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Abstract: The prevention and control of vector-borne diseases is a priority for improving global health.
Despite recent advances in the characterization of ectoparasite-host-pathogen molecular interactions,
vaccines are not available for most ectoparasites and vector-borne diseases that cause millions of
deaths yearly. In this paper, in response to the question of why new vaccines for the control of
ectoparasite vectors have not been registered and commercialized, and to contribute developing new
effective vaccines against ectoparasite vectors, we propose challenges and approaches to be addressed.
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Arthropod ectoparasites such as mosquitoes, ticks, fleas, mites and lice are a growing burden
worldwide both as vectors of pathogens [1,2], the cause of allergic reactions to bites such as the
recently diagnosed allergy to red meat or alpha-Gal syndrome associated to tick bites, and the IgE
antibody response to alpha-Gal (Galα1-3Galβ1-(3)4GlcNAc-R) [3]. Ectoparasite traditional control
methods based on insecticides/acaricides and repellents and education about recommended practices
to reduce exposure have been partially successful, but drug resistance and contamination are important
limitations encouraging the development of vaccines as effective and environmentally sound control
strategies [4,5].

It has been a quarter of a century since the first and only vaccines against arthropod ectoparasites
were registered and commercialized for the control of cattle tick infestations [6]. These vaccines were
based on the tick midgut concealed antigen BM86 and proved to control tick infestations in vaccinated
cattle by reducing tick populations, and the use of acaricides over time. A positive correlation between
anti-BM86 IgG antibody titers, the reduction in tick infestations, and the prevalence of some tick-borne
pathogens was shown [6]. Cattle ticks are still the priority in research for vaccines against ectoparasites,
and BM86 is the reference antigen for cattle-targeted tick vaccines with ongoing initiatives including it
alone or in combination with other antigens to increase vaccine efficacy [7,8].

Since then, leading research on tick vaccines has discovered new protective antigens using different
methodological approaches in various tick species [8–10] and in other ectoparasite vectors (e.g., [11,12]),
including antigens such as Subolesin/Akirin protective against multiple ectoparasites [13] (Figure 1).
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Figure 1. Current status of arthropod ectoparasite vaccines. Data were collected by searching in 
PubMed (https://www.ncbi.nlm.nih.gov/pubmed) and European Patent Office (EPO; 
https://www.epo.org/searching-for-patents.html) with the term “vaccine” plus “tick” or “mosquito” 
or “mite” or “flea” or “louse” or “lice”. The graph shows the number of publications/patents referring 
to vaccines with ectoparasite-derived antigens over the total number of publications/vaccines that 
appeared between 2017 and 29 May 2019. In general, most of the publications/patents refer to vector-
borne pathogen-derived antigens for vaccine development. For mites, most of the 
publications/patents address mite-induced allergies. 

Considering these advances why new vaccines for the control of ectoparasite vectors have not 
been registered and commercialized? In response to this question and to contribute developing new 
effective vaccines against ectoparasite vectors we propose the considerations described below. 

Challenge: The global market for insecticidal/acaricidal and repellent compounds is big and 
growing. For example, global mosquito repellent market in 2016 was equivalent to 3.2 billion U.S. 
dollars and estimated to reach 5 billion in 2022 [14]. This market may be more attractive than vaccines 
for some companies, thus limiting funding and interest for ectoparasite control vaccines. It is 
probably one of the reasons why BM86-based vaccines with proven efficacy did not succeed in the 
market. 

Approach: It has been always considered that the combination of vaccination with other control 
measures such as insecticides/acaricides and repellents are required for the effective control of 
ectoparasite vectors [15]. Vaccines should be considered as an alternative and complementary 
intervention for ectoparasite control, which ultimately will reduce the use of insecticides/acaricides 
while increasing demand for vaccines. 

Challenge: Cost-effectiveness and security are important issues when developing vaccines for 
the control of ectoparasite vectors. 

Approach: To address these issues, research should be focused on effective formulations with 
new adjuvants for oral vaccine delivery and nanoparticle-based vaccines [16,17]. 

Challenge: Vaccines reducing vector populations through reduction of ectoparasite feeding and 
reproduction, as those based on BM86 and commercially available for cattle ticks may be effective 
against ectoparasite species of farm animals such as cattle (ticks), salmon (sea lice) and poultry (red 
mite), if these hosts alone maintain ectoparasite populations. However, major limitations such as 
infestations by multiple ectoparasite species (i.e., different tick species in cattle) or involvement of 
other in-contact hosts in ectoparasite life cycle (i.e., deer for cattle ticks), require vaccines targeting 
multiple ectoparasite and host species [15,18]. 

Approach: Antigen combinations may be a possibility to target multiple ectoparasite species and 
hosts. However, antigen physical and/or immunological interactions may interfere and reduce 
vaccine immunogenicity and efficacy. Therefore, new vaccine formulations should consider these 

Figure 1. Current status of arthropod ectoparasite vaccines. Data were collected by searching in
PubMed (https://www.ncbi.nlm.nih.gov/pubmed) and European Patent Office (EPO; https://www.
epo.org/searching-for-patents.html) with the term “vaccine” plus “tick” or “mosquito” or “mite” or
“flea” or “louse” or “lice”. The graph shows the number of publications/patents referring to vaccines
with ectoparasite-derived antigens over the total number of publications/vaccines that appeared
between 2017 and 29 May 2019. In general, most of the publications/patents refer to vector-borne
pathogen-derived antigens for vaccine development. For mites, most of the publications/patents
address mite-induced allergies.

Considering these advances why new vaccines for the control of ectoparasite vectors have not
been registered and commercialized? In response to this question and to contribute developing new
effective vaccines against ectoparasite vectors we propose the considerations described below.

Challenge: The global market for insecticidal/acaricidal and repellent compounds is big and
growing. For example, global mosquito repellent market in 2016 was equivalent to 3.2 billion U.S.
dollars and estimated to reach 5 billion in 2022 [14]. This market may be more attractive than vaccines
for some companies, thus limiting funding and interest for ectoparasite control vaccines. It is probably
one of the reasons why BM86-based vaccines with proven efficacy did not succeed in the market.

Approach: It has been always considered that the combination of vaccination with other control
measures such as insecticides/acaricides and repellents are required for the effective control of
ectoparasite vectors [15]. Vaccines should be considered as an alternative and complementary
intervention for ectoparasite control, which ultimately will reduce the use of insecticides/acaricides
while increasing demand for vaccines.

Challenge: Cost-effectiveness and security are important issues when developing vaccines for
the control of ectoparasite vectors.

Approach: To address these issues, research should be focused on effective formulations with
new adjuvants for oral vaccine delivery and nanoparticle-based vaccines [16,17].

Challenge: Vaccines reducing vector populations through reduction of ectoparasite feeding and
reproduction, as those based on BM86 and commercially available for cattle ticks may be effective
against ectoparasite species of farm animals such as cattle (ticks), salmon (sea lice) and poultry (red
mite), if these hosts alone maintain ectoparasite populations. However, major limitations such as
infestations by multiple ectoparasite species (i.e., different tick species in cattle) or involvement of
other in-contact hosts in ectoparasite life cycle (i.e., deer for cattle ticks), require vaccines targeting
multiple ectoparasite and host species [15,18].

Approach: Antigen combinations may be a possibility to target multiple ectoparasite species and
hosts. However, antigen physical and/or immunological interactions may interfere and reduce vaccine
immunogenicity and efficacy. Therefore, new vaccine formulations should consider these factors and
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the possibility of combining protective epitopes from different proteins into a single antigen (e.g.,
Subolesin/Akirin chimeras [19]). Additionally, antigens effective against multiple ectoparasite species
in different hosts should be considered alone or in combination with other antigens [13]. Vaccines
targeting wildlife hosts pose the challenge of effective vaccine delivery but using virus-based vectors
may be a possibility to overcome this limitation.

Challenge: It is generally considered that vaccines for ectoparasite vector control in humans and
companion animals should prevent infestations and pathogen transmission. Is it possible?

Approach: Based on current information it may be possible to develop vaccines that prevent
transmission of bacterial and protozoan parasites that require hours to days for transmission after
vector blood-feeding [18]. However, most viruses are transmitted immediately after vector bite,
making it more difficult to prevent transmission. On the question regarding the possibility of
vaccines preventing vector attachment and feeding our answer is no, because the immune response
to vaccination (e.g., antibodies) needs to interact with the ectoparasite in order to have an effect on
different biological processes affecting life cycle of the vector and transmitted pathogens. One pending
matter is the combination of vector and pathogen derived antigens to target both of them with a
single vaccine [15,18]. Another recently proposed approach is the development of vaccines based on
alpha-Gal glycoproteins/glycolipids and targeting tick galactosyltransferases to control pathogens with
alpha-Gal on their surface and tick vector infestations [20,21]. Nevertheless, these possibilities still
need to be proven.

Conclusions

The prevention and control of vector-borne diseases is a priority for improving global health.
Despite recent advances in this area, vaccines are not available for most vector-borne diseases that
cause millions of deaths yearly [22,23]. Preventing pathogen circulation is the focus of current research
by developing vaccines using pathogen-derived antigens (Figure 1). However, integrated control
using a One Health approach in which tick reservoir animal hosts are vaccinated against the vector
and the pathogen are required. For vaccine development and implementation of effective control
strategies, the relationship between different risk factors and vaccine efficacy should be considered [18].
New approaches need to be implemented to improve the identification of new protective antigens
using recent omics technologies in combination with bioinformatics analyses [24,25]. Additionally,
vaccines could be combined with autocidal tick control and paratransgenic ticks with lower vector
competence [15,18,26].
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