Using Machine Learning to Identify Factors Affecting Antibody Production and Adverse Reactions After COVID-19 Vaccination
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Blood Sample Collection and Questionnaires
2.3. IHPP Health Checkup Data
2.4. Bayesian Network (BN) Analysis
2.5. Statistical Analysis
3. Results
3.1. Participants and Their Series of Vaccines
3.2. sIgG Levels and Side Effects After the Third Vaccination
+ Sex × AgeGroup + Sex × VacType + AgeGroup × VacType + ε,
3.3. Relationship Between Side Effects and sIgG
3.4. BN Analysis
3.5. A Relationship Between Green Tea Intake and Antibody Titers
4. Discussion
5. Conclusions
- Factors influencing antibody titers: sIgM, ALB, beverage (green tea);
- Factors influencing the presence/absence of adverse reaction symptoms: tongue coating bacterial flora (family Neisseriaceae), Folic acid, sarcosine, 2-oxoisovaleric acid, left grip strength, hypoxanthine, CD16(+) × CD56(+), LH;
- Factors influencing the presence of fever symptoms: telomere length, antibody titer, CD4(+) × CD8(−).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BDHQ | Brief self-administered diet history questionnaire |
| BN | Bayesian network |
| IHPP | Iwaki Health Promotion Project |
| LH | Luteinizing hormone |
| NK | Natural killer |
| CI | Confidence interval |
| OR | Odds ratios |
| VAT | Visceral adipose tissue |
| VFA | Visceral fat area |
References
- Yamaguchi, A.; Hosozawa, M.; Hasegawa, A.; Okubo, Y.; Sampei, M.; Sawada, N.; Piedvache, A.; Morisaki, N.; Hangai, M.; Tanaka, K.; et al. The coronavirus disease 2019 pandemic and the rights of the child in Japan. Pediatr. Int. 2022, 64, e14913. [Google Scholar] [CrossRef]
- Rostami, A.; Sepidarkish, M.; Leeflang, M.M.G.; Riahi, S.M.; Shiadeh, M.N.; Esfandyari, S.; Mokdad, A.H.; Hotez, P.J.; Gasser, R.B. SARS-CoV-2 seroprevalence worldwide: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 331–340. [Google Scholar] [CrossRef]
- Pan, S.; Xie, X.; Xu, L. Typologies of people’s preexisting political ideology and values would determine their post-pandemic mental health and political behaviors: Evidence from China. Front. Psychol. 2023, 13, 104135. [Google Scholar] [CrossRef] [PubMed]
- Ghaznavi, C.; Kawashima, T.; Tanoue, Y.; Yoneoka, D.; Makiyama, K.; Sakamoto, H.; Ueda, P.; Eguchi, A.; Nomura, S. Changes in marriage, divorce and births during the COVID-19 pandemic in Japan. BMJ Glob. Health 2022, 7, e007866. [Google Scholar] [CrossRef] [PubMed]
- Dolgin, E. The tangled history of mRNA vaccines. Nature 2021, 597, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Jung, J. Preparing for the Coronavirus Disease (COVID-19) Vaccination: Evidence, Plans, and Implications. J. Korean Med. Sci. 2021, 36, e59. [Google Scholar] [CrossRef]
- Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021, 39, 4423–4428. [Google Scholar] [CrossRef]
- Noor, R. Host Protective Immunity against Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) and the COVID-19 Vaccine- Induced Immunity against SARS-CoV-2 and Its Variants. Viruses 2022, 14, 2541. [Google Scholar] [CrossRef]
- Uwamino, Y.; Nagashima, K.; Yoshifuji, A.; Suga, S.; Nagao, M.; Fujisawa, T.; Ryuzaki, M.; Takemoto, Y.; Namkoong, H.; Wakui, M.; et al. Estimating immunity with mathematical models for SARS-CoV-2 after COVID-19 vaccination. npj Vaccines 2023, 8, 33. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; Sahly, H.M.E.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Falsey, A.R.; Sobieszczyk, M.E.; Hirsch, I.; Sproule, S.; Robb, M.L.; Corey, L.; Neuzil, K.M.; Hahn, W.; Hunt, J.; Mulligan, M.J.; et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 2348–2360. [Google Scholar] [CrossRef]
- Müller, L.; Ostermann, P.N.; Walker, A.; Wienemann, T.; Mertens, A.; Adams, O.; Andree, M.; Hauka, S.; Lübke, N.; Keitel, V.; et al. Sensitivity of anti-SARS-CoV-2 serological assays in a high-prevalence setting. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.; Dewey, C.; Asfour, G.; Little, M. Vaccine efficacy against SARS-CoV-2 for Pfizer BioNTech, Moderna, and AstraZeneca vaccines: A systematic review. Front. Public Health 2023, 11, 1229716. [Google Scholar] [CrossRef] [PubMed]
- Patil, H.P.; Rane, P.S.; Shrivastava, S.; Palkar, S.; Lalwani, S.; Mishra, A.C.; Arankalle, V.A. Antibody (IgA, IgG, and IgG Subtype) Responses to SARS-CoV-2 in Severe and Nonsevere COVID-19 Patients. Viral Immunol. 2021, 34, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two RNA-Based COVID-19 Vaccine Candidates. N. Engl. J. Med. 2020, 383, 2439–2450. [Google Scholar] [CrossRef]
- Lazebnik, Y. Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects. Oncotarget 2021, 12, 2476–2488. [Google Scholar] [CrossRef]
- Menni, C.; Klaser, K.; May, A.; Polidori, L.; Capdevila, J.; Louca, P.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Merino, J.; et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: A prospective observational study. Lancet Infect. Dis. 2021, 21, 939–949. [Google Scholar] [CrossRef]
- Stepien, M.; Zalewska, M.; Knysz, B.; Świątoniowska-Lonc, N.; Jankowska-Polańska, B.; Łaczmański, Ł.; Piwowar, A.; Kuźniarski, A. How Humoral Response and Side Effects Depend on the Type of Vaccine and Past SARS-CoV-2 Infection. Vaccines 2022, 10, 1042. [Google Scholar] [CrossRef]
- Roozen, G.V.; Prins, M.L.; Prins, C.; Janse, J.J.; de Gruyter, H.L.; Pothast, C.R.; Huisman, W.; Koopman, J.P.R.; Lamers, O.A.; Kuijer, M.; et al. Intradermal delivery of the third dose of the mRNA-1273 SARS-CoV-2 vaccine: Safety and immunogenicity of a fractional booster dose. Clin. Microbiol. Infect. 2024, 30, 930–936. [Google Scholar] [CrossRef]
- Guimarães, L.E.; Baker, B.; Perricone, C.; Shoenfeld, Y. Vaccines, adjuvants and autoimmunity. Pharmacol. Res. 2015, 100, 190–209. [Google Scholar] [CrossRef]
- Buschmann, M.D.; Carrasco, M.J.; Alishetty, S.; Paige, M.; Alameh, M.G.; Weissman, D. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines 2021, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Pavón-Romero, G.F.; Parra-Vargas, M.I.; Ramírez-Jiménez, F.; Melgoza-Ruiz, E.; Serrano-Pérez, N.H.; Teran, L.M. Allergen Immunotherapy: Current and Future Trends. Cells 2022, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Nakaji, S.; Ihara, K.; Sawada, K.; Parodi, S.; Umeda, T.; Takahashi, I.; Murashita, K.; Kurauchi, S.; Tokuda, I. Social innovation for life expectancy extension utilizing a platform-centered system used in the Iwaki Health Promotion Project: A protocol paper. SAGE Open Med. 2021, 9, 20503121211002606. [Google Scholar] [CrossRef] [PubMed]
- Tomoto, M.; Mineharu, Y.; Sato, N.; Tamada, Y.; Nogami-Itoh, M.; Kuroda, M.; Adachi, J.; Takeda, Y.; Mizuguchi, K.; Kumanogoh, A.; et al. Idiopathic pulmonary fibrosis-specific Bayesian network integrating extracellular vesicle proteome and clinical information. Sci. Rep. 2024, 14, 1315. [Google Scholar] [CrossRef]
- Nakazawa, M.A.; Tamada, Y.; Tanaka, Y.; Ikeguchi, M.; Higashihara, K.; Okuno, Y. Novel cancer subtyping method based on patient-specific gene regulatory network. Sci. Rep. 2021, 11, 23653. [Google Scholar] [CrossRef]
- Watanabe, K.; Wilmanski, T.; Diener, C.; Earls, J.C.; Zimmer, A.; Lincoln, B.; Hadlock, J.J.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T.; et al. Multiomic signatures of body mass index identify heterogeneous health phenotypes and responses to a lifestyle intervention. Nat. Med. 2023, 29, 996–1008. [Google Scholar] [CrossRef]
- Barranco, R.; Rocca, G.; Molinelli, A.; Ventura, F. Controversies and Challenges of Mass Vaccination against SARS-CoV-2 in Italy: Medico-Legal Perspectives and Considerations. Healthcare 2021, 9, 1163. [Google Scholar] [CrossRef]
- Tatara, Y.; Yamazaki, H.; Katsuoka, F.; Chiba, M.; Saigusa, D.; Kasai, S.; Nakamura, T.; Inoue, J.; Aoki, Y.; Shoji, M.; et al. Multiomics and artificial intelligence enabled peripheral blood-based prediction of amnestic mild cognitive impairment. Curr. Res. Trans. Med. 2023, 71, 103367. [Google Scholar] [CrossRef]
- Yamamoto, H.; Suzuki, M.; Matsuta, R.; Sasaki, K.; Kang, M.I.; Kami, K.; Tatara, Y.; Itoh, K.; Nakaji, S. Capillary Electrophoresis Mass Spectrometry-Based Metabolomics of Plasma Samples from Healthy Subjects in a Cross-Sectional Japanese Population Study. Metabolites 2021, 11, 314. [Google Scholar] [CrossRef]
- Mamada, H.; Nomura, Y.; Uesawa, Y. Novel QSAR Approach for a Regression Model of Clearance That Combines DeepSnap- Deep Learning and Conventional Machine Learning. ACS Omega 2022, 7, 17055–17062. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, S.; Fujitsuka, N.; Horiuchi, K.; Ijichi, S.; Gu, Y.; Fujitomo, Y.; Takahashi, R.; Ohmagari, N. Factors associated with sufficient knowledge of antibiotics and antimicrobial resistance in the Japanese general population. Sci. Rep. 2020, 10, 3502. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Rudin, C.; Dominici, F. All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 1–81. [Google Scholar]
- Tanaka, Y.; Higashihara, K.; Nakazawa, M.A.; Yamashita, F.; Tamada, Y.; Okuno, Y. Dynamic changes in gene-to-gene regulatory networks in response to SARS-CoV-2 infection. Sci. Rep. 2021, 11, 11241. [Google Scholar] [CrossRef]
- Claeskens, G.; Hjort, N.L. Model Selection and Model Averaging; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Imoto, S.; Goto, T.; Miyano, S. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac. Symp. Biocomput. 2002, 9, 175–186. [Google Scholar]
- Tanaka, Y.; Tamada, Y.; Ikeguchi, M.; Yamashita, F.; Okuno, Y. System-based differential gene network analysis for characterizing a sample-specific subnetwork. Biomolecules 2020, 10, 306. [Google Scholar] [CrossRef]
- Nomura, S.; Sakamoto, H.; Glenn, S.; Tsugawa, Y.; Abe, S.K.; Rahman, M.M.; Brown, J.C.; Ezoe, S.; Fitzmaurice, C.; Inokuchi, T.; et al. Population health and regional variations of disease burden in Japan, 1990–2015: A systematic subnational analysis for the Global Burden of Disease Study 2015. Lancet 2017, 390, 1521–1538. [Google Scholar] [CrossRef]
- Igari, H.; Asano, H.; Murata, S.; Yoshida, T.; Kawasaki, K.; Kageyama, T.; Ikeda, K.; Koshikawa, H.; Okuda, Y.; Urushihara, M.; et al. Antibody responses and SARS-CoV-2 infection after BNT162b2 mRNA booster vaccination among healthcare workers in Japan. J. Infect. Chemother. 2022, 28, 1483–1488. [Google Scholar] [CrossRef]
- Meo, S.A.; Bukhari, I.A.; Akram, J.; Meo, A.S.; Klonoff, D.C. COVID-19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1663–1669. [Google Scholar] [CrossRef]
- Simon, S.; Joean, O.; Welte, T.; Rademacher, J. The role of vaccination in COPD: Influenza, SARS-CoV-2, pneumococcus, pertussis, RSV and varicella zoster virus. Eur. Respir. Rev. 2023, 32, 230034. [Google Scholar] [CrossRef]
- Connors, J.; Joyner, D.; Mege, N.J.; Cusimano, G.M.; Bell, M.R.; Marcy, J.; Taramangalam, B.; Kim, K.M.; Lin, P.J.C.; Tam, Y.K.; et al. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun. Biol. 2023, 6, 188. [Google Scholar] [CrossRef]
- Mekonnen, D.; Mengist, H.M.; Jin, T. SARS-CoV-2 subunit vaccine adjuvants and their signaling pathways. Expert. Rev. Vaccines 2022, 21, 69–81. [Google Scholar] [CrossRef]
- Cheng, A.; Hsieh, M.J.; Chang, S.Y.; Ieong, S.M.; Cheng, C.Y.; Sheng, W.H.; Chang, S.C. Correlation of adverse effects and antibody responses following homologous and heterologous COVID-19 prime-boost vaccinations. J. Formos. Med. Assoc. 2023, 122, 384–392. [Google Scholar] [CrossRef]
- Auerbach, J.M.; Khera, M. Testosterone’s Role in COVID-19. J. Sex. Med. 2021, 18, 843–848. [Google Scholar] [CrossRef]
- Rastrelli, G.; Stasi, V.D.; Inglese, F.; Beccaria, M.; Garuti, M.; Costanzo, D.D.; Spreafico, F.; Greco, G.F.; Cervi, G.; Pecoriello, A.; et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2021, 9, 88–98. [Google Scholar] [CrossRef]
- Bianchi, V.E. The Anti-Inflammatory Effects of Testosterone. J. Endocr. Soc. 2019, 3, 91–107. [Google Scholar] [CrossRef]
- Vishvakarma, V.K.; Pal, S.; Singh, P.; Bahadur, I. Interactions between main protease of SARS-CoV-2 and testosterone or progesterone using computational approach. J. Mol. Struct. 2022, 1251, 131965. [Google Scholar] [CrossRef]
- Asahi, N.; Sakamaki, I.; Hida, Y.; Torii, K.; Hashimoto, N.; Iwasaki, H.; Iwano, M.; Kimura, H. Antibody level dynamics until after the third dose of COVID-19 vaccination. Heliyon 2023, 9, e17477. [Google Scholar] [CrossRef]
- Kurashima, K.; Numano, T.; Yoshino, A.; Osawa, A.; Takaku, Y.; Kagiyama, N.; Yanagisawa, T. Antibody titers among healthcare workers for coronavirus disease 2019 at 6 months after BNT162b2 vaccination. Vaccine 2022, 40, 5670–5674. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Investig. 2011, 121, 2111–2117. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef]
- Favre, G.; Legueult, K.; Pradier, C.; Raffaelli, C.; Ichai, C.; Iannelli, A.; Redheuil, A.; Lucidarme, O.; Esnault, V. Visceral fat associated to the severity of COVID-19. Metabolism 2021, 115, 154440. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y.; Huang, Y.M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.L. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- He, S.; Fang, Y.; Yang, J.; Wang, W. Association between immunity and viral shedding duration in non-severe SARS-CoV-2 Omicron variant-infected patients. Front. Public Health 2022, 10, 1032957. [Google Scholar] [CrossRef]
- Priya, B.M.; Anitha, V.; Shanmugam, M.; Ashwath, B.; Sylva, S.D.; Vigneshwari, S.K. Efficacy of chlorhexidine and green mouthwashes in the management of dental plaque-induced gingivitis: A comparative clinical study. Contemp. Clin. Dent. 2015, 6, 505–509. [Google Scholar] [CrossRef]
- Umeda, M.; Tominaga, T.; Kozuma, K.; Kitazawa, H.; Furushima, D.; Hibi, M.; Yamada, H. Preventive effects of tea and catechins against influenza and acute upper respiratory tract infections: A systematic review and meta-analysis. Eur. J. Nutr. 2021, 60, 4189–4202. [Google Scholar] [CrossRef]
- Masuda, S.; Maeda-Yamamoto, M.; Usui, S.; Fujisawa, T. ‘Benifuuki’ Green Tea Containing O-Methylated Catechin Reduces Symptoms of Japanese Cedar Pollinosis: A Randomized, Double- Blind, Placebo-Controlled Trial. Allergol. Int. 2014, 63, 211–217. [Google Scholar] [CrossRef]
- de Castilhos, J.; Zamir, E.; Hippchen, T.; Rohrbach, R.; Schmidt, S.; Hengler, S.; Schumacher, H.; Neubauer, M.; Kunz, S.; Müller-Esch, T.; et al. Severe Dysbiosis and Specific Haemophilus and Neisseria Signatures as Hallmarks of the Oropharyngeal Microbiome in Critically Ill Coronavirus Disease 2019 (COVID-19) Patients. Clin. Infect. Dis. 2022, 75, e1063–e1071. [Google Scholar] [CrossRef]
- Rosas-Salazar, C.; Kimura, K.S.; Shilts, M.H.; Strickland, B.A.; Freeman, M.H.; Wessinger, B.C.; Gupta, V.; Brown, H.M.; Boone, H.H.; Rajagopala, S.V.; et al. Upper respiratory tract microbiota dynamics following COVID-19 in adults. Microb. Genom. 2023, 9, 000957. [Google Scholar] [CrossRef]
- Karakousis, N.D.; Gourgoulianis, K.I.; Kotsiou, O.S. The Role of Folic Acid in SARS-CoV-2 Infection: An Intriguing Linkage under Investigation. J. Pers. Med. 2023, 13, 561. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhong, J.; Jiang, Y.; Zhang, J. Associations between COVID-19 infection and sex steroid hormones. Front. Endocrinol. 2022, 13, 940675. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, G.; Gevi, F.; Zarletti, G.; Tiberi, M.; Molfetta, V.D.; Scapigliati, G.; Timperio, A.M. An Altered Metabolism in Leukocytes Showing in vitro IgG Memory From SARS-CoV-2-Infected Patients. Front. Mol. Biosci. 2022, 9, 894207. [Google Scholar] [CrossRef] [PubMed]
- Schultz, I.C.; Bertoni, A.P.S.; Wink, M.R. Purinergic signaling elements are correlated with coagulation players in peripheral blood and leukocyte samples from COVID-19 patients. J. Mol. Med. 2022, 100, 569–584. [Google Scholar] [CrossRef]
- Sharif-Askari, N.S.; Soares, N.C.; Mohamed, H.A.; Sharif-Askari, F.S.; Alsayed, H.A.H.; Al-Hroub, H.; Salameh, L.; Osman, R.S.; Mahboub, B.; Hamid, Q.; et al. Saliva metabolomic profile of COVID-19 patients associates with disease severity. Metabolomic 2022, 18, 81. [Google Scholar] [CrossRef]
- Graydon, E.K.; Conner, T.L.; Dunham, K.; Olsen, C.; Goguet, E.; Coggins, S.A.; Rekedal, M.; Samuels, E.; Jackson-Thompson, B.; Moser, M.; et al. Natural killer cells and BNT162b2 mRNA vaccine reactogenicity and durability. Front. Immunol. 2023, 14, 1225025. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Magasi, S.R.; Bubela, D.J.; Wang, Y.C.; Gershon, R.C. Grip and knee extension muscle strength reflect a common construct among adults. Muscle Nerve 2012, 46, 555–558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soares, M.R.; de Carvalho, R.M.; dos Santos Cirino, H.; Martins, R.; Furtado, C.L.M.; Santana, B.A.A.; Calado, R.T.; Ferriani, R.A.; dos Reis, R.M. Effect of SARS-CoV-2 infection on sperm telomere length. J. Assist. Reprod. Genet. 2025, 42, 1167–1175. [Google Scholar] [CrossRef]
- Tanaka, S.; Umezawa, J.; Yamaji, T.; Abe, S.K.; Hamada, A.; Kobayashi, O.; Ushijima, T.; Inoue, M. SARS-CoV-2 Antibody Response to Symptoms Indicative of COVID-19 in a Non-Infected Population in Japan: A Cross-Sectional Study. Jpn. J. Infect. Dis. 2023, 76, 46–54. [Google Scholar] [CrossRef]



| Characteristic | Younger, N = 106 | Older, N = 105 | ||||
|---|---|---|---|---|---|---|
| Male | Female | Male | Female | |||
| n | n = 30 | n = 76 | n | n = 46 | n = 59 | |
| Age (y) | 106 | 47 (9) | 46 (10) | 105 | 70.3 (5.6) | 67.9 (5.0) |
| Height (cm) | 106 | 172 (6) | 158 (5) | 105 | 167 (6) | 154 (5) |
| Weight (kg) | 106 | 72 (7) | 56 (9) | 105 | 66 (9) | 54 (7) |
| Body mass index (kg/m2) | 106 | 24.21 (2.85) | 22.27 (3.39) | 105 | 23.82 (2.48) | 22.71 (3.07) |
| Visceral fat area (cm2) | 106 | 107 (45) | 59 (31) | 104 | 115 (42) | 71 (27) |
| Vaccine combination | 104 | 104 | ||||
| Comirnaty–Comirnaty–Comirnaty | 8 (29%) | 40 (53%) | 21 (46%) | 24 (41%) | ||
| Comirnaty–Comirnaty–Spikevax | 17 (61%) | 31 (41%) | 25 (54%) | 33 (57%) | ||
| Spikevax–Spikevax–Comirnaty | 1 (3.6%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
| Spikevax–Spikevax–Spikevax | 2 (7.1%) | 5 (6.6%) | 0 (0%) | 1 (1.7%) | ||
| Sum of Squares | Degree of Freedom | F-Value | p-Value | |
|---|---|---|---|---|
| Sex | 0.063 | 1 | 0.168 | 0.682 |
| VacType | 1.287 | 1 | 3.435 | 0.065 |
| AgeGroup | 1.110 | 1 | 2.962 | 0.087 |
| Sex:VacType | 0.171 | 1 | 0.455 | 0.501 |
| VacType:AgeGroup | 2.818 | 1 | 7.520 | 0.007 |
| Sex:AgeGroup | 1.120 | 1 | 2.989 | 0.085 |
| Residuals | 71.945 | 192 |
| Comirnaty–Comirnaty–Comirnaty | Comirnaty–Comirnaty–Spikevax | p-Value 2 | |
|---|---|---|---|
| Younger | |||
| sIgG | |||
| Median (Q1, Q3) | 15,450 (9200, 23,650) | 26,150 (15,350, 33,700) | 0.001 |
| Side effects 1 | >0.999 | ||
| Negative | 7 (15%) | 6 (13%) | |
| Positive | 41 (85%) | 42 (88%) | |
| Fever and feverish 1 | 0.025 | ||
| Negative | 21 (51%) | 11 (26%) | |
| Positive | 20 (49%) | 31 (74%) | |
| Missing | 7 | 6 | |
| Severity of fever 1 | 0.925 | ||
| <38 | 9 (45%) | 14 (45%) | |
| 38–39 | 9 (45%) | 12 (39%) | |
| >39 | 2 (10%) | 5 (16%) | |
| Missing | 28 | 17 | |
| Older | |||
| sIgG | |||
| Median (Q1, Q3) | 20,900 (14,600, 33,200) | 23,250 (13,100, 34,600) | 0.931 |
| Side effects 1 | 0.298 | ||
| Negative | 18 (40%) | 17 (29%) | |
| Positive | 27 (60%) | 41 (71%) | |
| Fever and feverish 1 | >0.999 | ||
| Negative | 14 (52%) | 22 (54%) | |
| Positive | 13 (48%) | 19 (46%) | |
| Missing | 18 | 17 | |
| Severity of fever 1 | 0.704 | ||
| <38 | 10 (77%) | 13 (68%) | |
| 38–39 | 3 (23%) | 6 (32%) | |
| 39< | 0 (0%) | 0 (0%) | |
| Missing | 32 | 39 |
| Group | Side Effects | Fever and Feverish | Severity of Fever | |||
|---|---|---|---|---|---|---|
| OR | 95% CI | OR | 95% CI | OR | 95% CI | |
| (Female, Younger, Comirnaty–Comirnaty–Comirnaty) | 1.50 | 0.31, 7.18 | 1.08 | 0.26, 4.54 | 1.86 | 0.23, 15.18 |
| (Male, Older, Comirnaty–Comirnaty–Comirnaty) | 0.14 | 0.03, 0.69 | 0.14 | 0.02, 0.86 | 0.05 | 0.00, 1.23 |
| (Female, Older, Comirnaty–Comirnaty–Comirnaty) | 0.67 | 0.10, 4.46 | 1.02 | 0.19, 5.56 | 0.17 | 0.02, 1.85 |
| (Male, Younger, Comirnaty–Comirnaty–Spikevax) | 0.75 | 0.15, 3.86 | 4.28 | 0.75, 24.30 | 1.62 | 0.17, 15.37 |
| (Female, Younger, Comirnaty–Comirnaty–Spikevax) | 2.36 | 0.28, 19.90 | 1.87 | 0.37, 9.35 | 1.15 | 0.14, 9.40 |
| (Male, Older, Comirnaty–Comirnaty–Spikevax) | 0.18 | 0.03, 1.07 | 0.29 | 0.04, 2.01 | 0.24 | 0.01, 5.32 |
| (Female, Older, Comirnaty–Comirnaty–Spikevax) | 1.76 | 0.35, 8.78 | 0.85 | 0.19, 3.76 | 0.33 | 0.04, 2.95 |
| (a) Spearman’s Rank Correlation Coefficient | |||||
| Bayesian Network Analysis | Comparison of Perception of Antibody Titer | ||||
| To | From | Probability | Spearman’s Rank Correlation Coefficient | ||
| Rs | p Value | ||||
| sIgG | sIgM (index/mL) | 0.88 | 0.398 | <0.001 | |
| Albumin (g/dL) | 0.17 | 0.165 | 0.016 | ||
| (b) Exact Wilcoxon rank-sum test | |||||
| Bayesian network analysis | Comparison of perception of antibody titer | ||||
| To | From | Probability | FALSE | TRUE | Exact Wilcoxon rank-sum test p value |
| Median [Q1, Q3] | Median [Q1, Q3] | ||||
| sIgG | Drinks (green tea: 2–3 cups daily) | 0.580 | −0.121 [−0.584, 0.681] | 0.558 [−0.235, 1.401] | <0.001 |
| Bayesian Network Analysis | Comparison for Perception of Adverse Reactions | ||||
|---|---|---|---|---|---|
| From | To | Probability | FALSE | TRUE | Exact Wilcoxon Rank-Sum Test; p Value |
| Median [Q1, Q3] | Median [Q1, Q3] | ||||
| Side effect | Neisseriaceae | 0.069 | 719.21 [336.06, 1554.6] | 1066.9 [426.02, 1966.0] | 0.053 |
| Folate (μg/day) | 0.216 | 1360.0 [1337.5, 1391.3] | 1390.0 [1364.4, 1400.0] | <0.001 | |
| Plasma sarcosine for metabolic compounds (Quantitative values) | 0.104 | 3.10 [2.47, 3.83] | 2.56 [2.01, 3.16] | 0.001 | |
| Plasma 2-oxoisovaleric acid for metabolic compounds (Quantitative values) | 0.179 | 14.99 [12.84, 16.91] | 13.52 [11.82, 15.45] | 0.005 | |
| Grip strength left (kgf) | 0.421 | 32.9 [25.4, 40.0] | 24.7 [21.6, 31.0] | <0.001 | |
| Plasma hypoxanthine for metabolic compounds (Quantitative values) | 0.339 | 0.89 [0.69, 1.35] | 0.77 [0.61, 0.93] | 0.005 | |
| Lymphocyte subset: CD16(+) × CD56(+) (%) | 0.638 | 17.0 [11.5, 24.5] | 11.5 [8.0, 16.0] | <0.001 | |
| Luteinizing hormone (mIU/mL) | 0.335 | 0.1 [0.1, 4.3] | 1.9 [0.1, 17.2] | 0.031 | |
| Fever and feverish | Telomere post | 0.164 | 180,524.3 [166,180.7, 198,343.3] | 187,033.0 [171,527.3, 202,605.7] | 0.045 |
| sIgG (AU/mL) | 0.159 | −0.18 [−0.57, 0.56] | 0.43 [−0.45, 1.15] | 0.002 | |
| Lymphocyte subset: CD4(+) × CD8(−) (/μL) | 0.144 | 598.0 [476.0, 754.0] | 722.5 [531.5, 903.8] | 0.004 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Miyamoto, N.; Yamaguchi, T.; Tamada, Y.; Yamayoshi, S.; Murashita, K.; Itoh, K.; Imoto, S.; Saito, N.; Mikami, T.; Nakaji, S. Using Machine Learning to Identify Factors Affecting Antibody Production and Adverse Reactions After COVID-19 Vaccination. Vaccines 2026, 14, 115. https://doi.org/10.3390/vaccines14020115
Miyamoto N, Yamaguchi T, Tamada Y, Yamayoshi S, Murashita K, Itoh K, Imoto S, Saito N, Mikami T, Nakaji S. Using Machine Learning to Identify Factors Affecting Antibody Production and Adverse Reactions After COVID-19 Vaccination. Vaccines. 2026; 14(2):115. https://doi.org/10.3390/vaccines14020115
Chicago/Turabian StyleMiyamoto, Nahomi, Tohru Yamaguchi, Yoshinori Tamada, Seiya Yamayoshi, Koichi Murashita, Ken Itoh, Seiya Imoto, Norihiro Saito, Tatsuya Mikami, and Shigeyuki Nakaji. 2026. "Using Machine Learning to Identify Factors Affecting Antibody Production and Adverse Reactions After COVID-19 Vaccination" Vaccines 14, no. 2: 115. https://doi.org/10.3390/vaccines14020115
APA StyleMiyamoto, N., Yamaguchi, T., Tamada, Y., Yamayoshi, S., Murashita, K., Itoh, K., Imoto, S., Saito, N., Mikami, T., & Nakaji, S. (2026). Using Machine Learning to Identify Factors Affecting Antibody Production and Adverse Reactions After COVID-19 Vaccination. Vaccines, 14(2), 115. https://doi.org/10.3390/vaccines14020115

