Cholera Toxin Subunit B as Adjuvant––An Accelerator in Protective Immunity and a Break in Autoimmunity
Abstract
:1. Introduction
2. CTB Expression in Bacteria and Yeast
Expression System | CTB Fused to | Reported Yields | Ref. |
---|---|---|---|
E. coli BL21 | Fimbria 2 (Bortedella pertussis), C-term. | Not specified | [22] |
E. coli BL21 | Adhesin from Streptococcus, fused to CTA2, CTB coexpressed but unfused | 3.5 mg/L of culture | [23] |
E. coli KS476 | Albumin binding region (BB) of Streptococcus protein G N-terminal, C-terminal and both, N- and C-terminal | 6–12 mg/L of culture | [24] |
E. coli BL21 (DE3) | Cedar pollen Ag cry j 1 and cry j 2, C-terminal | 120 mg/L culture volume | [25] |
Lactobacillus casei Lactobacillus reuteri | Hexahistidine tag or unfused | 0.05 mg/L unfused, 1 mg/L when fused to histidine tag | [19] |
Lactobacillus casei | YVAD tetrapeptide (caspase-1 inhibitor), C-terminal | 1 mg/L culture volume | [26] |
Yeast (Pichia pastoris) | CTB stabilized by fusion to five stranded α-helical coiled-coil domain of cartilage oligomeric matrix protein(COMP) | Not specified | [27] |
Silkworm (Bombyx mori) | amyloid-β peptide(Aβ42), C-term | 0.5 µg/g silkworm pupae | [28] |
Silkworm (Bombyx mori) | Insulin-GFP | 0.58 mg/mL of hemolymph, 0.23 mg/larva | [29] |
Tobacco (Nicotiana benthamiana) | unfused | >1 g/kg of fresh leaves | [30] |
Tobacco (Nicotiana benthamiana) | HIV membrane proximal (ectodomain) region of gp41, C-term | 1–2 mg purified protein/kg of fresh leaves | [31] |
Tobacco (Nicotianatabacum var. Petit havana) | unfused | 4.1% of total soluble leaf protein | [32] |
Tobacco (Nicotiana tabacum var. Petit havana), chloroplast | Mycobacterium Ag ESAT-6 (6 kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) | 0.95 mg/g fresh leaf (CTB-ESAT-6), 1.1% of total soluble protein (CTB-Mtb72F) | [33] |
Tobacco (Nicotiana tabacum) | N-terminal fused to p201 epitope from ApoB100 and CETP 461–476, C-terminal | 10 mg/kg of fresh plant leaf | [34] |
Tobacco | MBP,C-terminal | 2% of total leaf protein | [35] |
Rice (Oryza sativa japonica, Nipponbare) | Unfused, Asn to Gln substitution at 4th glycosylation position | 2.3 mg/g of seed CTB unglycosylated | [36] |
3. CTB Expression in Plants
4. CTB Expression in Silk Worms
5. Formulation of CTB as Adjuvant
Antigen | Fused to CTB | (Animal) Model, Pathogen, Route | Analyzed Response | Ref. |
---|---|---|---|---|
OVA | conjugated | DO11.10OVATCR transgenic mice, i.g. | Induction of CD25 + Treg > 2-fold compared to OVA only,Treg have suppressor function | [47] |
OVA | unfused or conjugated | DC in vitro exposed to OVA, CFA + CTB, OVA coupled to CTB and transfer to BALB/c mice, boost with OVA + CFA | IgG titers >3-fold increase, upregulation of CD80 and CD86 (CTB coupled to OVA vs. CTB + OVA or OVA only) Upregulation of IFN-γ (CTB coupled to OVA vs. OVA) | [48] |
OVA | unfused | BALB/c mouse, asthma OVA aerosol airway model | Suppression of airway eosinophilia, Th2 cytokine synthesis, bronchial hyperreactivity, Treg induction >10-fold anti-OVA IgA increment in lung (OVA + CTB vs. OVA only) | [49] |
OVA myelinoligodendrocyteglycoprotein peptide (MOG 35–55) | conjugated | BALB/c, C57BL/6, induced EAE ex vivo incubation of B cells with Ag + CTB and in vivo transfer | IL-10 production by B cells; >50-fold increase of anti-OVA Foxp3 + Treg; prevention of EAE induction | [50] |
OVA | C-terminal, DNA vaccine(pSV-OVA-CTB) combined with recombinant Tiantan vaccinia (rTTV-OVA-CTB) | C57BL/6 mouse, oral, i.n. prime with pSV-OVA-CTB, i.m. boost with rTTV-OVA-CTB | Triplication of Ag-specific T cells compared to same DNA vaccines lacking CTB | [51] |
HIVrgp160 | unfused, combined with proteasomes or emulsomes | BALB/c mouse, oral/i.n. | Serum IgA, 20-fold increase (proteasome vs. proteasome + CTB), intestinal IgA, 60-fold increase (proteasome vs. proteasome + CTB) | [52] |
HIV gp120 coding DNA (DNA-EnvB) + MVA-EnvB (boost) | unfused, +/− IL-12 coding DNA | BALB/c mouse, i.n. | Ag-specific T cell response duplicated (DNA-EnvB + IL-12 + CTB vs. DNA-EnvB) | [53] |
Envelope GP1455m HIV | unfused | BALB/c mouse, i.m. | IgG titers 10-fold increased (DNA + CTB vs. DNA only) | [54] |
HIV membrane proximal (ectodomain) region of gp41 | C-terminal | BALB/c mouse. i.n., liposome conjugated + CT, i.p. boost without CT | Serum IgG and vaginal IgA detected, titer increased 100-fold, however, not all mice responding | [31] |
Hemagglutinin fused to major immunodominant region (MIR) of Hepatitis B virus coreprotein (HBc) | unfused, mixed with 0.2%CT | BALB/c mouse, in vivo challenge withInfluenza, i.n. | 50% increase of survival at low Ag dose (HA + CTB vs. HA) | [55] |
Adhesin fromStreptococcus (AgI/II) | fused to CTA2, CTBCoexpressed but unfused | BALB/c mouse, i.n. or orally, +/− CT, −/+ Al(OH)3, no comparison to AgI/II only | IgG and IgA titers analyzed CT and AL(OH)3 increase IgG and IgA titers 2–10 fold when added to fusion construct CT augments serum IgA titers over 2-fold compared to Al(OH)3 | [23] |
Fimbria2 (Bortedella pertussis) | C-terminal | BALB/c mouse respiratory model, Bortedella pertussis i.p. or i.n. | IgG in serum close to ducplicated after intranasal vaccination, IgG in bronchoalveolar fluid 4-fold increased (CTB-Fim2 vs. recombinant Fim2) | [22] |
Urease fragments, 5T and B cell epitopes (Heliobacter py lori) | C-terminal, transformed Lactococcus lactis | BALB/c, oral immunization with live Lactococcus | >100-fold reduction of gastric colonization by H. pylori | [56] |
CTB | N/A | Monocyte-derived DC | CTB interfers with LPS-induced maturation IL-12 production reduced by >50% CTB-treated DC reduce IFN-γ by Tcells (>60%), IL-10 and TGF-β unchanged | [57] |
CTB | N/A | suckling mouse model, femalesimmunized i.p., s.c. or i.n., pupschallenged with V. cholerae | 60%–100% survival of offsprings from immunized vs. PBS treated females | [58] |
CTB | unfused, Asn to Glnsubstitution at 4thglycosylation position | Macaque, oral BALB/c mouse, oral | Mice: protection against diarrhea, detection of serum IgG, fecal IgA; Macaques: detection of serum IgG, no fecal IgA | [36] |
Naf1 (Naegleria fowleri) | unfused | BALB/c mouse, amoebic meningoencephalitis, i.n. | 60% vs. 0% Survival (Naf1 + CTB vs. Naf1) of miceinfected with N.f. | [59] |
Plasmodium vivaxookinete surfaceprotein (P vs. 25) | conjugated or mixed withCTB | BALB/c mouse, i.n. or i.p., +/− IFA | 10-fold increase of IgG sera titers using conjugated protein vs. P vs. 25 only or P vs. 25 + CTB | [60] |
Plasmodium yoelii Merozoite surface protein-1(MSP1) C-terminal region | conjugated to CTB or mixed with CT or IFA | C57BL/6 mouse, i.n., s.c., immunized mice challenged with lethal dose of P. yoelii | >10-fold increase of IgG sera titer (conjugated vs. MSP1 only), conjugated MSP + CT or IFA leads to further 5–10 fold titer increase compared to conjugated only, full protection against parasite only when mixing conjugated MSP with CT or IFA (survival 10/10 vs. 0–2/10) | [20] |
Human Pro-insulin | C-terminal | monocyte-derived dendritic cells(MoDCs), human, in vitro | Tolerogenic effect on DCs, indoleamine 2,3-dioxygenase upregulation | [61] |
Insulin | C-terminal +/− GFP | NOD mouse, T1D model, oral feeding | 50% reduction of T1D incidence | [29] |
MBP | C-terminal | 3× TgAD mice (Alzheimer disease), oral | Reduction of amyloid loads by 70% in hippocampus and cortex brain region | [35] |
Human GAD55 | C-terminal, recombinant vaccinia virus | NOD mouse, i.p., +/− CFA | Diabetes reduction between 50 and 20% compared to same vaccine w/o CFA | [62] |
amyloid-β peptide (Aβ42) | C-terminal | B6C3-Tg (APPswe, PSEN1dE9)transgenic mice (Alzheimer), oral | Ab titers augmented but n.s. (Aβ42 vs. CTB-Aβ42) Learning improved but n.s. (Aβ42 vs. CTB-Aβ42) | [28] |
6. CTB as Vaccine Adjuvant in Infectious Diseases
7. CTB in Immune Suppression
8. Conclusions
Acknowledgments
Abbreviations
CT | cholera toxin |
CTB | cholera toxin subunit B |
CTA | cholera toxin subunit A |
GM1 | monosialotetrahexosylganglioside |
Conflicts of Interest
References
- Lönnroth, I.; Holmgren, J. Subunit structure of cholera toxin. J. Gen. Microbiol. 1973, 76, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Sixma, T.K.; Pronk, S.E.; Kalk, K.H.; van Zanten, B.A.M.; Berghuis, A.M.; Hol, W.G.J. Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 1992, 355, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Merritt, E.A.; Sixma, T.K.; Kalk, K.H.; van Zanten, B.A.M.; Hol, W.G.J. Galactose-Binding site in Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT). Mol. Microbiol. 1994, 13, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Merritt, E.A.; Sarfaty, S.; Akker, F.V.D.; L’Hoir, C.; Martial, J.A.; Hol, W.G.J. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 1994, 3, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Sixma, T.K.; Kalk, K.H.; van Zanten, B.A.M.; Dauter, Z.; Kingma, J.; Witholt, B.; Hol, W.G.J. Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J. Mol. Biol. 1993, 230, 890–918. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Jadhav, A.P.; Rodighiero, C.; Fujinaga, Y.; Kirchhausen, T.; Lencer, W.I. Retrograde transport of cholera toxin from the plasma membrane to the endoplasmic reticulum requires the trans-Golgi network but not the Golgi apparatus in Exo2-treated cells. EMBO Rep. 2004, 5, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Kopic, S.; Geibel, J.P. Toxin mediated diarrhea in the 21(st) century: The pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and Rotavirus Infection. Toxins 2010, 2, 2132–2157. [Google Scholar] [CrossRef] [PubMed]
- Chester, M.A. IUPAC-IUB joint commission on biochemical nomenclature (JCBN) nomenclature of glycolipids. Eur. J. Biochem. 1998, 257, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, J.; Lönnroth, I.; Svennerholm, L. Tissue receptor for cholera EXOTOXIN: Postulated structure from studies with G(M1) ganglioside and related glycolipids. Infect. Immun. 1973, 8, 208–214. [Google Scholar] [PubMed]
- Schoen, A.; Freire, E. Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside GM1. Biochemistry 1989, 28, 5019–5024. [Google Scholar] [CrossRef]
- Kozireski-Chuback, D.; Wu, G.; Ledeen, R.W. Developmental appearance of nuclear GM1 in neurons of the central and peripheral nervous systems. Dev. Brain Res. 1999, 115, 201–208. [Google Scholar] [CrossRef]
- Moreno-Altamirano, M.M.B.; Aguilar-Carmona, I.; Sánchez-García, F.J. Expression of GM1, a marker of lipid rafts, defines two subsets of human monocytes with differential endocytic capacity and lipopolysaccharide responsiveness. Immunology 2007, 120, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Francis, M.L.; Ryan, J.; Jobling, M.G.; Holmes, R.K.; Moss, J.; Mond, J.J. Cyclic AMP-independent effects of cholera toxin on B cell activation. II. Binding of ganglioside GM1 induces B cell activation. J. Immunol. 1992, 148, 1999–2005. [Google Scholar] [PubMed]
- Lebens, M.; Holmgren, J. Structure and arrangement of the cholera toxin genes in Vibrio cholerae O139. FEMS Microbiol. Lett. 1994, 117, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Hirst, T.R.; Sanchez, J.; Kaper, J.B.; Hardy, S.J.; Holmgren, J. Mechanism of toxin secretion by Vibrio cholerae investigated in strains harboring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc. Natl. Acad. Sci. USA 1984, 81, 7752–7756. [Google Scholar] [CrossRef] [PubMed]
- Paula de Mattos Areas, A.; Leonor Sarno de Oliveira, M.; Raul Romero Ramos, C.; Sbrogio-Almeida, M.E.; Raw, I.; Ho, P.L. Synthesis of cholera toxin B subunit gene: Cloning and expression of a functional 6XHis-tagged protein in Escherichia coli. Protein Expr. Purif. 2002, 25, 481–487. [Google Scholar] [CrossRef]
- Presa, M.; Ortiz, A.Z.; Garabatos, N.; Izquierdo, C.; Rivas, E.I.; Teyton, L.; Mora, C.; Serreze, D.; Stratmann, T. Cholera toxin subunit B-peptide fusion proteins reveal impaired oral tolerance induction in diabetes-prone but not in diabetes-resistant mice. Eur. J. Immunol. 2014, 192, 3080–3090. [Google Scholar] [CrossRef] [PubMed]
- Tinker, J.K.; Erbe, J.L.; Holmes, R.K. Characterization of fluorescent chimeras of cholera toxin and Escherichia coli heat-labile enterotoxins produced by use of the twin arginine translocation system. Infect. Immun. 2005, 73, 3627–3635. [Google Scholar] [CrossRef] [PubMed]
- Okuno, T.; Kashige, N.; Satho, T.; Irie, K.; Hiramatsu, Y.; Sharmin, T.; Fukumitsu, Y.; Uyeda, S.; Yamada, S.; Harakuni, T.; et al. Expression and secretion of cholera toxin B subunit in Lactobacilli. Biol. Pharm. Bull. 2013, 36, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; Harakuni, T.; Taira, T.; Matsuzaki, G.; Arakawa, T. Merozoite surface protein-1 of Plasmodium yoelii fused via an oligosaccharide moiety of cholera toxin B subunit glycoprotein expressed in yeast induced protective immunity against lethal malaria infection in mice. Vaccine 2011, 30, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Zhou, L.; Fang, W.; Li, Y.; Wang, X.; Fang, H.; Li, X.; Wu, M.; Qiu, B. High-level expression of codon optimized foot-and-mouth disease virus complex epitopes and cholera toxin B subunit chimera in Hansenula polymorpha. Biochem. Biophys. Res. Commun. 2004, 315, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Olivera, N.; Castuma, C.E.; Hozbor, D.; Gaillard, M.E.; Rumbo, M.; Gómez, R.M. Immunization with the recombinant cholera toxin B fused to fimbria 2 protein protects against Bordetella pertussis infection. BioMed Res. Int. 2014. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Hollingshead, S.K.; Koga, T.; Russell, M.W. Mucosal immunization with a bacterial protein antigen genetically coupled to cholera toxin A2/B subunits. J. Immunol. 1995, 154, 4322–4332. [Google Scholar] [PubMed]
- Liljeqvist, S.; Stahl, S.; Andéoni, C.; Binz, H.; Uhlén, M.; Murby, M. Fusions to the cholera toxin B subunit: Influence on pentamerization and GM1 binding. J. Immunol. Methods 1997, 210, 125–135. [Google Scholar] [CrossRef]
- Hoang, V.V.; Zou, Y.; Kurata, K.; Enomoto, K. Expression of recombinant T-cell epitopes of major Japanese cedar pollen allergens fused with cholera toxin B subunit in Escherichia coli. Protein Expr. Purif. 2015, 109, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, Y.; Yamamoto, M.; Satho, T.; Irie, K.; Kai, A.; Uyeda, S.; Fukumitsu, Y.; Toda, A.; Miyata, T.; Miake, F. Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus casei inhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells. BMC Biotechnol. 2014. [Google Scholar] [CrossRef]
- Arakawa, T.; Yu, J.; Chong, D.K.X.; Hough, J.; Engen, P.C.; Langridge, W.H.R. A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat. Biotech. 1998, 16, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wei, Z.; Chen, J.; Chen, Y.; Lv, Z.; Yu, W.; Meng, Q.; Jin, Y. Oral administration of a fusion protein between the cholera toxin B subunit and the 42-amino acid isoform of amyloid-beta peptide produced in silkworm pupae protects against Alzheimer’s disease in mice. PLoS ONE 2014, 9, e113585. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Wang, W.; Shi, X.; Jin, Y.; Zhang, Y. Protection against autoimmune diabetes by silkworm-produced GFP-tagged CTB-insulin fusion protein. Clin. Dev. Immunol. 2011. [Google Scholar] [CrossRef] [PubMed]
- Hamorsky, K.T.; Kouokam, J.C.; Bennett, L.J.; Baldauf, K.J.; Kajiura, H.; Fujiyama, K.; Matoba, N. Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks. PLoS Negl. Trop. Dis. 2013, 7, e2046. [Google Scholar] [CrossRef] [PubMed]
- Matoba, N.; Kajiura, H.; Cherni, I.; Doran, J.D.; Bomsel, M.; Fujiyama, K.; Mor, T.S. Biochemical and immunological characterization of the plant-derived candidate human immunodeficiency virus type 1 mucosal vaccine CTB-MPR649–684. Plant Biotechnol. J. 2009, 7, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Lee, S.-B.; Panchal, T.; Wiebe, P.O. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 2001, 311, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, P.S.; Verma, D.; Yang, X.; Lloyd, B.; Daniell, H. Low cost tuberculosis vaccine antigens in capsules: Expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 2013, 8, e54708. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Gonzalez, J.; Rosales-Mendoza, S.; Romero-Maldonado, A.; Monreal-Escalante, E.; Uresti-Rivera, E.; Bañuelos-Hernández, B. Production of a plant-derived immunogenic protein targeting ApoB100 and CETP: Toward a plant-based atherosclerosis vaccine. Mol. Biotechnol. 2014, 56, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Kohli, N.; Westerveld, D.R.; Ayache, A.C.; Verma, A.; Shil, P.; Prasad, T.; Zhu, P.; Chan, S.L.; Li, Q.; Daniell, H. Oral delivery of bioencapsulated proteins across blood-brain and blood-retinal barriers. Mol. Ther. 2014, 22, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Yuki, Y.; Mejima, M.; Kurokawa, S.; Hiroiwa, T.; Takahashi, Y.; Tokuhara, D.; Nochi, T.; Katakai, Y.; Kuroda, M.; Takeyama, N.; et al. Induction of toxin-specific neutralizing immunity by molecularly uniform rice-based oral cholera toxin B subunit vaccine without plant-associated sugar modification. Plant Biotechnol. J. 2013, 11, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Matoba, N.; Magérus, A.; Geyer, B.C.; Zhang, Y.; Muralidharan, M.; Alfsen, A.; Arntzen, C.J.; Bomsel, M.; Mor, T.S. A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs. Proc. Natl. Acad. Sci. USA 2004, 101, 13584–13589. [Google Scholar] [CrossRef] [PubMed]
- Hamorsky, K.T.; Kouokam, J.C.; Jurkiewicz, J.M.; Nelson, B.; Moore, L.J.; Husk, A.S.; Kajiura, H.; Fujiyama, K.; Matoba, N. N-Glycosylation of cholera toxin B subunit in Nicotiana benthamiana: Impacts on host stress response, production yield and vaccine potential. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Nochi, T.; Takagi, H.; Yuki, Y.; Yang, L.; Masumura, T.; Mejima, M.; Nakanishi, U.; Matsumura, A.; Uozumi, A.; Hiroi, T.; et al. Rice-Based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc. Natl. Acad. Sci. USA 2007, 104, 10986–10991. [Google Scholar] [CrossRef] [PubMed]
- Nochi, T.; Yuki, Y.; Katakai, Y.; Shibata, H.; Tokuhara, D.; Mejima, M.; Kurokawa, S.; Takahashi, Y.; Nakanishi, U.; Ono, F.; et al. A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity. J. Immunol. 2009, 183, 6538–6544. [Google Scholar] [CrossRef] [PubMed]
- Yuki, Y.; Tokuhara, D.; Nochi, T.; Yasuda, H.; Mejima, M.; Kurokawa, S.; Takahashi, Y.; Kataokaa, N.; Nakanishia, U.; Hagiwara, Y.; et al. Oral MucoRice expressing double-mutant cholera toxin A and B subunits induces toxin-specific neutralising immunity. Vaccine 2009, 27, 5982–5988. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, S.; Kuroda, M.; Mejima, M.; Nakamura, R.; Takahashi, Y.; Sagara, H.; Takeyama, N.; Satoh, S.; Kiyono, H.; Teshima, R.; et al. RNAi-Mediated suppression of endogenous storage proteins leads to a change in localization of overexpressed cholera toxin B-subunit and the allergen protein RAG2 in rice seeds. Plant Cell Rep. 2013, 33, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Jin, Y.; Zhang, Y. Oral administration of a cholera toxin B subunit‚ Äìinsulin fusion protein produced in silkworm protects against autoimmune diabetes. J. Biotechnol. 2005, 119, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Jin, Y.; Zhang, Y. Suppression of diabetes in non-obese diabetic (NOD) mice by oral administration of a cholera toxin B subunit insulin B chain fusion protein vaccine produced in silkworm. Vaccine 2007, 25, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; Oshiro, S.; Harakuni, T.; Taira, T.; Matsuzaki, G.; Arakawa, T. Physicochemically stable cholera toxin B subunit pentamer created by peripheral molecular constraints imposed by de novo-introduced intersubunit disulfide crosslinks. Vaccine 2012, 30, 4225–4232. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Harakuni, T. Cholera toxin B subunit -five-stranded alpha-helical coiled-coil fusion protein: “Five-to-five” molecular chimera displays robust physicochemical stability. Vaccine 2014, 32, 5019–5026. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-B.; Raghavan, S.; Sjöling, A.; Lundin, S.; Holmgren, J. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+CD25+ and Foxp3-CD25−CD4+ regulatory T cells. J. Immunol. 2006, 177, 7634–7644. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, K.; Fredriksson, M.; Nordström, I.; Holmgren, J. Cholera toxin and its B subunit promote dendritic cell vaccination with different influences on Th1 and Th2 development. Infect. Immun. 2003, 71, 1740–1747. [Google Scholar] [CrossRef] [PubMed]
- Smits, H.H.; Gloudemans, A.K.; van Nimwegen, M.; Willart, M.A.; Soullie, T.; Muskens, F.; de Jong, E.C.; Boon, L.; Pilette, C.; Johansen, F.-E.; et al. Cholera toxin B suppresses allergic inflammation through induction of secretory IgA. Mucosal Immunol. 2009, 2, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-B.; Czerkinsky, C.; Holmgren, J. B lymphocytes treated in vitro with antigen coupled to cholera toxin B subunit induce antigen-specific Foxp3+ regulatory T cells and protect against experimental autoimmune encephalomyelitis. J. Immunol. 2012, 188, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Ren, X.; Ben, Y.; Ren, Y.; Wang, J.; Zhang, X.; Wan, Y.; Xu, J. Fusion-expressed CTB improves both systemic and mucosal T-cell responses elicited by an intranasal DNA priming/intramuscular recombinant vaccinia boosting regimen. J. Immunol. Res. 2014. [Google Scholar] [CrossRef]
- Lowell, G.H.; Kaminski, R.W.; VanCott, T.C.; Slike, B.; Kersey, K.; Zawoznik, E.; Loomis-Price, L.; Smith, G.; Redfield, R.R.; Amselem, S.; et al. Proteosomes, emulsomes, and cholera toxin B improve nasal immunogenicity of human immunodeficiency virus gp160 in mice: Induction of serum, intestinal, vaginal, and lung IgA and IgG. J. Infect. Dis. 1997, 175, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Maeto, C.; Rodríguez, A.M.; Holgado, M.P.; Falivene, J.; Gherardi, M.M. Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus cholera toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity. PLoS ONE 2014, 9, e107524. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Liu, Y.; Hsi, J.; Wang, H.; Tao, R.; Shao, Y. Cholera toxin B subunit acts as a potent systemic adjuvant for HIV-1 DNA vaccination intramuscularly in mice. Hum. Vaccin. Immunother. 2014, 10, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, D.; Li, C.; Zhang, W.; Xu, W.; Liu, X.; Fang, F.; Chen, Z. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope. BioMed Res. Int. 2015, 175, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xing, Y.; Guo, L.; Lv, X.; Song, H.; Xi, T. Oral immunization with recombinant Lactococcus lactis delivering a multi-epitope antigen CTB-UE attenuates Helicobacter pylori infection in mice. Pathog. Dis. 2014, 72, 78–86. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, A.; Colucci, M.; Pugliese, O.; Quintieri, F.; Boirivant, M. Cholera toxin B subunit promotes the induction of regulatory T cells by preventing human dendritic cell maturation. J. Leukoc. Biol. 2008, 84, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Price, G.A.; McFann, K.; Holmes, R.K. Immunization with cholera toxin B subunit induces high-level protection in the suckling mouse model of cholera. PLoS ONE 2013, 8, e57269. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yoo, J.-K.; Sohn, H.-J.; Kang, H.-k.; Kim, D.; Shin, H.-J.; Kim, J.-H. Protective immunity against Naegleria fowleri infection on mice immunized with the rNfa1 protein using mucosal adjuvants. Parasitol. Res. 2015, 114, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Miyata, T.; Harakuni, T.; Tsuboi, T.; Sattabongkot, J.; Kohama, H.; Tachibana, M.; Matsuzaki, G.; Torii, M.; Arakawa, T. Plasmodium vivax ookinete surface protein Pvs25 linked to cholera toxin B subunit induces potent transmission-blocking immunity by intranasal as well as subcutaneous immunization. Infect. Immun. 2010, 78, 3773–3782. [Google Scholar] [CrossRef] [PubMed]
- Mbongue, J.; Nicholas, D.; Zhang, K.; Kim, N.-S.; Hamilton, B.; Larios, M.; Zhang, G.; Umezawa, K.; Firek, A.F.; Langridge, W.H.R. Induction of indoleamine 2,3-dioxygenase in human dendritic cells by a cholera toxin B subunit—Proinsulin vaccine. PLoS ONE 2015. [Google Scholar] [CrossRef]
- Dénes, B.; Fodor, I.; Langridge, W.H.R. Persistent suppression of type 1 diabetes by a multicomponent vaccine containing a cholera toxin B subunit-autoantigen fusion protein and complete Freund’s adjuvant. Clin. Dev. Immunol. 2013. [Google Scholar] [CrossRef]
- Han, T.K.; Dao, M.L. Enhancement of salivary IgA response to a DNA vaccine against Streptococcus mutans wall-associated protein A in mice by plasmid-based adjuvants. J. Med. Microbiol. 2007, 56, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Gloudemans, A.K.; Plantinga, M.; Guilliams, M.; Willart, M.A.; Ozir-Fazalalikhan, A.; van der Ham, A.; Boon, L.; Harris, N.L.; Hammad, H.; Hoogsteden, H.C.; et al. The mucosal adjuvant cholera toxin b instructs non-mucosal dendritic cells to promote IgA production via retinoic acid AND TGF-beta. PLoS ONE 2013, 8, e59822. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Phongsisay, V.; Iizasa, E.Ä.; Hara, H.; Yoshida, H. Evidence for TLR4 and FcRgamma-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Mol. Immunol. 2015, 66, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.H.; Jeong, S.R.; Kim, J.H.; Song, K.J.; Kim, K.; Park, S.; Sohn, S.; Shin, H.-J. Cytopathic changes and pro-inflammatory cytokines induced by Naegleria fowleri trophozoites in rat microglial cells and protective effects of an anti-Nfa1 antibody. Parasite Immunol. 2005, 27, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Song, H.; Yang, J.; Li, T.; Xi, T.; Xing, Y. A multi-epitope vaccine CTB-UE relieves Helicobacter pylori-induced gastric inflammatory reaction via up-regulating microRNA-155 to inhibit Th17 response in C57/BL6 mice model. Hum. Vaccin. Immunother. 2015, 10, 3561–3569. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-B.; Flach, C.-F.; Czerkinsky, C.; Holmgren, J. B lymphocytes promote expansion of regulatory T cells in oral tolerance: Powerful induction by antigen coupled to cholera toxin B subunit. J. Immunol. 2008, 181, 8278–8287. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-B.; Xiang, Z.; Smith, K.G.C.; Holmgren, J. Important role for FcgRIIB on B lymphocytes for mucosal antigen-induced tolerance and Foxp3+ regulatory T cells. J. Immunol. 2013, 191, 4412–4422. [Google Scholar] [CrossRef] [PubMed]
- Ploix, C.; Bergerot, I.; Durand, A.; Czerkinsky, C.; Holmgren, J.; Thivolet, C. Oral administration of cholera toxin B-insulin conjugates protects NOD mice from autoimmune diabetes by inducing CD4+ regulatory T-cells. Diabetes 1999, 48, 2150–2156. [Google Scholar] [CrossRef] [PubMed]
- Aspord, C.; Czerkinsky, C.; Durand, A.; Stefanutti, A.; Thivolet, C. α4 Integrins and L-selectin differently orchestrate T-cell activity during diabetes prevention following oral administration of CTB-insulin. J. Autoimmun. 2002, 19, 223–232. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stratmann, T. Cholera Toxin Subunit B as Adjuvant––An Accelerator in Protective Immunity and a Break in Autoimmunity. Vaccines 2015, 3, 579-596. https://doi.org/10.3390/vaccines3030579
Stratmann T. Cholera Toxin Subunit B as Adjuvant––An Accelerator in Protective Immunity and a Break in Autoimmunity. Vaccines. 2015; 3(3):579-596. https://doi.org/10.3390/vaccines3030579
Chicago/Turabian StyleStratmann, Thomas. 2015. "Cholera Toxin Subunit B as Adjuvant––An Accelerator in Protective Immunity and a Break in Autoimmunity" Vaccines 3, no. 3: 579-596. https://doi.org/10.3390/vaccines3030579