Broadening SARS-CoV-2 Immunity by Combining ORFV and Protein-Based Vaccines
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Animals
2.2. Study Design and Immunization
2.3. Detection of Specific Serum IgG by ELISA
2.4. RBDCoV-ACE2 Measurements
2.5. Intracellular Cytokine Staining (ICS)
2.6. Statistical Analysis
3. Results
3.1. Spike-Specific IgG Responses to the Ancestral Wuhan Strain
3.2. IgG Subclass Profiles and Th1/Th2 Bias
3.3. Spike-Specific IgG Responses to the Beta Variant
3.4. ACE2 Binding Inhibition Against SARS-CoV-2 Variants of Concern
3.5. Spike-Specific CD4+ and CD8+ T Cell Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Li, W.; Wang, Z.; Yang, W.; Li, E.; Xia, X.; Yan, F.; Chiu, S. Emerging and reemerging infectious diseases: Global trends and new strategies for their prevention and control. Signal Transduct. Target. Ther. 2024, 9, 223. [Google Scholar] [CrossRef]
- Jacobsen, H.; Sitaras, I.; Katzmarzyk, M.; Cobos Jimenez, V.; Naughton, R.; Higdon, M.M.; Deloria Knoll, M. Systematic review and meta-analysis of the factors affecting waning of post-vaccination neutralizing antibody responses against SARS-CoV-2. npj Vaccines 2023, 8, 159. [Google Scholar] [CrossRef]
- Lim, C.M.L.; Komarasamy, T.V.; Adnan, N.; Radhakrishnan, A.K.; Balasubramaniam, V. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Respir. Viruses 2024, 18, e13276. [Google Scholar] [CrossRef] [PubMed]
- Okesanya, O.J.; Ayeni, R.A.; Amadin, P.; Ngwoke, I.; Amisu, B.O.; Ukoaka, B.M.; Ahmed, M.M.; Oso, T.A.; Musa, S.S.; Lucero-Prisno, D.E. Advances in HIV Treatment and Vaccine Development: Emerging Therapies and Breakthrough Strategies for Long-Term Control. AIDS Res. Treat. 2025, 2025, 6829446. [Google Scholar] [CrossRef]
- Hsiung, K.C.; Chiang, H.J.; Reinig, S.; Shih, S.R. Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions. Vaccines 2024, 12, 1345. [Google Scholar] [CrossRef] [PubMed]
- Sette, A.; Saphire, E.O. Inducing broad-based immunity against viruses with pandemic potential. Immunity 2022, 55, 738–748. [Google Scholar] [CrossRef]
- Livieratos, A.; Gogos, C.; Thomas, I.; Akinosoglou, K. Vaccination Strategies: Mixing Paths Versus Matching Tracks. Vaccines 2025, 13, 308. [Google Scholar] [CrossRef]
- Tang, J.; Amin, M.A.; Campian, J.L. Past, Present, and Future of Viral Vector Vaccine Platforms: A Comprehensive Review. Vaccines 2025, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- Deming, M.E.; Lyke, K.E. A ‘mix and match’ approach to SARS-CoV-2 vaccination. Nat. Med. 2021, 27, 1510–1511. [Google Scholar] [CrossRef]
- Garg, I.; Sheikh, A.B.; Pal, S.; Shekhar, R. Mix-and-Match COVID-19 Vaccinations (Heterologous Boost): A Review. Infect. Dis. Rep. 2022, 14, 537–546. [Google Scholar] [CrossRef]
- Qian, G.; Gao, C.; Zhang, M.; Chen, Y.; Xie, L. A Review of Protein-Based COVID-19 Vaccines: From Monovalent to Multivalent Formulations. Vaccines 2024, 12, 579. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.G.; Orr, M.T.; Fox, C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Kirsebom, F.C.M.; Andrews, N.; Stowe, J.; Dabrera, G.; Ramsay, M.; Lopez Bernal, J. Effectiveness of the Sanofi/GSK (VidPrevtyn Beta) and Pfizer-BioNTech (Comirnaty Original/Omicron BA.4-5) bivalent vaccines against hospitalisation in England. eClinicalMedicine 2024, 71, 102587. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhuo, J.; Yuan, Y.; Chen, Z.; Zhang, S.; Zhu, A.; Zhao, J.; Zhao, J. Harnessing T-Cells for Enhanced Vaccine Development against Viral Infections. Vaccines 2024, 12, 478. [Google Scholar] [CrossRef]
- Ura, T.; Takeuchi, M.; Kawagoe, T.; Mizuki, N.; Okuda, K.; Shimada, M. Current Vaccine Platforms in Enhancing T-Cell Response. Vaccines 2022, 10, 1367. [Google Scholar] [CrossRef] [PubMed]
- Helmold, M.; Amann, R. Advancing ORFV-Based Therapeutics to the Clinical Stage. Rev. Med. Virol. 2025, 35, e70038. [Google Scholar] [CrossRef]
- AlDaif, B.A.; Fleming, S.B. Innate Immune Sensing of Parapoxvirus Orf Virus and Viral Immune Evasion. Viruses 2025, 17, 587. [Google Scholar] [CrossRef]
- Muller, M.; Reguzova, A.; Loffler, M.W.; Amann, R. Orf Virus-Based Vectors Preferentially Target Professional Antigen-Presenting Cells, Activate the STING Pathway and Induce Strong Antigen-Specific T Cell Responses. Front. Immunol. 2022, 13, 873351. [Google Scholar] [CrossRef]
- Reguzova, A.; Muller, M.; Pagallies, F.; Burri, D.; Salomon, F.; Rziha, H.J.; Bittner-Schrader, Z.; Verstrepen, B.E.; Boszormenyi, K.P.; Verschoor, E.J.; et al. A multiantigenic Orf virus-based vaccine efficiently protects hamsters and nonhuman primates against SARS-CoV-2. npj Vaccines 2024, 9, 191. [Google Scholar] [CrossRef]
- Metz, C.; Haug, V.; Muller, M.; Amann, R. Pharmacokinetic and Environmental Risk Assessment of Prime-2-CoV, a Non-Replicating Orf Virus-Based Vaccine against SARS-CoV-2. Vaccines 2024, 12, 492. [Google Scholar] [CrossRef]
- Esen, M.; Fischer-Herr, J.; Gabor, J.J.; Gaile, J.M.; Fleischmann, W.A.; Smeenk, G.W.; de Moraes, R.A.; Belard, S.; Calle, C.L.; Woldearegai, T.G.; et al. First-in-Human Phase I Trial to Assess the Safety and Immunogenicity of an Orf Virus-Based COVID-19 Vaccine Booster. Vaccines 2024, 12, 1288. [Google Scholar] [CrossRef]
- Klinkardt, U.; Schunk, M.; Ervin, J.; Schindler, C.; Sugimoto, D.; Rankin, B.; Amann, R.; Monti, M.; Kutschenko, A.; Schumacher, C.; et al. A novel orf virus vector-based COVID-19 booster vaccine shows cross-neutralizing activity in the absence of anti-vector neutralizing immunity. Hum. Vaccines Immunother. 2024, 20, 2410574. [Google Scholar] [CrossRef] [PubMed]
- Reguzova, A.; Haug, V.; Metz, C.; Müller, M.; Fandrich, M.; Dulovic, A.; Amann, R. Heterologous prime-boost vaccination with VLA2001 and an ORFV-based vector enhances spike- and nucleocapsid-specific immunity in mice. Front. Immunol. 2025, 16, 1675859. [Google Scholar] [CrossRef] [PubMed]
- Reguzova, A.; Haug, V.; Müller, M.; Fandrich, M.; Dulovic, A.; Amann, R. Heterologous ORFV–Ad26 vaccination broadens antibody breadth and amplifies cellular immunity against SARS-CoV-2 spike. Front. Immunol. 2025, 16, 1715442. [Google Scholar] [CrossRef] [PubMed]
- Junker, D.; Becker, M.; Wagner, T.R.; Kaiser, P.D.; Maier, S.; Grimm, T.M.; Griesbaum, J.; Marsall, P.; Gruber, J.; Traenkle, B.; et al. Antibody Binding and Angiotensin-Converting Enzyme 2 Binding Inhibition Is Significantly Reduced for Both the BA.1 and BA.2 Omicron Variants. Clin. Infect. Dis. 2023, 76, e240–e249. [Google Scholar] [CrossRef]
- Keeton, R.; Tincho, M.B.; Ngomti, A.; Baguma, R.; Benede, N.; Suzuki, A.; Khan, K.; Cele, S.; Bernstein, M.; Karim, F.; et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 2022, 603, 488–492. [Google Scholar] [CrossRef]
- Nesamari, R.; Omondi, M.A.; Baguma, R.; Hoft, M.A.; Ngomti, A.; Nkayi, A.A.; Besethi, A.S.; Magugu, S.F.J.; Mosala, P.; Walters, A.; et al. Post-pandemic memory T cell response to SARS-CoV-2 is durable, broadly targeted, and cross-reactive to the hypermutated BA.2.86 variant. Cell Host Microbe 2024, 32, 162–169.e3. [Google Scholar] [CrossRef]
- Fleming, S.B.; Wise, L.M.; Mercer, A.A. Molecular genetic analysis of orf virus: A poxvirus that has adapted to skin. Viruses 2015, 7, 1505–1539. [Google Scholar] [CrossRef]
- Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [Google Scholar] [CrossRef]
- Minassian, A.M.; Silk, S.E.; Barrett, J.R.; Nielsen, C.M.; Miura, K.; Diouf, A.; Loos, C.; Fallon, J.K.; Michell, A.R.; White, M.T.; et al. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med 2021, 2, 701–719.e9. [Google Scholar] [CrossRef]
- Falsey, A.R.; Williams, K.; Gymnopoulou, E.; Bart, S.; Ervin, J.; Bastian, A.R.; Menten, J.; De Paepe, E.; Vandenberghe, S.; Chan, E.K.H.; et al. Efficacy and Safety of an Ad26.RSV.preF-RSV preF Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 609–620. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K.; et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): A blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021, 398, 2258–2276. [Google Scholar] [CrossRef]
- Awakoaiye, B.; Dangi, T.; Penaloza-MacMaster, P. A viral vector prime and protein boost vaccine regimen elicits higher binding antibody titers than a homologous viral vector prime-boost regimen. ImmunoHorizons 2025, 9, vlaf027. [Google Scholar] [CrossRef] [PubMed]
- Aleebrahim-Dehkordi, E.; Molavi, B.; Mokhtari, M.; Deravi, N.; Fathi, M.; Fazel, T.; Mohebalizadeh, M.; Koochaki, P.; Shobeiri, P.; Hasanpour-Dehkordi, A. T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: From cytokines produced to immune responses. Transpl. Immunol. 2022, 70, 101495. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Li, Y.; Wu, Z.; Zhou, Y.; Guo, Y.; Tian, S.; Yu, R.; Deng, C.; Wei, R.; Chen, H.; et al. A novel nanoparticle vaccine displaying multistage tuberculosis antigens confers protection in mice infected with H37Rv. npj Vaccines 2025, 10, 173. [Google Scholar] [CrossRef] [PubMed]
- Rakshit, S.; Babji, S.; Parthiban, C.; Madhavan, R.; Adiga, V.; Eveline J, S.; Chetan Kumar, N.; Ahmed, A.; Shivalingaiah, S.; Shashikumar, N.; et al. Polyfunctional CD4 T-cells correlating with neutralising antibody is a hallmark of COVISHIELD(TM) and COVAXIN® induced immunity in COVID-19 exposed Indians. npj Vaccines 2023, 8, 134. [Google Scholar] [CrossRef]
- Benhamouda, N.; Besbes, A.; Bauer, R.; Mabrouk, N.; Gadouas, G.; Desaint, C.; Chevrier, L.; Lefebvre, M.; Radenne, A.; Roelens, M.; et al. Cytokine profile of anti-spike CD4+T cells predicts humoral and CD8+T cell responses after anti-SARS-CoV-2 mRNA vaccination. iScience 2024, 27, 110441. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Reguzova, A.; Müller, M.; Fandrich, M.; Dulovic, A.; Amann, R. Broadening SARS-CoV-2 Immunity by Combining ORFV and Protein-Based Vaccines. Vaccines 2026, 14, 64. https://doi.org/10.3390/vaccines14010064
Reguzova A, Müller M, Fandrich M, Dulovic A, Amann R. Broadening SARS-CoV-2 Immunity by Combining ORFV and Protein-Based Vaccines. Vaccines. 2026; 14(1):64. https://doi.org/10.3390/vaccines14010064
Chicago/Turabian StyleReguzova, Alena, Melanie Müller, Madeleine Fandrich, Alex Dulovic, and Ralf Amann. 2026. "Broadening SARS-CoV-2 Immunity by Combining ORFV and Protein-Based Vaccines" Vaccines 14, no. 1: 64. https://doi.org/10.3390/vaccines14010064
APA StyleReguzova, A., Müller, M., Fandrich, M., Dulovic, A., & Amann, R. (2026). Broadening SARS-CoV-2 Immunity by Combining ORFV and Protein-Based Vaccines. Vaccines, 14(1), 64. https://doi.org/10.3390/vaccines14010064

