Towards an Effective, Rational and Sustainable Approach for the Control of Cattle Ticks in the Neotropics
Abstract
:1. Introduction: The Need to Optimize Control Strategies of Ticks and Tick-Borne Pathogens Affecting Cattle in the Neotropics
2. The Course: Building Scientific Capacity in Mexico
3. The Ecology of Ticks as a Framework for Successful and Sustainable Tick Control
4. The Wild Animals and the Cattle-Tick Interface
5. Anti-Tick Vaccines: An Efficacious and Sustainable Intervention for the Control of Cattle Tick Infestations
6. Conclusions and Future Actions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bock, R.; Jackson, L.; Vos, A.D.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 129, 247–269. [Google Scholar] [CrossRef]
- McCosker, P.J. The Global Importance of Ticks; Academic Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Howell, J.M.; Ueti, M.W.; Palmer, G.H.; Scoles, G.A.; Knowles, D.P. Persistently infected calves as reservoirs for acquisition and transovarial transmission of Babesia bovis by Rhipicephalus (Boophilus) microplus. J. Clin. Microbiol. 2007, 45, 3155–3159. [Google Scholar] [CrossRef] [Green Version]
- Pegram, R.G.; Wilson, D.D.; Hansen, J.W. Past and present national tick control programs: Why they succeed or fail. Ann. N. Y. Acad. Sci. 2000, 916, 546–554. [Google Scholar] [CrossRef]
- Sonenshine, D.E. Biology of Ticks; Oxford University Press: Oxford, UK, 1991; Volume 2. [Google Scholar]
- Wang, H.H.; Grant, W.E.; Teel, P.D. Simulation of climate-host-parasite-landscape interactions: A spatially explicit model for ticks (Acari: Ixodidae). Ecol. Model. 2012, 243, 42–62. [Google Scholar] [CrossRef]
- Corson, M.S.; Teel, P.D.; Grant, W.E. Microclimate influence in a physiological model of cattle-fever tick (Boophilus spp.) population dynamics. Ecol. Model. 2004, 180, 487–514. [Google Scholar] [CrossRef]
- Estrada-Peña, A. Geostatistics and remote sensing using NOAA-AVHRR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari: Ixodidae) in South America. Vet. Parasitol. 1999, 81, 73–82. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Bouattour, A.; Camicas, J.L.; Guglielmone, A.; Horak, I.; Jongejan, F.; Latif, A.; Pegram, R.; Walker, A.R. The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America. Exp. Appl. Acarol. 2006, 38, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Peña, A.; García, Z.; Fragoso, H. The distribution and ecological preferences of Boophilus microplus (Acari: Ixodidae) in Mexico. Exp. Appl. Acarol. 2006, 38, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Peña, A.; Venzal, J.M. High-resolution predictive mapping for Boophilus annulatus and B. microplus (Acari: Ixodidae) in Mexico and Southern Texas. Vet. Parasitol. 2006, 142, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Mount, G.A.; Haile, D.G.; Daniels, E. Simulation of blacklegged tick (Acari: Ixodidae) population dynamics and transmission of Borrelia burgdorferi. J. Med. Entomol. 1997, 34, 461–484. [Google Scholar] [CrossRef] [PubMed]
- Mount, G.A.; Haile, D.G.; Davey, R.B.; Cooksey, L.M. Computer simulation of Boophilus cattle tick (Acari: Ixodidae) population dynamics. J. Med. Entomol. 1991, 28, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Teel, P.D. Effect of saturation deficit on eggs of Boophilus annulatus and B. microplus (Acari: Ixodidae). Ann. Entomol. Soc. Am. 1984, 77, 65–68. [Google Scholar] [CrossRef]
- Callow, L.L. Strain immunity in babesiosis. Nature 1964, 204, 1213–1214. [Google Scholar] [CrossRef] [PubMed]
- Uilenberg, G. Babesia—A historical overview. Vet. Parasitol. 2006, 138, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Suarez, C.E.; Noh, S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet. Parasitol. 2011, 180, 109–125. [Google Scholar] [CrossRef]
- Callow, L.L.; Hoyte, H.M.D. Transmission experiments using Babesia bigemina, Theileria mutans, and the cattle tick, Boophilus microplus. Aust. Vet. J. 1961, 37, 10. [Google Scholar] [CrossRef]
- Riek, R.F. The life cycle of Babesia bigemina (Smith and Kilborne, 1893) in the tick vector Boophilus microplus (Canestrini). Aust. J. Agric. Res. 1964, 15, 802–821. [Google Scholar] [CrossRef]
- Riek, R.F. Life cycle of Babesia argentina (Lignières, 1903) (Sporozoa: Piroplasmidea) in the tick vector Boophilus microplus (Canestrini). Aust. J. Agric. Res. 1966, 17, 247–254. [Google Scholar] [CrossRef]
- Dalgleish, R.J.; Stewart, N.P.; Callow, L.L. Transmission of Babesia bigemina by transfer of adult male Boophilus microplus [cattle tick]. Letter to the editor. Aust. Vet. J. 1978, 54, 205–206. [Google Scholar]
- Mahoney, D.F.; Mirre, G.B. A note on the transmission of Babesia bovis (syn B argentina) by the one-host tick, Boophilus microplus. Res. Vet. Sci. 1979, 26, 253–254. [Google Scholar] [CrossRef]
- Battilani, M.; De Arcangeli, S.; Balboni, A.; Dondi, F. Genetic diversity and molecular epidemiology of Anaplasma. Infect. Genet. Evol. 2017, 49, 195–211. [Google Scholar] [CrossRef]
- Kessler, R.H.; Schenk, M.A.M. Carrapato, tristeza parasitária e tripanossomose dos bovinos. In Embrapa Gado de Corte-Livro Técnico (INFOTECA-E); Campo Grande: Mato Grosso do Sul, Brasil, 2002. [Google Scholar]
- Ribeiro, M.F.B.; Facury-Filho, E.J.; Passos, L.M.F.; Saturnino, H.M.; Malacco, M.A.F. Use of standardized inoculum of Anaplasma marginale and chemoprophylaxis to control bovine anaplasmosis. Arq. Bras. Med. Vet. Zootec. 2003, 55, 21–26. [Google Scholar] [CrossRef]
- Kocan, K.M.; de la Fuente, J.; Blouin, E.F.; Coetzee, J.F.; Ewing, S.A. The natural history of Anaplasma marginale. Vet. Parasitol. 2010, 167, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Peña, A. The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography 2003, 26, 661–671. [Google Scholar] [CrossRef]
- Tack, W.; Madder, M.; Baeten, L.; Vanhellemont, M.; Gruwez, R. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manag. 2012, 265, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Vuilleumier, S.; Metzger, R. Animal dispersal modelling: Handling landscape features and related animal choices. Ecol. Modell. 2006, 190, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Urban, D.; Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 2011, 82, 1205–1218. [Google Scholar] [CrossRef]
- Macal, C.M.; North, M.J. Tutorial on agent-based modelling and simulation. J. Simul. 2010, 16, 151–162. [Google Scholar] [CrossRef]
- Klompen, J.S.H.; Black IV, W.C.; Keirans, J.E.; Oliver, J.H., Jr. Evolution of ticks. Ann. Rev. Entomol. 1996, 41, 141–161. [Google Scholar] [CrossRef] [PubMed]
- Nava, S.; Guglielmone, A.A. A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae). Bull. Entomol. Res. 2012, 103, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Peña, A.; Nava, S.; Tarragona, E.; Bermúdez, S.; de la Fuente, J.; Domingos, A.; Labruna, M.; Mosqueda, J.; Merino, O.; Szabó, M.; et al. Species occurrence of ticks in South America, and interactions with biotic and abiotic traits. Sci. Data 2019, 6, 1–5. [Google Scholar] [CrossRef]
- Barré, N.; Uilenberg, G. Spread of parasites transported with their hosts: Case study of species of cattle tick. Rev. Sci. Tech. 2010, 29, 149–160. [Google Scholar]
- De Oliveira Pascoal, J.; de Siqueira, S.M.; da Costa Maia, R.; Szabó, M.P.J.; Yokosawa, J. Detection and molecular characterization of Mogiana tick virus (MGTV) in Rhipicephalus microplus collected from cattle in a savannah area, Uberlândia, Brazil. Ticks Tick Borne Dis. 2019, 10, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Cançado, P.H.D.; Zucco, C.A.; Piranda, E.M.; Faccini, J.L.H.; Mourão, G.M. Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) as a parasite of pampas deer (Ozotoceros bezoarticus) and cattle tick in Brazil’s Central Pantanal. Rev. Bras. Parasitol. Vet. 2008, 18, 49–53. [Google Scholar]
- Labruna, M.B.; Jorge, R.S.P.; Sana, D.A.; Jácomo, A.T.A.; Kashivakura, C.K.; Furtado, M.M.; Ferro, C.; Perez, S.A.; Silveira, L.; Santos, T.S., Jr.; et al. Ticks (Acari: Ixodidae) on wild carnivores in Brazil. Exp. Appl. Acarol. 2005, 36, 149–163. [Google Scholar] [CrossRef]
- Pound, J.M.; George, J.E.; Kammlah, D.M.; Lohmeyer, K.H.; Dave, R.B. Evidence for role of white-tailed deer (Artiodactyla: Cervidae) in epizootiology of cattle ticks and southern cattle ticks (Acari: Ixodidae) in reinfestations along the Texas/Mexico border in South Texas: A Review and Update. J. Econ. Entomol. 2010, 103, 211–218. [Google Scholar] [CrossRef]
- Szabó, M.P.J.; Labruna, M.B.; Pereira Campos, M.; Duarte, J.M.B. Ticks (Acari: Ixodidae) on wild marsh-deer (Blastocerus dichotomus) from Southeast of Brazil: Infestations prior and after habitat loss. J. Med. Entomol. 2003, 40, 268–274. [Google Scholar] [CrossRef]
- Szabó, M.P.J.; Pascoal, J.O.; Martins, M.M.; Ramos, V.D.N.; Osava, C.F.; Santos, A.L.Q.; Yokosawa, J.; Rezende, L.M.; Tolesano-Pascoli, G.V.; Torga, K.; et al. Ticks and Rickettsia on anteaters from Southeast and Central-West Brazil. Ticks Tick Borne Dis. 2019, 10, 540–545. [Google Scholar] [CrossRef]
- Almazán, C.; Torres-Torres, A.; Torres-Rodríguez, L.; Soberanes-Céspedes, N.; Ortiz-Estrada, M. Biological aspects of Amblyomma mixtum (Koch, 1844) in northeastern Mexico. Quehacer Científico Chiapas 2016, 11, 10–19. [Google Scholar]
- Barbieri, A.M.; Venzal, J.M.; Marcili, A.; Almeida, A.P.; Gomzález, E.M.; Labruna, M.B. Borrelia burgdorferi sensu lato infecting ticks of the Ixodes ricinus Complex in Uruguay: First Report for the Southern Hemisphere. Vector Borne Zoon Dis. 2013, 13, 147–153. [Google Scholar] [CrossRef]
- Ramos, V.N.; Piovezan, U.; Franco, A.H.A.; Rodrigues, V.S.; Nava, S.; Szabó, M.P.J. Nellore cattle (Bos indicus) and ticks within the Brazilian Pantanal: Ecological relationships. Exp. Appl. Acarol. 2016, 68, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Nava, S.; Venzal, J.M.; González-Acuña, D.; Martins, T.F.; Guglielmone, A. Ticks of the Southern Cone of America: Diagnosis, Distribution, and Hosts with Taxonomy, Ecology and Sanitary Importance; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2017; p. 348. [Google Scholar]
- Guglielmone, A.A.; Mangold, A.J.; Aguirre, D.H.; Gaido, A.B. Ecological aspects of four species of ticks found on cattle in Salta, Northwest Argentina. Vet. Parasitol. 1990, 35, 93–101. [Google Scholar] [CrossRef]
- De la Fuente, J.; Kocan, K.M. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol. 2006, 28, 275–283. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, J.; Almazán, C.; Canales, M.; Pérez de la Lastra, J.M.; Kocan, K.M. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim. Health Res. Rev. 2007, 8, 23–28. [Google Scholar] [CrossRef]
- De la Fuente, J.; Moreno-Cid, J.A.; Canales, M.; Villar, M.; Pérez de la Lastra, J.M. Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet. Parasitol. 2011, 181, 17–22. [Google Scholar] [CrossRef]
- Willadsen, P. Tick control: Thoughts on a research agenda. Vet. Parasitol. 2006, 138, 161–168. [Google Scholar] [CrossRef]
- Carreón, D.; Pérez de la Lastra, J.M.; Almazán, C.; Canales, M.; Reglero, M. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine 2012, 30, 273–279. [Google Scholar] [CrossRef]
- De la Fuente, J.; Estrada-Peña, A. Why new vaccines for the control of ectoparasite vectors have not been registered and commercialized? Vaccines 2019, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, J.; Contreras, M. Tick vaccines: Current status and future directions. Expert Rev. Vaccines 2015, 14, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- García-García, J.C.; Montero, C.; Redondo, M.; Vargas, M.; Canales, M.; Boué, O.; Rodríguez, M.; Joglar, M.; Machado, H.; González, I.L.; et al. Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus. Vaccine 2000, 18, 2275–2287. [Google Scholar]
- Estrada-Peña, A.; Carreón, D.; Almazán, C.; de la Fuente, J. Modeling the impact of climate and landscape on the efficacy of white-tailed deer vaccination for cattle tick control in northeastern Mexico. PLoS ONE 2014, 9, e102905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Fuente, J.; Villar, M.; Estrada-Peña, A.; Olivas, J.A. High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques. Expert Rev. Vaccines 2018, 17, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.; Villar, M.; de la Fuente, J. A vaccinomics approach to the identification of tick protective antigens for the control of Ixodes ricinus and Dermacentor reticulatus infestations in companion animals. Front. Physiol. 2019, 10, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, M.; Kasaija, P.D.; Merino, O.; de la Cruz-Hernandez, N.I.; Gortazar, C.; de la Fuente, J. Oral vaccination with a formulation combining Rhipicephalus microplus Subolesin with heat inactivated Mycobacterium bovis reduces tick infestations in cattle. Front. Cell Infect. Microbiol. 2019, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Fuente, J.; Contreras, M.; Estrada-Peña, A.; Cabezas-Cruz, A. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine 2017, 35, 5089–5094. [Google Scholar] [CrossRef]
- De la Fuente, J.; Contreras, M.; Kasaija, P.D.; Gortazar, C.; Ruiz-Fons, J.F.; Mateo, R.; Kabi, F. Towards a multidisciplinary approach to improve cattle health and production in Uganda. Vaccines 2019, 7, 165. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, J. Controlling ticks and tick-borne diseases…looking forward. Ticks Tick Borne Dis. 2018, 9, 1354–1357. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Peña, A.; Szabó, M.; Labruna, M.; Mosqueda, J.; Merino, O.; Tarragona, E.; Venzal, J.M.; de la Fuente, J. Towards an Effective, Rational and Sustainable Approach for the Control of Cattle Ticks in the Neotropics. Vaccines 2020, 8, 9. https://doi.org/10.3390/vaccines8010009
Estrada-Peña A, Szabó M, Labruna M, Mosqueda J, Merino O, Tarragona E, Venzal JM, de la Fuente J. Towards an Effective, Rational and Sustainable Approach for the Control of Cattle Ticks in the Neotropics. Vaccines. 2020; 8(1):9. https://doi.org/10.3390/vaccines8010009
Chicago/Turabian StyleEstrada-Peña, Agustín, Matías Szabó, Marcelo Labruna, Juan Mosqueda, Octavio Merino, Evelina Tarragona, José M. Venzal, and José de la Fuente. 2020. "Towards an Effective, Rational and Sustainable Approach for the Control of Cattle Ticks in the Neotropics" Vaccines 8, no. 1: 9. https://doi.org/10.3390/vaccines8010009
APA StyleEstrada-Peña, A., Szabó, M., Labruna, M., Mosqueda, J., Merino, O., Tarragona, E., Venzal, J. M., & de la Fuente, J. (2020). Towards an Effective, Rational and Sustainable Approach for the Control of Cattle Ticks in the Neotropics. Vaccines, 8(1), 9. https://doi.org/10.3390/vaccines8010009