P.K.; Dallas, M.; Kraynyak, K.; Herring, T.; Morrow, M.; Boyer, J.; Duff, S.; Kim, J.; Weiner, D.B. Durability of response to VGX-3100 treatment of HPV16/18 positive cervical HSIL. Hum. Vaccines Immunother. 2021, 17, 1288–1293. [Google Scholar] [CrossRef]
- Dorta-Estremera, S.; Chin, R.L.; Sierra, G.; Nicholas, C.; Yanamandra, A.V.; Nookala, S.M.K.; Yang, G.; Singh, S.; Curran, M.A.; Sastry, K.J. Mucosal HPV E6/E7 Peptide Vaccination in Combination with Immune Checkpoint Modulation Induces Regression of HPV(+) Oral Cancers. Cancer Res. 2018, 78, 5327–5339. [Google Scholar] [CrossRef] [Green Version]
- Vvax001 Cancer Vaccine in (Pre) Malignant Cervical Lesions. Identifier NCT03141463. Available online: https://clinicaltrials.gov/ct2/show/NCT03141463 (accessed on 15 November 2021).
- Chu, N.R.; Wu, H.B.; Wu, T.C.; Boux, L.J.; Mizzen, L.A.; Siegel, M.I. Immunotherapy of a human papillomavirus type 16 E7-expressing tumor by administration of fusion protein comprised of Mycobacterium bovis BCG Hsp65 and HPV16 E7. Cell Stress Chaperones 2000, 5, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Ryser, M.; Mihalyi, A.; van Effelterre, T. Response letter regarding the letter to the editors by Brown et al. Hum. Vaccines Immunother. 2016, 12, 1943–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardasil 9. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/gardasil-9 (accessed on 23 October 2021).
- Gardasil. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/gardasil (accessed on 23 October 2021).
Adverse Effect | Vaccine Type | Relative Risk | 95% CI |
---|---|---|---|
Overall adverse effects at the injection site [15] | Bivalent and quadrivalent | 1.18 | 1.16 to 1.20 |
Overall systemic events [15] | Bivalent and quadrivalent | 1.02 | 0.98 to 1.07 |
Serious adverse event [15] | Bivalent And quadrivalent | 1.01 | 0.95 to 1.07 |
Autoimmune-related conditions [25] | Bivalent | 0.98 | 0.80 to 1.21 |
Thromboembolic event [26] | Quadrivalent | 0.7 | 0.3 to 1.4 |
Chronic fatigue syndrome [27] | Quadrivalent | 0.94 | 0.78 to 1.14 |
Multiple sclerosis [28] | Quadrivalent | 0.3 | 0.1 to 0.9 |
Connective disorders [28] | Quadrivalent | 0.8 | 0.3 to 2.4 |
Type 1 diabetes [28] | Quadrivalent | 1.2 | 0.4 to 3.6 |
Guillain–Barré syndrome (GBS) [29] | Bivalent and quadrivalent | 3.78 | 1.79 to 7.98 |
Bivalent | 8.08 | 1.69 to 38.61 | |
Quadrivalent | 3.78 | 1.70 to 8.41 | |
Thyroiditis [30] | Bivalent | 3.75 | 1.25 to 11.31 |
Inflammatory bowel disease [29] | Bivalent and quadrivalent | 1.14 | 0.97 to 1.35 |
Bivalent [31] | 1.11 | 0.75 to 1.66 |
Efficacy and Effectiveness | Vaccine Type | HPV Status at Enrolment | Vaccine Efficacy (95% CI) |
---|---|---|---|
Efficacy against HPV 16/18 infection [15,34,41,42] | Bivalent | Naive | 91–100% (64.6% to 86%; 94.2% to 100) |
Irrespective | 76% (67% to 83%) | ||
Persistent infection with HPV 16/18 (6 months) [15] | Naive | 90% (87% to 92%) | |
Irrespective | 56% (49% to 62%) | ||
Persistent infection with HPV 16/18 (12 months) [43] | Irrespective | 97.7% (83.5% to 99.7%) | |
Persistent infection with HPV 31/33/45 (12 months) [43] | Irrespective | 61.8% (16.7% to 82.5%) | |
CIN2+ associated with HPV 16/18 [15,40,44] | Naive | 92.9–97.4% (79.9% to 88.0%; 98.3% to 99.6) | |
Irrespective | 54% (43% to 63%) | ||
CIN3+ associated with HPV 16/18 [15,40,44] | Naive | 87.0–94.9% (54.9% to 73.7%; 97.7% to 99.4%) | |
Irrespective | 74% (55% to 91%) | ||
Any CIN2+ irrespective of HPV type [40] | Naive | 70.2% (54.7% to 80.9%) | |
Any CIN3+ irrespective of HPV type [15] | Naive | 92% (77% to 97%) | |
Irrespective | 45% (29% to 57%) | ||
Efficacy against external anogenital and vaginal lesions associated with HPV 6/11/16/18 [45] | Quadrivalent | Naive | 100% (94% to 100%) |
Persistent infection with HPV 6/11/16/18 (6 months) [15] | Naive | 87% (63% to 95%) | |
CIN2+ associated with HPV 6/11/16/18 [15] | Naive | 99% (91% to 100%) | |
Irrespective | 50% (41% to 58%) | ||
CIN3+ associated with HPV 6/11/16/18 [15] | Naive | 99% (82% to 100%) | |
Any CIN2+ irrespective of HPV type [15] | Naive | 43% (24% to 56%) | |
Any CIN3+ irrespective of HPV type [15] | Naive | 46% (17% to 64%) | |
Irrespective | 19% (4% to 31%) | ||
Persistent infection with HPV 31/33/45/52/58 (≥6 months) [46,47] | Nonavalent | Naive (3 doses) | 95.2% (92.7% to 97.0%) |
Irrespective | 95.8% (87.8% to 98.9%) | ||
Persistent infection with HPV 31/33/45/52/58 (≥12 months) [46,48] | Naive (3 doses) | 96.3% (94.4% to 97.7%) | |
Irrespective | 93.9% (81.4% to 98.4%) | ||
CIN2/3, adenoma in situ, and cervical cancer associated with HPV 31/33/45/52/58 [47] | Naive (3 doses) | 90.9% (46.4% to 99.6%) | |
Low-grade disease associated with HPV 31/33/45/52/58, including condyloma, CIN1, vulvar intraepithelial neoplasia 1, and vaginal intraepithelial neoplasia 1 [48] | Naive (3 doses) | 97.6% (91.7% to 99.6%) | |
Irrespective | 84.0% (67.2% to 92.2%) | ||
High-grade disease associated with HPV 31/33/45/52/58, including CIN2/3, adenoma in situ, cervical cancer, vulvar intraepithelial neoplasia 2/3, vulvar cancer, vaginal intraepithelial neoplasia 2/3, and vaginal cancer [48] | Naive (3 doses) | 96.7% (80.9% to 99.8%) | |
Irrespective | 80.6% (33.7% to 94.3%) |
Vaccine Type | Efficacy and Effectiveness | HPV Status at Enrolment | Vaccine Efficacy (95% CI) |
---|---|---|---|
Bivalent | Persistent infection from HPV 16/18 (6 months) [15,56] | Naive | 83% (71% to 90%) |
Irrespective | 43% (31% to 53%) | ||
CIN2+ associated with HPV 16/18 [15] | Naive | 70% (19% to 89%) | |
Irrespective | 26% (−5% to 48%) | ||
Quadrivalent | Persistent infection from HPV 6/11/16/18 (6 months) [15] | Irrespective | 48% (35% to 58%) |
CIN2+ associated with HPV 6/11/16/18 [15] | Naive | 63% (−41% to 90%) | |
Irrespective | 22% (−37% to 56%) | ||
All CIN and external genital lesions related to HPV 6/11/16/18 [57] | Naive | 88.7% (71.8% to 94.8%) | |
Irrespective | 30.9% (11.1% to 46.5%) | ||
Incidence of infection of at least 6 months’ duration and cervical and external genital disease related to HPV 6/11/16/18 [57] | Naive | 74·6% (58.1% to 85%) | |
Irrespective | 30.9% (11.1% to 46.5%) |
Outcome | Type of Vaccine | Dose of Vaccine | HPV Status at Enrolment | Vaccine Efficacy or Effectiveness (95% CI) |
---|---|---|---|---|
Seroconversion after 1 month to HPV 6/11/16/18 [63] | Quadrivalent vaccine | Three doses | Irrespective | 97.4% |
DNA detection of HPV (intention-to-treat population) [63,64] | Quadrivalent vaccine | At least one dose | ||
| Irrespective | 35.1% (20.3% to 47.3%) to 61.5% (42.3% to 74.8%) | ||
Naive | 46.5% (30.2% to 59.2%) | |||
| Irrespective | 43.2% (18.7% to 60.7%) to 54.7% (22.6% to 74.3%) | ||
Naive | 50.5% (20.1% to 70.0%) | |||
| Irrespective | 28.0 (12.9 to40.7) to 45.1% (18.0% to 63.7%) | ||
Naive | 29.4% (10.1% to 44.7%) | |||
| Irrespective | 33.9% (13.0% to 50.1%) to 49.5% (11.3% to 72.1%) | ||
Naive | 45.0% (23.7% to 60.7%) | |||
Persistent infection (intention-to-treat population) [63,64] | Quadrivalent vaccine | At least one dose | ||
| Irrespective | 44.7% (24.1 to 60.1) to 62.5%(37.5 to 78.2) | ||
| Irrespective | 53.7% (7.5 to 78.0) to 59.4%(25.7 to 78.8) | ||
| Irrespective | 46.9% (28.6 to 60.8) to 54.0%(23.9 to 72.9) | ||
| Irrespective | 56.0% (28.2 to 73.7) to 73.6%(37.5 to 90.3) | ||
Condyloma acuminate [63,64] | Quadrivalent vaccine | At least one dose | Irrespective | 57.2(15.9 to79.5) to 67.2% (47.3% to 80.3%) |
PIN grade 1 [63] | Quadrivalent vaccine | At least one dose | Irrespective | 25.6% (−339.9 to 89.1) |
PIN grade 2 or 3 [63] | Quadrivalent vaccine | At least one dose | Irrespective | −48.9% (−1682.6 to 82.9) |
AIN grade 1 [64] | Quadrivalent vaccine | At least one dose | Irrespective | 49.6% (21.2% to 68.4%) |
AIN grade 2 | Quadrivalent vaccine | At least one dose | Irrespective | 61.9% (21.4% to 82.8%) |
AIN grade 3 | Quadrivalent vaccine | At least one dose | Irrespective | 46.8% (−20.2% to 77.9%) |
Outcome | Dose of Vaccine | Population Group | Duration after Vaccination | Result |
---|---|---|---|---|
Prevalence of infections of HPV types 6, 11, 16, and 18 [52,65,72] | At least one dose | 14–19 years old | 4 years | Decreased 56% |
8 years | Decreased 71% | |||
12 years | Decreased 88% | |||
Prevalence of HPV 6/11/16/18/31/33/45/52/58 infections [65] | At least one dose | 14–19 years old | 12 years | Decreased 65% |
Incidence of cervical squamous cell carcinoma (SCC) [73] | At least one dose | 15–20 years old | 18 years | Decreased on average by 12.7% per year |
25–29 years old | 18 years | Decreased on average by 2.3% per year | ||
Incidence of adenocarcinoma [73] | At least one dose | 15–20 years old | 18 years | Decreased on average by 4.1 per year |
25–59 years old | 18 years | Decreased on average by 1.6 per year | ||
Vaccine efficacy against persistent HPV 16 and 18 infections [74] | Single dose | 10–18 years old | 9 years | Vaccine efficacy 95.4% (95% CI = 85.0% to 99.9%) |
Two doses | 10–18 years old | 9 years | Vaccine efficacy 93.1% (95% CI = 77.3% to 99.8%) | |
Three doses | 10–18 years old | 9 years | Vaccine efficacy 93.3% (95% CI = 77.5% to 99.7%) |
Outcome | 3 Doses (95% CI) | 2 Doses (95% CI) | 1 Dose (95% CI) |
---|---|---|---|
Incident of HPV 16/18 infection [53] | 4.3% (3.5% to 5.3%) | 0, 6 months; 3.8% (1.0% to 10.1%) 0, 1 month; 3.6% (1.6% to 7.1%) | 3.6% (0.3% to 4.9%) |
Vaccine efficacy against prevalence of HPV 16/18 [76] | 80.2% (70.7% to 87.0%) | 83.8% (19.5% to 99.2%) | 82.1% (40.2% to 97.0%) |
Relative risk of 6 months persistent HPV 16/18 infection in women (naive HPV infection) [15] | 0.067 (0.049 to 0.093) | 0.126 (0.126 to 0.544) | 0.045 (0.003 to 0.774) |
Incidence rate ratios for cervical intraepithelial neoplasia grade 2 compared with unvaccinated women [77] | 0.43 (0.36 to 0.51) | 0.49 (0.32 to 0.76) | 0.34 (0.13 to 0.87) |
Incidence rate ratios for cervical intraepithelial neoplasia grade 3 compared with unvaccinated women [77] | 0.37 (0.30 to 0.45) | 0.38 (0.22 to 0.66) | 0.38 (0.14 to 0.98) |
Incidence rate ratios for cervical intraepithelial neoplasia grade 2; comparison of the number of doses administered among vaccinated women [77] | 0.99 | 1.00 | 1 |
(0.64 to 1.53) | (0.61 to 1.64) | ||
Incidence rate ratios for cervical intraepithelial neoplasia grade 3; comparison of the number of doses administered among vaccinated women [77] | 0.95 | 0.89 | 1 |
(0.60 to 1.51) | (0.53 to 1.52) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamolratanakul, S.; Pitisuttithum, P. Human Papillomavirus Vaccine Efficacy and Effectiveness against Cancer. Vaccines 2021, 9, 1413. https://doi.org/10.3390/vaccines9121413
Kamolratanakul S, Pitisuttithum P. Human Papillomavirus Vaccine Efficacy and Effectiveness against Cancer. Vaccines. 2021; 9(12):1413. https://doi.org/10.3390/vaccines9121413
Chicago/Turabian StyleKamolratanakul, Supitcha, and Punnee Pitisuttithum. 2021. "Human Papillomavirus Vaccine Efficacy and Effectiveness against Cancer" Vaccines 9, no. 12: 1413. https://doi.org/10.3390/vaccines9121413
APA StyleKamolratanakul, S., & Pitisuttithum, P. (2021). Human Papillomavirus Vaccine Efficacy and Effectiveness against Cancer. Vaccines, 9(12), 1413. https://doi.org/10.3390/vaccines9121413