Immunotherapy of Canine Leishmaniasis by Vaccination with Singlet Oxygen-Inactivated Leishmania infantum
Abstract
1. Introduction
2. Materials and Methods
2.1. Leishmania Vaccine Preparation for Immunotherapy
2.2. Dogs Enrolled in the Present Study
2.3. Post-Therapeutic Clinical and Laboratory Evaluations
2.4. Graphics and Statistical Analyses
2.5. Ethical Statement
3. Results
3.1. All Dogs Diagnosed Positive for Leishmaniasis Before Therapeutic Treatments
3.2. Post-Therapeutic Assessments of Dogs During the First Year Showed a Downward Trend in Their Disease Progression in All Three Groups
3.3. Post-Therapeutic Survival Time Longer for the Dogs in Groups 1–2 with Immunotherapy Than Those in Group 3 with Chemotherapy Alone
4. Discussion
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dantas-Torres, F. The role of dogs as reservoirs of Leishmania parasites, with emphasis on Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis. Vet. Parasitol. 2007, 149, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, E.Z.; Weya, W.; Dima, C.; Zewde, D.; Di Marco, B.; Lo Presti, V.; Vitale, M. High seroprevalence of Leishmania infantum infection in dogs and its associated risk factors in selected towns of Southwest and West Shewa zones of Oromia, Ethiopia. Vet. Med. Sci. 2022, 8, 2319–2328. [Google Scholar] [CrossRef]
- Dantas-Torres, F. Canine leishmaniasis in the Americas: Etiology, distribution, and clinical and zoonotic importance. Parasit. Vector 2024, 17, 198. [Google Scholar] [CrossRef]
- Travi, B.L. Ethical and epidemiological dilemmas in the treatment of dogs for visceral leishmaniasis in Latin America. Biomedica 2014, 34, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Manna, L.; Corso, R.; Galiero, G.; Cerrone, A.; Muzj, P.; Gravino, A.E. Long-term follow-up of dogs with leishmaniosis treated with meglumine antimoniate plus allopurinol versus miltefosine plus allopurinol. Parasit. Vectors 2015, 8, 289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinart, M.; Rueda, J.R.; Romero, G.A.; Pinzón-Flórez, C.E.; Osorio-Arango, K.; Silveira Maia-Elkhoury, A.N.; Reveiz, L.; Elias, V.M.; Tweed, J.A. Interventions for American cutaneous and mucocutaneous leishmaniasis. Cochrane Database Syst. Rev. 2020, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muniz-Junqueira, M.I.; de Paula-Coelho, V.N. Meglumine antimonate directly increases phagocytosis, superoxide anion and TNF-alpha production, but only via TNF-alpha it indirectly increases nitric oxide production by phagocytes of healthy individuals, in vitro. Int. Immunopharmacol. 2008, 8, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.; Bardagí, M.; Roura, X.; Zanna, G.; Ravera, I.; Ferrer, L. Long term follow-up of dogs diagnosed with leishmaniosis (clinical stage II) and treated with meglumine antimoniate and allopurinol. Vet. J. 2011, 188, 346–351. [Google Scholar] [CrossRef]
- Clasta, R.B.; Rivas, A.V.; Souza, A.B.; Dos Santos, A.G.V.; Le Quesne, A.H.M.; Gonçalves, A.A.M.; Cangussu, A.S.R.; Giunchetti, R.C.; Viana, K.F. LaSap vaccine: Immunotherapy and immunochemotherapy associated with allopurinol in dogs naturally infected with Leishmania infantum. Parasite Immunol. 2024, 46, e13028. [Google Scholar] [CrossRef] [PubMed]
- El-On, J. Current status and perspectives of the immunotherapy of leishmaniasis. Isr. Med. Assoc. J. 2009, 10, 623–628. [Google Scholar] [PubMed]
- Miret, J.; Nascimento, E.; Sampaio, W.; França, J.C.; Fujiwara, R.T.; Vale, A.; Dias, E.S.; Vieira, E.; Costa, R.T.; Mayrink, W.; et al. Evaluation of an immunochemotherapeutic protocol constituted of N-methyl meglumine antimoniate (Glucantime) and the recombinant Leish-110f + MPL-SE vaccine to treat canine visceral leishmaniasis. Vaccine 2008, 26, 1585–1594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramos, R.A.N.; Giannelli, A.; Fasquelle, F.; Scuotto, A.; Betbeder, D. Effective immuno-therapeutic treatment of Canine Leishmaniasis. PLoS Negl. Trop. Dis. 2023, 17, e0011360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coelho, E.A.F.; Christodoulides, M. Vaccines for Canine Leishmaniasis. In Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges; Christodoulides, M., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Oliveira, D.S.; Zaldívar, M.F.; Gonçalves, A.A.M.; Resende, L.A.; Mariano, R.M.D.S.; Pereira, D.F.S.; Conrado, I.D.S.S.; Costa, M.A.F.; Lair, D.F.; Vilas-Boas, D.F.; et al. New Approaches to the Prevention of Visceral Leishmaniasis: A Review of Recent Patents of Potential Candidates for a Chimeric Protein Vaccine. Vaccines 2024, 12, 271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, K.P.; Reynolds, J.M.; Ng, D.K.P.; Tu, Y.-H.; Fan, C.-K.; Shiao, S.-H. Molecular approaches to deploy singlet oxygen in a Leishmania model as an unassailable biocide for disease mitigation and vector control. Front. Trop. Dis. 2024, 5, 1306429. [Google Scholar] [CrossRef]
- Kumari, S.; Samant, M.; Khare, P.; Misra, P.; Dutta, S.; Kolli, B.K.; Sharma, S.; Chang, K.P.; Dube, A. Photodynamic vaccination of hamsters with inducible suicidal mutants of Leishmania amazonensis elicits immunity against visceral leishmaniasis. Eur. J. Immunol. 2009, 39, 178–191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Viana, S.M.; Celes, F.S.; Ramirez, L.; Kolli, B.; Ng, D.K.P.; Chang, K.P.; de Oliveira, C.I. Photodynamic Vaccination of BALB/c Mice for Prophylaxis of Cutaneous Leishmaniasis Caused by Leishmania amazonensis. Front. Microbiol. 2018, 9, 165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Waki, K.; Dutta, S.; Ray, D.; Kolli, B.K.; Akman, L.; Kawazu, S.; Lin, C.P.; Chang, K.P. Transmembrane molecules for phylogenetic analyses of pathogenic protists: Leishmania-specific informative sites in hydrophilic loops of trans- endoplasmic reticulum N-acetylglucosamine-1-phosphate transferase. Eukaryot. Cell 2007, 6, 198–210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dutta, S.; Kolli, B.K.; Tang, A.; Sassa, S.; Chang, K.P. Transgenic Leishmania model for delta-aminolevulinate-inducible monospecific uroporphyria: Cytolytic phototoxicity initiated by singlet oxygen-mediated inactivation of proteins and its ablation by endosomal mobilization of cytosolic uroporphyrin. Eukaryot. Cell 2008, 7, 1146–1157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Qahtani, A.; Alkahtani, S.; Kolli, B.; Tripathi, P.; Dutta, S.; Al-Kahtane, A.A.; Jiang, X.J.; Ng, D.K.; Chang, K.P. Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica. Antimicrob. Agents Chemother. 2016, 60, 2003–2011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dutta, S.; Waki, K.; Chang, K.P. Combinational sensitization of Leishmania with uroporphyrin and aluminum phthalocyanine synergistically enhances their photodynamic inactivation in vitro and in vivo. Photochem. Photobiol. 2012, 88, 620–625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manna, L.; Alberti, A.; Pavone, L.M.; Scibelli, A.; Staiano, N.; Gravino, A.E. First molecular characterization of a granulocytic Ehrlichia strain isolated from a dog in South Italy. Vet. J. 2004, 167, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Solano-Gallego, L.; Koutinas, A.; Miró, G.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet. Parasitol. 2009, 165, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Manna, L.; Reale, S.; Picillo, E.; Vitale, F.; Gravino, A.E. Urine sampling for real-time polymerase chain reaction-based diagnosis of canine leishmaniasis. J. Vet. Diagn. Investig. 2008, 20, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Agresti, A. An Introduction to Categorical Data Analysis; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Christensen, R.H.B. Ordinal: Regression Models for Ordinal Data. R Package Version. 2019. Available online: https://CRAN.R-project.org/package=ordinal (accessed on 20 December 2025).
- Therneau, T. A Package for Survival Analysis in R. Version 3.5-7. 2023. Available online: https://CRAN.R-project.org/package=survival (accessed on 20 December 2025).
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Abd ElHafeez, S.; D’Arrigo, G.; Leonardis, D.; Fusaro, M.; Tripepi, G.; Roumeliotis, S. Methods to Analyze Time-to-Event Data: The Cox Regression Analysis. Oxid. Med. Cell Longev. 2021, 2021, 1302811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schoenfeld, D. Partial residuals for the proportional hazards regression model. Biometrika 1982, 69, 239–241. [Google Scholar] [CrossRef]
- Maia, C.; Campino, L. Methods for diagnosis of canine leishmaniasis and immune response to infection. Vet. Parasitol. 2008, 158, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Mohebali, M.; Nadim, A.; Khamesipour, A. An overview of leishmanization experience: A successful control measure and a tool to evaluate candidate vaccines. Acta Trop. 2019, 200, 105173. [Google Scholar] [CrossRef] [PubMed]
- Volpedo, G.; Bhattacharya, P.; Gannavaram, S.; Pacheco-Fernandez, T.; Oljuskin, T.; Dey, R.; Satoskar, A.R.; Nakhasi, H.L. The History of Live Attenuated Centrin Gene-Deleted Leishmania Vaccine Candidates. Pathogens 2022, 11, 431. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moafi, M.; Rezvan, H.; Sherkat, R.; Taleban, R. Leishmania Vaccines Entered in Clinical Trials: A Review of Literature. Int. J. Prev. Med. 2019, 10, 95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Viana, K.F.; Lacerda, G.; Teixeira, N.S.; Rodrigues Cangussu, A.S.; Sousa Aguiar, R.W.; Giunchetti, R.C. Therapeutic vaccine of killed Leishmania amazonensis plus saponin reduced parasite burden in dogs naturally infected with Leishmania infantum. Vet. Parasitol. 2018, 254, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Ongarora, B.G.; Li, H.; Vicente Mda, G.; Kolli, B.K.; Chang, K.P. Intracellular targeting specificity of novel phthalocyanines assessed in a host-parasite model for developing potential photodynamic medicine. PLoS ONE 2011, 6, e20786. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Momeni, A.; Rasoolian, M.; Momeni, A.; Navaei, A.; Emami, S.; Shaker, Z.; Mohebali, M.; Khoshdel, A. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis. J. Liposome Res. 2013, 23, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Yadagiri, G.; Singh, A.; Arora, K.; Mudavath, S.L. Immunotherapy and immunochemotherapy in combating visceral leishmaniasis. Front. Med. 2023, 10, 1096458. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costa, C.H.N.; Chang, K.P.; Costa, D.L.; Cunha, F.V.M. From Infection to Death: An Overview of the Pathogenesis of Visceral Leishmaniasis. Pathogens 2023, 12, 969. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Páez, L.; Parra, A.; Sotelo, E.; Taboada, I.; López, R.; Segade, P.; Boente, M.D.M.; Rivas, M.J.; Da Rocha, L.; Alonso, A.; et al. Large-scale randomized double-blind field clinical trial for safety and efficacy assessment of the DNA vaccine Neoleish against canine leishmaniasis. PLoS Negl. Trop. Dis. 2025, 19, e0012707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, K.P. Leishmania and Leishmaniasis Research: The Past 50 Years and the Future. Pathogens 2023, 12, 776. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aruvornlop, P.; Chakritbudsabong, W.; Sandech, N.; Muangthong, T.; Rungarunlert, S. Advances in canine iPSC technology: Current methods and future directions—A narrative review. Res. Vet. Sci. 2025, 195, 105844. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, S.D.; Erali, R.A.; Sasikumar, S.; Laney, P.; Shelkey, E.; D’Agostino, R., Jr.; Miller, L.D.; Shen, P.; Levine, E.A.; Soker, S.; et al. Organoid Platform in Preclinical Investigation of Personalized Immunotherapy Efficacy in Appendiceal Cancer: Feasibility Study. Clin. Cancer Res. 2021, 27, 5141–5150. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]





| Group 1: Immunotherapy | |||
| Dog | Breed | Sex | Age (Yr) |
| 1 | Mongrel | M | 8 |
| 2 | Mongrel | F | 5 |
| 3 | Setter | F | 8 |
| 4 | Mongrel | M | 6 |
| 5 | Mongrel | M | 7 |
| 6 | Setter | F | 3 |
| 7 | Coker | M | 5 |
| 8 | Mongrel | F | 6 |
| 9 | Breton | M | 5 |
| Mean = 5.9 | |||
| Group 2: Immunotherapy Chemotherapy | |||
| Dog | Breed | Sex | Age (Yr) |
| 1 | Jack Russel | M | 9 |
| 2 | Setter | M | 11 |
| 3 | Boxer | F | 9 |
| 4 | Coker | F | 6 |
| 5 | Setter | M | 3 |
| 6 | Pointer | M | 5 |
| 7 | Setter | M | 7 |
| 8 | Setter | M | 7 |
| 9 | Kurzhaar | M | 4 |
| 10 | Jack Russel | M | 7 |
| 11 | Setter | F | 4 |
| 12 | Setter | F | 5 |
| 13 | Hunting dog | M | 3 |
| 14 | Mongrel | M | 9 |
| Mean = 6.4 | |||
| Group 3: Chemotherapy | |||
| Dog | Breed | Sex | Age (Yr) |
| 1 | Doberman | M | 7 |
| 2 | German Shepherd | M | 8 |
| 3 | Setter | M | 7 |
| 4 | Setter | M | 7 |
| 5 | Boxer | F | 9 |
| 6 | Mongrel | M | 10 |
| 7 | Husky | M | 9 |
| 8 | Mongrel | F | 6 |
| 9 | Breton | F | 5 |
| 10 | German Shepherd | M | 5 |
| Mean = 7.3 | |||
| Parasite #/mL (×10−3)/Clinical Score Post-Treatment Time in Month: | |||||
|---|---|---|---|---|---|
| 0 | 2 | 6 | 8 | 12 | |
| Group 1: Immunotherapy | |||||
| Dog# | |||||
| 1 | 10.4/3 | 0.25/1 | 1.20/2 | 6.84/3 | 0.78/2 |
| 2 | 24.0/3 | 0.10/2 | 1.90/2 | 0.18/1 | 0.01/0 |
| 3 | 34.9/3 | 0.18/3 | 0.01/2 | 0.01/0 | 0.01/0 |
| 4 | 01.0/3 | 01.9/1 | 0.14/2 | 0.29/1 | 0.50/1 |
| 5 | 3.20/3 | 0.08/2 | 0.09/1 | 0.03/2 | 0.80/2 |
| 6 | 0.47/3 | 0.02/1 | 0.08/1 | 0.04/1 | 0.01/0 |
| 7 | 4.53/3 | 1.29/3 | 1.12/3 | #-- | #-- |
| 8 | 4.41/3 | 0.31/1 | 0.00/0 | 0.01/1 | 0.01/0 |
| 9 | 10.0/3 | 0.13/2 | 0.14/3 | 0.41/3 | 0.57/1 |
| Group 2: Immunotherapy Chemotherapy | |||||
| Dog# | |||||
| 1 | 0.01/1 | 0.00/0 | 0.00/0 | 0.00/0 | 0.00/0 |
| 2 | 0.04/2 | 0.00/0 | 0.00/0 | 0.00/0 | 0.00/0 |
| 3 | 0.12/3 | 0.17/2 | 2.28/2 | 2.11/2 | #--/2 |
| 4 | 0.01/0 | 0.01/0 | 0.00/0 | 0.00/0 | 0.00/1 |
| 5 | 0.02/1 | 0.05/0 | 0.00/0 | 0.05/0 | 0.01/0 |
| 6 | 0.59/2 | 0.11/1 | 0.85/1 | 0.03/0 | 0.00/0 |
| 7 | 0.31/2 | 0.00/0 | 0.09/1 | 0.00/1 | 0.00/1 |
| 8 | 0.22/2 | 0.01/1 | 0.00/0 | 0.00/0 | 0.00/1 |
| 9 | 0.02/0 | 0.00/0 | 0.01/0 | 0.00/0 | 0.00/0 |
| 10 | 0.14/2 | #--/0 | 0.04/0 | 0.02/0 | 0.26/1 |
| 11 | 0.38/2 | 0.00/0 | 0.00/0 | 0.00/0 | 0.00/0 |
| 12 | 1.19/3 | 1.25/2 | 0.00/1 | 0.02/0 | 0.02/1 |
| 13 | 0.02/0 | 0.00/0 | 0.00/0 | 0.02/3 | #-- |
| 14 | 3.18/3 | 4.33/2 | 4.69/3 | 0.97/2 | #--/2 |
| Group 3: Chemotherapy | |||||
| Dog# | |||||
| 1 | 1.96/3 | 15.15/2 | 39.89/2 | 1.80/3 | #-- |
| 2 | 1.06/3 | 53.0/1 | 391.0/3 | #-- | #-- |
| 3 | 0.39/2 | 22.1/1 | 0.10/2 | 0.07/1 | 0.01/1 |
| 4 | 0.24/2 | 31.1/1 | 0.41/1 | 0.54/1 | 0.61/1 |
| 5 | 185.0/3 | 16.00/1 | 0.06/1 | 0.01/1 | 0.01/1 |
| 6 | 16.77/3 | 125.0/2 | 137.7/2 | #-- | #-- |
| 7 | 158.2/2 | 22.00/2 | 0.17/2 | 8.12/1 | 0.17/0 |
| 8 | 8.33/2 | 46.56/1 | 967.7/2 | #-- | #-- |
| 9 | 26.41/2 | 48.0/1 | 1.10/1 | 1.00/0 | 0.10/0 |
| 10 | 195.3/3 | 69.1/2 | 0.20/0 | 0.22/0 | 0.04/0 |
| Post-Treatment in Month: | |||||
|---|---|---|---|---|---|
| 0 | 2 | 6 | 8 | 12 | |
| Group 1: Immunotherapy | |||||
| * Median | 4.53 | 0.180 | 0.140 | 0.110 | 0.255 |
| † p value | - | 0.0117 | 0.0039 | 0.0078 | 0.0078 |
| Group 2: Immunotherapy Chemotherapy | |||||
| * Median | 0.13 | 0.010 | 0.000 | 0.010 | 0.000 |
| † p value | - | 0.4580 | 0.3457 | 0.0426 | 0.0182 |
| Group 3: Chemotherapy | |||||
| * Median | 12.55 | 38.830 | 0.755 | 0.540 | 0.0700 |
| † p value | - | 1.0000 | 0.9219 | 0.04688 | 0.0625 |
| Odds Ratio | 95% CI | p Value | |
|---|---|---|---|
| Group 1: Immunotherapy (9 dogs) | |||
| 1 Time | 0.7002 | (0.5874, 0.8346) | <0.0001 |
| 2 Age | 1.2074 | (0.7526, 1.9373) | 0.435 |
| Group 2: Immunotherapy Chemotherapy (14 dogs) | |||
| Time | 0.8418 | (0.7377, 0.9607) | 0.0106 |
| Age | 0.9013 | (0.5904, 1.3759) | 0.6302 |
| Group 3: Chemotherapy (10 dogs) | |||
| Time | 0.6759 | (0.5602, 0.8155) | <0.0001 |
| Age | 1.5622 | (1.0719, 2.2769) | 0.0203 |
| Group 1: Immunotherapy | |||
| Dog# | Age of Treatment | Year of Death | Survival Time (Yr) |
| 1 | 8 | 10 | 2 |
| 2 | 5 | 8 | 3 |
| 3 | 8 | 14 | 6 |
| 4 | 6 | 13 | 7 |
| 5 | 7 | 14 | 7 |
| 6 | 3 | 10 | 7 |
| 7 | 5 | 13 | 8 |
| 8 | 6 | 14 | 8 |
| 9 | 5 | 14 | 9 |
| Mean ± SD = 6.33 ± 2.35 | |||
| Group 2: Immunotherapy Chemotherapy | |||
| Dog# | Age of Treatment | Year of Death | Survival Time (Yr) |
| 1 | 9 | 10 | 1 |
| 2 | 9 | 11 | 2 |
| 3 | 11 | 13 | 2 |
| 4 | 9 | 13 | 4 |
| 5 | 6 | 12 | 6 |
| 6 | 3 | 9 | 6 |
| 7 | 7 | 14 | 7 |
| 8 | 7 | 14 | 7 |
| 9 | 7 | 14 | 7 |
| 10 | 6 | 13 | 7 |
| 11 | 4 | 12 | 8 |
| 12 | 5 | 13 | 8 |
| 13 | 5 | 14 | 9 |
| 14 | 3 | 14 | 11 |
| Mean ± SD = 6.07 ± 2.87 | |||
| Group 3: Chemotherapy | |||
| Dog# | Age of Treatment | Year of Death | Survival Time (Yr) |
| 1 | 7 | 8 | 1 |
| 2 | 8 | 9 | 1 |
| 3 | 7 | 8 | 1 |
| 4 | 7 | 10 | 3 |
| 5 | 9 | 13 | 4 |
| 6 | 10 | 14 | 4 |
| 7 | 9 | 13 | 4 |
| 8 | 6 | 12 | 6 |
| 9 | 5 | 11 | 6 |
| 10 | 5 | 12 | 7 |
| Mean ± SD = 3.7 ± 2.21 | |||
| Groups Paired for Comparison | Hazard Ratio | Coefficient | SE | p Value |
|---|---|---|---|---|
| Immunotherapy vs. Chemotherapy | 0.23 | −1.47 | 0.63 | 0.0203 |
| Immuno Chemo vs. Chemotherapy | 0.23 | −1.48 | 0.63 | 0.0186 |
| Immuno Chemo vs. Immunotherapy | 0.99 | −0.01 | 0.55 | 0.9873 |
| * Age | 1.63 | 0.49 | 0.13 | 0.0014 |
| * Parasite load | 0.99 | −0.01 | 0.01 | 0.2078 |
| * Clinical score | 0.98 | −0.03 | 0.22 | 0.9096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Manna, L.; Corso, R.; Kolli, B.K.; Kim, N.; Chang, K.P. Immunotherapy of Canine Leishmaniasis by Vaccination with Singlet Oxygen-Inactivated Leishmania infantum. Vaccines 2026, 14, 62. https://doi.org/10.3390/vaccines14010062
Manna L, Corso R, Kolli BK, Kim N, Chang KP. Immunotherapy of Canine Leishmaniasis by Vaccination with Singlet Oxygen-Inactivated Leishmania infantum. Vaccines. 2026; 14(1):62. https://doi.org/10.3390/vaccines14010062
Chicago/Turabian StyleManna, Laura, Raffaele Corso, Bala K. Kolli, Namhee Kim, and Kwang Poo Chang. 2026. "Immunotherapy of Canine Leishmaniasis by Vaccination with Singlet Oxygen-Inactivated Leishmania infantum" Vaccines 14, no. 1: 62. https://doi.org/10.3390/vaccines14010062
APA StyleManna, L., Corso, R., Kolli, B. K., Kim, N., & Chang, K. P. (2026). Immunotherapy of Canine Leishmaniasis by Vaccination with Singlet Oxygen-Inactivated Leishmania infantum. Vaccines, 14(1), 62. https://doi.org/10.3390/vaccines14010062

