Predictive and Experimental Immunogenicity of Burkholderia Collagen-like Protein 8-Derived Antigens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth
2.2. Animal Care and Use
2.3. Antigenicity Prediction
2.4. Analysis of T Cell Epitope Allergenicity and Toxicity
2.5. Vaccination Formulation
2.6. Immunization Protocol
2.7. ELISpot
2.8. Analysis of Antibody Responses by ELISA
2.9. Surface Recognition of Bucl8 Antigen on Bp82 Cells
2.10. Statistics
3. Results
3.1. Prediction of Antigenic Epitopes Based on Sequence and Structure of Bucl8
3.2. Generation of Antigen-Specific Antibodies from a Bucl8-Derived Vaccine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Limmathurotsakul, D.; Golding, N.; Dance, D.A.; Messina, J.P.; Pigott, D.M.; Moyes, C.L. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 2016, 1, 15008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birnie, E.; Virk, H.S.; Savelkoel, J.; Spijker, R.; Bertherat, E.; Dance, D.A.B. Global burden of melioidosis in 2015: A systematic review and data synthesis. Lancet Infect. Dis. 2019, 19, 892–902. [Google Scholar] [CrossRef] [Green Version]
- Khakhum, N.; Bharaj, P.; Myers, J.N.; Tapia, D.; Kilgore, P.B.; Ross, B.N. Burkholderia pseudomallei ΔtonBΔhcp1 live attenuated vaccine strain elicits full protective immunity against aerosolized melioidosis infection. mSphere 2019, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Lab Alert: Burkholderia pseudomallei in Southwestern United States: Division of Laboratory Systems. 2020. Available online: https://www.cdc.gov/csels/dls/locs/2020/burkholderia_pseudomallei_in_Southwestern_us.html. (accessed on 6 July 2020).
- CDC. Multistate investigation of non-travel associated Burkholderia pseudomallei infections (melioidosis) in three patients: Kansas, Texas, and Minnesota—2021: CDC Health Alert Network; 2021. Available online: https://emergency.cdc.gov/han/2021/han00444.asp (accessed on 30 June 2021).
- Rhodes, K.A.; Schweizer, H.P. Antibiotic resistance in Burkholderia species. Drug Resist. Updat. 2016, 28, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiersinga, W.J.; Virk, H.S.; Torres, A.G.; Currie, B.J.; Peacock, S.J.; Dance, D.A.B. Melioidosis. Nat. Rev. Dis. 2018, 4, 17107. [Google Scholar] [CrossRef] [PubMed]
- Ngauy, V.; Lemeshev, Y.; Sadkowski, L.; Crawford, G. Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J. Clin. Microbiol. 2005, 43, 970–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burtnick, M.N.; Shaffer, T.L.; Ross, B.; Muruato, L.A.; Sbrana, E.; DeShazer, D.; Torres, A.; Brett, P.J. Development of Subunit Vaccines That Provide High-Level Protection and Sterilizing Immunity against Acute Inhalational Melioidosis. Infect. Immun. 2018, 86, e00724-17. [Google Scholar] [CrossRef] [Green Version]
- Koosakulnirand, S.; Phokrai, P.; Jenjaroen, K.; Roberts, R.A.; Utaisincharoen, P.; Dunachie, S.J.; Brett, P.J.; Burtnick, M.N.; Chantratita, N. Immune response to recombinant Burkholderia pseudomallei FliC. PLoS ONE 2018, 13, e0198906. [Google Scholar] [CrossRef] [Green Version]
- Casey, W.T.; Spink, N.; Cia, F.; Collins, C.; Romano, M.; Berisio, R.; Bancroft, G.J.; McClean, S. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis. Vaccine 2016, 34, 2616–2621. [Google Scholar] [CrossRef] [PubMed]
- Nieves, W.; Petersen, H.; Judy, B.M.; Blumentritt, C.A.; Russell-Lodrigue, K.; Roy, C.; Torres, A.; Morici, L.A. A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Protection against Lethal Sepsis. Clin. Vaccine Immunol. 2014, 21, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.M.; Settles, E.W.; Davitt, C.; Gellings, P.; Kikendall, N.; Hoffmann, J.; Wang, Y.; Bitoun, J.; Lodrigue, K.-R.; Sahl, J.W.; et al. Burkholderia pseudomallei OMVs derived from infection mimicking conditions elicit similar protection to a live-attenuated vaccine. npj Vaccines 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Tapia, D.; Sanchez-Villamil, J.I.; Stevenson, H.L.; Torres, A.G. Multicomponent Gold-Linked Glycoconjugate Vaccine Elicits Antigen-Specific Humoral and Mixed T H 1-T H 17 Immunity, Correlated with Increased Protection against Burkholderia pseudomallei. mBio 2021, 12, e0122721. [Google Scholar] [CrossRef]
- Tapia, D.; Sanchez-Villamil, J.I.; Torres, A.G. Multicomponent gold nano-glycoconjugate as a highly immunogenic and protective platform against Burkholderia mallei. npj Vaccines 2020, 5, 1–11. [Google Scholar] [CrossRef]
- Norris, M.H.; Propst, K.L.; Kang, Y.; Dow, S.W.; Schweizer, H.P.; Hoang, T.T. The Burkholderia pseudomallei Δasd Mutant Exhibits Attenuated Intracellular Infectivity and Imparts Protection against Acute Inhalation Melioidosis in Mice. Infect. Immun. 2011, 79, 4010–4018. [Google Scholar] [CrossRef] [Green Version]
- Amemiya, K.; Dankmeyer, J.L.; Biryukov, S.S.; Treviño, S.R.; Klimko, C.P.; Mou, S.M.; Fetterer, D.P.; Garnes, P.G.; Cote, C.K.; Worsham, P.L.; et al. Deletion of Two Genes in Burkholderia pseudomallei MSHR668 That Target Essential Amino Acids Protect Acutely Infected BALB/c Mice and Promote Long Term Survival. Vaccines 2019, 7, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachert, B.A.; Choi, S.J.; Snyder, A.K.; Rio, R.V.M.; Durney, B.C.; Holland, L.A.; Amemiya, K.; Welkos, S.L.; Bozue, J.; Cote, C.K.; et al. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection. PLoS ONE 2015, 10, e0137578. [Google Scholar] [CrossRef] [PubMed]
- Grund, M.E.; Choi, S.J.; McNitt, D.H.; Barbier, M.; Hu, G.; LaSala, P.R.; Cote, C.K.; Berisio, R.; Lukomski, S. Burkholderia collagen-like protein 8, Bucl8, is a unique outer membrane component of a putative tetrapartite efflux pump in Burkholderia pseudomallei and Burkholderia mallei. PLoS ONE 2020, 15, e0242593. [Google Scholar] [CrossRef] [PubMed]
- Grund, M.; Soo, J.C.; Cote, C.; Berisio, R.; Lukomski, S. Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells 2021, 10, 495. [Google Scholar] [CrossRef]
- CD-1 IGS Mouse Model Information Sheet | Charles River. Available online: https://www.criver.com/ (accessed on 1 October 2021).
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Fleri, W.; Paul, S.; Dhanda, S.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design. Front. Immunol. 2017, 8, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucl. Acids Res. 2017, 45, W24–W29. [Google Scholar] [CrossRef] [Green Version]
- Ponomarenko, J.V.; Bui, H.-H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008, 9, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking. PLoS Comput. Biol. 2012, 8, e1002829. [Google Scholar] [CrossRef] [PubMed]
- Madden, D.R. The Three-Dimensional Structure of Peptide-MHC Complexes. Annu. Rev. Immunol. 1995, 13, 587–622. [Google Scholar] [CrossRef]
- Southwood, S.; Sidney, J.; Kondo, A.; Del Guercio, M.F.; Appella, E.; Hoffman, S.; Kubo, R.T.; Chesnut, R.W.; Grey, H.M.; Sette, A. Several common HLA-DR types share largely overlapping peptide binding repertoires. J. Immunol. 1998, 160. [Google Scholar]
- Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinform. 2014, 30, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model. 2014, 20, 1–6. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S.; Open Source Drug Discovery Consortium. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-C.; Wan, K.-L.; Mohamed, R.; Nathan, S. Immunization with the recombinant Burkholderia pseudomallei outer membrane protein Omp85 induces protective immunity in mice. Vaccine 2010, 28, 5005–5011. [Google Scholar] [CrossRef]
- Amemiya, K.; Meyers, J.; Trevino, S.; Chanh, T.; Norris, S.; Waag, D. Interleukin-12 induces a Th1-like response to Burkholderia mallei and limited protection in BALB/c mice. Vaccine 2006, 24, 1413–1420. [Google Scholar] [CrossRef]
- Novotny, J.; Handschumacher, M.; Haber, E.; Bruccoleri, R.E.; Carlson, W.B.; Fanning, D.W.; Smith, J.A.; Rose, G.D. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci. USA 1986, 83, 226–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federici, L.; Du, D.; Walas, F.; Matsumura, H.; Fernandez-Recio, J.; McKeegan, K.S.; Borges-Walmsley, M.I.; Luisi, B.F.; Walmsley, A.R. The Crystal Structure of the Outer Membrane Protein VceC from the Bacterial Pathogen Vibrio cholerae at 1.8 Å Resolution. J. Biol. Chem. 2005, 280, 15307–15314. [Google Scholar] [CrossRef] [Green Version]
- Calabro, S.; Tritto, E.; Pezzotti, A.; Taccone, M.; Muzzi, A.; Bertholet, S.; De Gregorio, E.; O’Hagan, D.T.; Baudner, B.; Seubert, A. The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 2013, 31, 3363–3369. [Google Scholar] [CrossRef] [PubMed]
- Cibulski, S.P.; Rivera-Patron, M.; Mourglia-Ettlin, G.; Casaravilla, C.; Yendo, A.C.A.; Fett-Neto, A.G.; Chabalgoity, J.A.; Moreno, M.; Roehe, P.M.; Silveira, F. Quillaja brasiliensis saponin-based nanoparticulate adjuvants are capable of triggering early immune responses. Sci. Rep. 2018, 8, 13582. [Google Scholar] [CrossRef]
- Whitlock, G.C.; Deeraksa, A.; Qazi, O.; Judy, B.M.; Taylor, K.; Propst, K.L.; Duffy, A.J.; Johnson, K.; Kitto, G.B.; Brown, K.A.; et al. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge. Procedia Vaccinol. 2010, 2, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harland, D.N.; Chu, K.; Haque, A.; Nelson, M.; Walker, N.J.; Sarkar-Tyson, M.; Atkins, T.P.; Moore, B.; Brown, K.A.; Bancroft, G.; et al. Identification of a LolC Homologue in Burkholderia pseudomallei, a Novel Protective Antigen for Melioidosis. Infect. Immun. 2007, 75, 4173–4180. [Google Scholar] [CrossRef] [Green Version]
- Morici, L.; Torres, A.; Titball, R.W. Novel multi-component vaccine approaches for Burkholderia pseudomallei. Clin. Exp. Immunol. 2019, 196, 178–188. [Google Scholar] [CrossRef] [Green Version]
- McClean, S.; Healy, M.E.; Collins, C.; Carberry, S.; O’Shaughnessy, L.; Dennehy, R.; Adams, Áine; Kennelly, H.; Corbett, J.M.; Carty, F. Linocin and OmpW Are Involved in Attachment of the Cystic Fibrosis-Associated Pathogen Burkholderia cepacia Complex to Lung Epithelial Cells and Protect Mice against Infection. Infect. Immun. 2016, 84, 1424–1437. [Google Scholar] [CrossRef] [Green Version]
- Sousa, S.A.; Morad, M.; Feliciano, J.R.; Pita, T.; Nady, S.; El-Hennamy, R.E.; Abdel-Rahman, M.; Cavaco, J.; Pereira, M.L.; Barreto, C.; et al. The Burkholderia cenocepacia OmpA-like protein BCAL2958: Identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients. AMB Express 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, Y.; Mohamed, R.; Nathan, S. Immunogenic Burkholderia pseudomallei Outer Membrane Proteins as Potential Candidate Vaccine Targets. PLoS ONE 2009, 4, e6496. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.B.; Goodyear, A.; Sutherland, M.D.; Podnecky, N.L.; Gonzalez-Juarrero, M.; Schweizer, H.P.; Dow, S.W. Correlates of Immune Protection following Cutaneous Immunization with an Attenuated Burkholderia pseudomallei Vaccine. Infect. Immun. 2013, 81, 4626–4634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, T.; Prior, R.G.; Mack, K.; Russell, P.; Nelson, M.; Oyston, P.C.F.; Dougan, G.; Titball, R.W. A Mutant of Burkholderia pseudomallei, Auxotrophic in the Branched Chain Amino Acid Biosynthetic Pathway, Is Attenuated and Protective in a Murine Model of Melioidosis. Infect. Immun. 2002, 70, 5290–5294. [Google Scholar] [CrossRef] [Green Version]
- Kessler, B.; Rinchai, D.; Kewcharoenwong, C.; Nithichanon, A.; Biggart, R.; Hawrylowicz, C.; Bancroft, G.J.; Lertmemongkolchai, G. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei. Sci. Rep. 2017, 7, srep42791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovsky, N.; Aguilar, J.C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol. 2004, 82, 488–496. [Google Scholar] [CrossRef]
- Bearss, J.J.; Hunter, M.; Dankmeyer, J.L.; Fritts, K.A.; Klimko, C.P.; Weaver, C.H.; Shoe, J.L.; Quirk, A.V.; Toothman, R.G.; Webster, W.M.; et al. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. PLoS ONE 2017, 12, e0172627. [Google Scholar] [CrossRef]
Region | Vaxijen a | Vaxign-ML (%) a | AllergenFP v1.0 b | ToxinPred c |
---|---|---|---|---|
Bucl8 | 0.74 | 90.9 | Non-allergenic | Non-Toxic |
Bucl8 Nter | 0.46 | 91.0 | Non-allergenic | Non-Toxic |
Bucl8 CL | 2.08 | 90.4 | Non-allergenic | Non-Toxic |
Bucl8 Ct | 0.85 | 52.0 | Allergenic | Non-Toxic |
Region | Sequence | Position in the Sequence |
---|---|---|
Nter | RFIRQSAKKYNRIDSSLSER | 5–24 |
VAPQDKQV | 57–64 | |
AAERDAGW | 77–84 | |
WPDNVYYGPGPLAN | 148–161 | |
LARPKLALD | 299–307 | |
CL | GLETGRDAPHDAPAGDARRTGASGASGASRASRASRAS GASGASGASGASGASGASGASGASGAS | 503–540 |
SGASGASGASGASGASGASGASGASGASGASSTAGASATASASAAGHAP | 573–609 | |
Ct | ATASASAAGHAP | 628–644 |
ASPVAGASTPMPAAT | 656–670 |
Peptide | Sequence | Position in the Bucl8 Sequence | AllergenFP 1.0 | AllerTop 2.0 | ToxinPred |
---|---|---|---|---|---|
pepL1 | QHWPDNVYYGPGPLANADT | Gln146-Thr164 | Non-allergenic | Non-allergenic | Non-Toxic |
pepL2 | GGFGVTAPFTDFLRAMNGG | Gly359-Gly377 | Non-allergenic | Non-allergenic | Non-Toxic |
Component | Function | Description | Citation |
---|---|---|---|
CRM197 | Conjugate | Genetically modified diphtheria toxin that is non-toxic. Has been used as a carrier protein in approved vaccines against Haemophius influenzae type b and several pneumococcal serotypes. | |
KLH | A large, xenogeneic metalloprotein with multiple conjugation sites that is well-tolerated. KLH has been widely used in research and in clinical trials for cancers. | ||
AddaVax | Adjuvant | MF-59 like, squalene-in-oil emulsion that enhance both TH1 and TH2-like responses, augmenting the B cell memory response. MF-59 has been licensed in Europe for flu vaccines. | [36] |
Quil-A | A saponin-based adjuvant that induces strong cytotoxic CD8+ response and activate both the cell-mediated and the antibody-mediated immune responses. | [37] | |
rBucl8-CL-Ct/ rBucl8-Ct | Antigen | Recombinantly-made proteins based on the extracellular stalk structure of Bucl8. | [19] |
pepL1/pepL2 | Short synthetic peptides based on the two distinct surface-exposed loops of Bucl8. | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grund, M.E.; Kramarska, E.; Choi, S.J.; McNitt, D.H.; Klimko, C.P.; Rill, N.O.; Dankmeyer, J.L.; Shoe, J.L.; Hunter, M.; Fetterer, D.P.; et al. Predictive and Experimental Immunogenicity of Burkholderia Collagen-like Protein 8-Derived Antigens. Vaccines 2021, 9, 1219. https://doi.org/10.3390/vaccines9111219
Grund ME, Kramarska E, Choi SJ, McNitt DH, Klimko CP, Rill NO, Dankmeyer JL, Shoe JL, Hunter M, Fetterer DP, et al. Predictive and Experimental Immunogenicity of Burkholderia Collagen-like Protein 8-Derived Antigens. Vaccines. 2021; 9(11):1219. https://doi.org/10.3390/vaccines9111219
Chicago/Turabian StyleGrund, Megan E., Eliza Kramarska, Soo Jeon Choi, Dudley H. McNitt, Christopher P. Klimko, Nathaniel O. Rill, Jennifer L. Dankmeyer, Jennifer L. Shoe, Melissa Hunter, David P. Fetterer, and et al. 2021. "Predictive and Experimental Immunogenicity of Burkholderia Collagen-like Protein 8-Derived Antigens" Vaccines 9, no. 11: 1219. https://doi.org/10.3390/vaccines9111219
APA StyleGrund, M. E., Kramarska, E., Choi, S. J., McNitt, D. H., Klimko, C. P., Rill, N. O., Dankmeyer, J. L., Shoe, J. L., Hunter, M., Fetterer, D. P., Hedrick, Z. M., Velez, I., Biryukov, S. S., Cote, C. K., Berisio, R., & Lukomski, S. (2021). Predictive and Experimental Immunogenicity of Burkholderia Collagen-like Protein 8-Derived Antigens. Vaccines, 9(11), 1219. https://doi.org/10.3390/vaccines9111219