Prevention of Respiratory Infections in Children with Congenital Heart Disease: Current Evidence and Clinical Strategies
Abstract
1. Introduction
2. Methods
3. Reasons for the Increased Susceptibility to Infection of Children with Congenital Heart Disease
4. Etiology and Clinical Relevance of Respiratory Infections in Children with Congenital Heart Disease
4.1. Viral Infections
4.1.1. Respiratory Syncytial Virus
4.1.2. Influenza Viruses
4.1.3. SARS-CoV-2
4.2. Bacterial Infections
5. Prevention of Respiratory Infections in Children with Congenital Heart Disease
5.1. Viral Infections
5.1.1. Respiratory Syncytial Virus
5.1.2. Influenza
5.1.3. SARS-CoV-2
5.2. Bacterial Infections
6. Study Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitchell, S.C.; Korones, S.B.; Berendes, H.W. Congenital heart disease in 56,109 births. Incidence and natural history. Circulation 1971, 43, 323–332. [Google Scholar] [CrossRef]
- Meng, X.; Song, M.; Zhang, K.; Lu, W.; Li, Y.; Zhang, C.; Zhang, Y. Congenital heart disease: Types, pathophysiology, diagnosis, and treatment options. MedComm (2020) 2024, 5, e631. [Google Scholar] [CrossRef]
- Centers for Disease Prevention and Control. Clinical Screening and Diagnosis for Critical Congenital Heart Defects. Available online: https://www.cdc.gov/heart-defects/hcp/screening/index.html (accessed on 1 November 2025).
- Gelaw, T.T.; Alebachew, B.Z. Consequences and complications of un-intervened congenital heart defects in children: A retrospective cross-sectional study. Prog. Pediatr. Cardiol. 2025, 76, 101776. [Google Scholar] [CrossRef]
- Lee, J.; Marshall, T.; Buck, H.; Pamela, M.; Daack-Hirsch, S. Growth Failure in Children with Congenital Heart Disease. Children 2025, 12, 616. [Google Scholar] [CrossRef] [PubMed]
- Chiang, P.-J.; Hsu, J.-F.; Tsai, M.-H.; Lien, R.; Chiang, M.-C.; Huang, H.-R.; Chiang, C.-C.; Liang, H.-F.; Chu, S.-M. The impact of patent ductus arteriosus in neonates with late onset sepsis: A retrospective matched-case control study. Pediatr. Neonatol. 2012, 53, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Pongiglione, G.; Possidoni, A.; Paparatti, U.d.L.; Costanzo, A.M.; Gualberti, G.; Bonvicini, M.; Rimini, A.; Agnoletti, G.; Calabrò, M.P.; Pozzi, M.; et al. Incidence of Respiratory Disease During the First Two Years of Life in Children with Hemodynamically Significant Congenital Heart Disease in Italy: A Retrospective Study. Pediatr. Cardiol. 2016, 37, 1581–1589. [Google Scholar] [CrossRef]
- Ahuja, N.; Mack, W.J.; Wu, S.; Wood, J.C.; Russell, C.J. Acute respiratory infections in hospitalized infants with congenital heart disease. Cardiol. Young 2021, 31, 547–555. [Google Scholar] [CrossRef]
- Parikh, S.; Bharucha, B.; Kamdar, S.; Kshirsagar, N. Polymorphonuclear leukocyte functions in children with cyanotic and acyanotic congenital heart disease. Indian Pediatr. 1993, 30, 883–890. [Google Scholar]
- Yuki, K.; Koutsogiannaki, S. Neutrophil and T Cell Functions in Patients with Congenital Heart Diseases: A Review. Pediatr. Cardiol. 2021, 42, 1478–1482. [Google Scholar] [CrossRef]
- Davey, B.T.; Elder, R.W.; Cloutier, M.M.; Bennett, N.; Lee, J.H.; Wang, Z.; Manning, A.; Doan, T.; Griffiths, M.; Perez, M.; et al. T-Cell Receptor Excision Circles in Newborns with Congenital Heart Disease. J. Pediatr. 2019, 213, 96–102.e2. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhu, L.; Guo, H.; Wang, L.; Zhang, J.; Li, W.; Ma, L. Cellular immunity profile in children with congenital heart disease and bronchopneumonia: Evaluation of lymphocyte subsets and regulatory T cells. Cent. Eur. J. Immunol. 2014, 4, 488–492. [Google Scholar] [CrossRef]
- Elena, D.; Mumba, M.B.; Andrey, P.; Dmitry, O.; Marina, K.; Olga, A.; Dmitry, K.; Alexey, K.; Inessa, N.; Tatyana, R.; et al. The Role of Immune Markers in Predicting Infectious Complications in Children with Congenital Heart Defects. Curr. Pediatr. Rev. 2025, 22, 83–89. [Google Scholar] [CrossRef]
- Rouatbi, H.; Farhat, N.; Heying, R.; Gérard, A.; Vazquez-Jimenez, J.F.; Seghaye, M.-C. Right Atrial Myocardial Remodeling in Children with Atrial Septal Defect Involves Inflammation, Growth, Fibrosis, and Apoptosis. Front. Pediatr. 2020, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Moutafi, A.C.; Alissafi, T.; Chryssanthopoulos, S.; Thanopoulos, V.; Tousoulis, D.; Stefanadis, C.; Davos, C.H. Neurohormones, cytokines, and aortic function in children with repaired coarctation of the aorta. Int. J. Cardiol. 2014, 172, e267. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Kukreti, B.B.; Ramakrishnan, L.; Salahuddin, S.; Pendharkar, A.; Karthikeyan, G.; Bhargava, B.; Juneja, R.; Seth, S.; Kothari, S.S.; et al. Inflammatory markers are elevated in Eisenmenger syndrome. Pediatr. Cardiol. 2013, 34, 1791–1796. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; He, Q.; Dou, Z.; Zeng, M.; Wang, X.; Li, S. From heart to gut: Exploring the gut microbiome in congenital heart disease. iMeta 2023, 2, e144. [Google Scholar] [CrossRef]
- Zhang, Q.-L.; Chen, X.-H.; Zhou, S.-J.; Lei, Y.-Q.; Huang, J.-S.; Chen, Q.; Cao, H. Relationship between disorders of the intestinal microbiota and heart failure in infants with congenital heart disease. Front. Cell. Infect. Microbiol. 2023, 13, 1152349. [Google Scholar] [CrossRef]
- Wienecke, L.M.; Cohen, S.; Bauersachs, J.; Mebazaa, A.; Chousterman, B.G. Immunity and inflammation: The neglected key players in congenital heart disease? Heart Fail. Rev. 2022, 27, 1957–1971. [Google Scholar] [CrossRef] [PubMed]
- Dickson, K.B.; Zhou, J. Role of reactive oxygen species and iron in host defense against infection. Front. Biosci. (Landmark Ed) 2020, 25, 1600–1616. [Google Scholar] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Cavalcanti, N.V.; Palmeira, P.; Jatene, M.B.; Dorna, M.d.B.; Carneiro-Sampaio, M. Early Thymectomy Is Associated with Long-Term Impairment of the Immune System: A Systematic Review. Front. Immunol. 2021, 12, 774780. [Google Scholar] [CrossRef] [PubMed]
- Bremer, S.-J.; Boxnick, A.; Glau, L.; Biermann, D.; Joosse, S.A.; Thiele, F.; Billeb, E.; May, J.; Kolster, M.; Hackbusch, R.; et al. Thymic Atrophy and Immune Dysregulation in Infants with Complex Congenital Heart Disease. J. Clin. Immunol. 2024, 44, 69. [Google Scholar] [CrossRef]
- van Oers, N.S.C.; Sullivan, K.E. The systemic effects of 22q11.2 deletion syndrome on immunity. J. Hum. Immun. 2025, 2, e20250190. [Google Scholar] [CrossRef]
- Satnarine, T.; Pundit, V.; de Almeida, A.X.; Wyke, M.; Kleiner, G.; Gans, M. Immunologic profiles and infection patterns in patients with down syndrome: A retrospective review. Clin. Immunol. Commun. 2025, 8, 54–59. [Google Scholar] [CrossRef]
- Dimopoulos, K.; Constantine, A.; Clift, P.; Condliffe, R.; Moledina, S.; Jansen, K.; Inuzuka, R.; Veldtman, G.R.; Cua, C.L.; Tay, E.L.W.; et al. Cardiovascular Complications of Down Syndrome: Scoping Review and Expert Consensus. Circulation 2023, 147, 425–441. [Google Scholar] [CrossRef]
- Chi, C.; Knight, W.E.; Riching, A.S.; Zhang, Z.; Tatavosian, R.; Zhuang, Y.; Moldovan, R.; Rachubinski, A.L.; Gao, D.; Xu, H.; et al. Interferon hyperactivity impairs cardiogenesis in Down syndrome via downregulation of canonical Wnt signaling. iScience 2023, 26, 107012. [Google Scholar] [CrossRef]
- Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis 2008, 4, 68–75. [Google Scholar] [CrossRef]
- Chung, H.; Green, P.H.; Wang, T.C.; Kong, X.-F. Interferon-Driven Immune Dysregulation in Down Syndrome: A Review of the Evidence. J. Inflamm. Res. 2021, 14, 5187–5200. [Google Scholar] [CrossRef]
- Huang, A.C.; Olson, S.B.; Maslen, C.L. A Review of Recent Developments in Turner Syndrome Research. J. Cardiovasc. Dev. Dis. 2021, 8, 138. [Google Scholar] [CrossRef] [PubMed]
- Thrasher, B.J.; Hong, L.K.; Whitmire, J.K.; Su, M.A. Epigenetic Dysfunction in Turner Syndrome Immune Cells. Curr. Allergy Asthma Rep. 2016, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, N.E.; Hall, C.B.; Suffin, S.C.; Alexson, C.; Harris, P.J.; Manning, J.A. Respiratory syncytial viral infection in infants with congenital heart disease. N. Engl. J. Med. 1982, 307, 397–400. [Google Scholar] [CrossRef]
- Navas, L.; Wang, E.; de Carvalho, V.; Robinson, J. Improved outcome of respiratory syncytial virus infection in a high-risk hospitalized population of Canadian children. Pediatric Investigators Collaborative Network on Infections in Canada. J. Pediatr. 1992, 121, 348–354. [Google Scholar] [CrossRef]
- Moler, F.W.; Khan, A.S.; Meliones, J.N.; Custer, J.R.; Palmisano, J.; Shope, T.C. Respiratory syncytial virus morbidity and mortality estimates in congenital heart disease patients: A recent experience. Crit. Care Med. 1992, 20, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Khongphatthanayothin, A.; Wong, P.C.; Samara, Y.; Newth, C.J.L.; Wells, W.J.; Starnes, V.A.; Chang, A.C. Impact of respiratory syncytial virus infection on surgery for congenital heart disease: Postoperative course and outcome. Crit. Care Med. 1999, 27, 1974–1981. [Google Scholar] [CrossRef]
- Checchia, P.A.; Paes, B.; Bont, L.; Manzoni, P.; Simões, E.A.F.; Fauroux, B.; Figueras-Aloy, J.; Carbonell-Estrany, X. Defining the Risk and Associated Morbidity and Mortality of Severe Respiratory Syncytial Virus Infection Among Infants with Congenital Heart Disease. Infect. Dis. Ther. 2017, 6, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Chaw, P.S.; Wong, S.W.L.; Cunningham, S.; Campbell, H.; Mikolajczyk, R.; Nair, H. Acute Lower Respiratory Infections Associated with Respiratory Syncytial Virus in Children with Underlying Congenital Heart Disease: Systematic Review and Meta-analysis. J. Infect. Dis. 2020, 222, S613–S619. [Google Scholar] [CrossRef]
- Duppenthaler, A.; Ammann, R.A.; Gorgievski-Hrisoho, M.; Pfammatter, J.-P.; Aebi, C. Low incidence of respiratory syncytial virus hospitalisations in haemodynamically significant congenital heart disease. Arch. Dis. Child. 2004, 89, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Fjaerli, H.-O.; Farstad, T.; Bratlid, D. Hospitalisations for respiratory syncytial virus bronchiolitis in Akershus, Norway, 1993–2000: A population-based retrospective study. BMC Pediatr. 2004, 4, 25. [Google Scholar] [CrossRef]
- Reinhart, K.; Huang, S.; Kniss, K.; Reed, C.; Budd, A. Influenza-Associated Pediatric Deaths—United States, 2024-25 Influenza Season. MMWR Morb. Mortal. Wkly. Rep. 2025, 74, 565–569. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. Severe influenza in children: Incidence and risk factors. Expert Rev. Anti Infect. Ther. 2016, 14, 961–968. [Google Scholar] [CrossRef]
- Ghimire, L.V.; Chou, F.-S.; Moon-Grady, A.J. Impact of congenital heart disease on outcomes among pediatric patients hospitalized for influenza infection. BMC Pediatr. 2020, 20, 450. [Google Scholar] [CrossRef]
- Stephens, S.B.; Tsang, R.; Li, R.; Cazaban-Ganduglia, C.; Agopian, A.J.; Morris, S.A. Congenital Heart Defects and Concurrent Diagnoses in Influenza Hospitalization in the Pediatric Health Information System Study, 2004–2019. Pediatr. Cardiol. 2025, 46, 2070–2077. [Google Scholar] [CrossRef]
- Otto, W.R.; Geoghegan, S.; Posch, L.C.; Bell, L.M.; Coffin, S.E.; Sammons, J.S.; Harris, R.M.; John, A.R.O.; Luan, X.; Gerber, J.S. The Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2 in a Pediatric Healthcare Network in the United States. J. Pediatr. Infect. Dis. Soc. 2020, 9, 523–529. [Google Scholar] [CrossRef]
- Sun, Y.K.; Wang, C.; Lin, P.Q.; Hu, L.; Ye, J.; Gao, Z.G.; Lin, R.; Li, H.M.; Shu, Q.; Huang, L.S.; et al. Severe pediatric COVID-19: A review from the clinical and immunopathophysiological perspectives. World J. Pediatr. 2024, 20, 307–324. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Kim, E.C.; Agudelo, A.Z.; Friedman, L. COVID-19 hospitalization rate in children across a private hospital network in the United States: COVID-19 hospitalization rate in children. Arch. Pediatr. 2021, 28, 530–532. [Google Scholar] [CrossRef]
- Sachdeva, S.; Ramakrishnan, S.; Choubey, M.; Koneti, N.R.; Mani, K.; Bakhru, S.; Gupta, S.K.; Gangopadhyay, D.; Kasturi, S.; Mishra, J.; et al. Outcome of COVID-19-positive children with heart disease and grown-ups with congenital heart disease: A multicentric study from India. Ann. Pediatr. Cardiol. 2021, 14, 269–277. [Google Scholar] [CrossRef]
- Schwerzmann, M.; Ruperti-Repilado, F.J.; Baumgartner, H.; Bouma, B.; Bouchardy, J.; Budts, W.; Campens, L.; Chessa, M.; Marin, M.J.d.C.; Gabriel, H.; et al. Clinical outcome of COVID-19 in patients with adult congenital heart disease. Heart 2021, 107, 1226–1232. [Google Scholar] [CrossRef]
- Simpson, M.; Collins, C.; Nash, D.B.; Panesar, L.E.; Oster, M.E. Coronavirus Disease 2019 Infection in Children with Pre-Existing Heart Disease. J. Pediatr. 2020, 227, 302–307.e2. [Google Scholar] [CrossRef]
- Madkour, N.; Ashour, M.; Nassar, M. Abstract 4370357: Effect of COVID-19 on Pediatric Population and Congenital Heart Disease: A Comprehensive Examination of Outcomes, Vaccination Effectiveness, and Healthcare Inequalities. Circulation 2025, 152, A4370357. [Google Scholar] [CrossRef]
- Solórzano-Santos, F.; Espinoza-García, L.; Aguilar-Martínez, G.; Beirana-Palencia, L.; Echániz-Avilés, G.; Miranda-Novales, G. Pneumococcal Conjugate Vaccine and Pneumonia Prevention in Children with Congenital Heart Disease. Rev. Investig. Clin. 2017, 69, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yuan, Y.; Li, P.; Wang, T.; Gao, J.; Yao, J.; Li, S. Postoperative nosocomial infections among children with congenital heart disease. Pak. J. Med. Sci. 2014, 30, 554–557. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, B.B.; Zhang, Y.L. The identification and vaccination status of children with CHD at a community health care center in Shenzhen. J. Dis. Monit. Control 2017, 11, 484–485. [Google Scholar]
- Li, M.; Ji, C.; Zeng, Y.; Yao, D.; Wang, X.; Shao, J. Reasons of the delayed vaccination, recommendations and safety of vaccination in children with congenital heart disease in Zhejiang, China. Hum. Vaccin. Immunother. 2021, 17, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Jecan-Toader, D.; Filip, C.; Căinap, S.S. Addressing immunization gaps in children with congenital heart disease—A narrative review. Med. Pharm. Rep. 2025, 98, 283–289. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Yao, M.; Qi, J.-G.; Qi, Z.-N.; Liang, W.-L. Vaccination in children with congenital heart disease: An observational study in a Beijing hospital. Pediatr. Res. 2023, 93, 2061–2066. [Google Scholar] [CrossRef]
- Sanatani, G.; Franciosi, S.; Bone, J.N.; Dechert, B.; Harris, K.C.; Sadarangani, M. A Survey of Immunization Practices in Patients with Congenital Heart Disease. CJC Pediatr. Congenit. Heart Dis. 2022, 1, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef]
- IMpact-RSV Study Group. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 1998, 102, 531–537. [Google Scholar] [CrossRef]
- Feltes, T.F.; Cabalka, A.K.; Meissner, H.; Piazza, F.M.; Carlin, D.A.; Top, F.H.; Connor, E.M.; Sondheimer, H.M.; Cardiac Synagis Study Group. Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J. Pediatr. 2003, 143, 532–540. [Google Scholar] [CrossRef]
- O’HAgan, S.; Galway, N.; Shields, M.D.; Mallett, P.; Groves, H. Review of the Safety, Efficacy and Tolerability of Palivizumab in the Prevention of Severe Respiratory Syncytial Virus (RSV) Disease. Drug Healthc. Patient Saf. 2023, 15, 103–112. [Google Scholar] [CrossRef]
- Frogel, M.P.; Stewart, D.L.; Hoopes, M.; Fernandes, A.W.; Mahadevia, P.J. A systematic review of compliance with palivizumab administration for RSV immunoprophylaxis. J. Manag. Care Pharm. 2010, 16, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Boyce, T.G.; Mellen, B.G.; Mitchel, E.F., Jr.; Wright, P.F.; Griffin, M.R. Rates of hospitalization for respiratory syncytial virus infection among children in Medicaid. J. Pediatr. 2000, 137, 865–870. [Google Scholar] [CrossRef]
- Walpert, A.S.; Thomas, I.D.; Lowe, M.C.; Seckeler, M.D. RSV prophylaxis guideline changes and outcomes in children with congenital heart disease. Congenit. Heart Dis. 2018, 13, 428–431. [Google Scholar] [CrossRef]
- Caserta, M.M.T.; O’leary, M.S.T.; Munoz, M.F.M.; Ralston, M.S.L.; Committee On Infectious Diseases. Palivizumab Prophylaxis in Infants and Young Children at Increased Risk of Hospitalization for Respiratory Syncytial Virus Infection. Pediatrics 2023, 152, e2023061803. [Google Scholar] [CrossRef]
- Carbonell-Estrany, X.; Simões, E.A.; Bont, L.; Manzoni, P.; Zar, H.J.; Greenough, A.; Ramilo, O.; Stein, R.; Law, B.; Mejias, A.; et al. Twenty-five years of palivizumab: A global historic review of its impact on the burden of respiratory syncytial virus disease in children. Expert Rev. Anti Infect. Ther. 2025, 23, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Simões, E.A.F.; Madhi, S.A.; Muller, W.J.; Atanasova, V.; Bosheva, M.; Cabañas, F.; Cots, M.B.; Domachowske, J.B.; Garcia-Garcia, M.L.; Grantina, I.; et al. Efficacy of nirsevimab against respiratory syncytial virus lower respiratory tract infections in preterm and term infants, and pharmacokinetic extrapolation to infants with congenital heart disease and chronic lung disease: A pooled analysis of randomised controlled trials. Lancet Child Adolesc. Health 2023, 7, 180–189. [Google Scholar]
- Munro, A.P.S.; Drysdale, S.B.; Cathie, K.; Flamein, F.; Knuf, M.; Collins, A.M.; Hill, H.C.; Kaiser, F.; Cohen, R.; Pinquier, D.; et al. 180-day efficacy of nirsevimab against hospitalisation for respiratory syncytial virus lower respiratory tract infections in infants (HARMONIE): A randomised, controlled, phase 3b trial. Lancet Child Adolesc. Health 2025, 9, 404–412. [Google Scholar] [CrossRef]
- Domachowske, J.B.; Chang, Y.; Atanasova, V.; Cabañas, F.; Furuno, K.; Nguyen, K.A.; Banu, I.; Kubiak, R.J.; Leach, A.; Mankad, V.S.; et al. Safety of Re-dosing Nirsevimab Prior to RSV Season 2 in Children with Heart or Lung Disease. J. Pediatr. Infect. Dis. Soc. 2023, 12, 477–480. [Google Scholar] [CrossRef]
- Zar, H.J.; Simões, E.A.; Madhi, S.A.; Ramilo, O.; Senders, S.D.; Shepard, J.S.; Laoprasopwattana, K.; Piedrahita, J.; Novoa, J.M.; Vargas, S.L.; et al. Clesrovimab for Prevention of RSV Disease in Healthy Infants. N. Engl. J. Med. 2025, 393, 1292–1303. [Google Scholar] [CrossRef]
- Committee on Infectious Diseases. Recommendations for the Prevention of RSV Disease in Infants and Children: Policy Statement. Pediatrics 2025, 156, e2025073923. [Google Scholar] [CrossRef] [PubMed]
- de Sentuary, C.O.; Testard, C.; Lagrée, M.; Leroy, M.; Gasnier, L.; Enes-Dias, A.; Leruste, C.; Diallo, D.; Génin, M.; Rakza, T.; et al. Acceptance and safety of the RSV-preventive treatment of newborns with nirsevimab in the maternity department: A prospective longitudinal cohort study in France. eClinicalMedicine 2024, 79, 102986. [Google Scholar] [CrossRef] [PubMed]
- Marc, G.P.; Vizzotti, C.; Fell, D.B.; Di Nunzio, L.; Olszevicki, S.; Mankiewicz, S.W.; Braem, V.; Rearte, R.; Atwell, J.E.; Bianchi, A.; et al. Real-world effectiveness of RSVpreF vaccination during pregnancy against RSV-associated lower respiratory tract disease leading to hospitalisation in infants during the 2024 RSV season in Argentina (BERNI study): A multicentre, retrospective, test-negative, case–control study. Lancet Infect. Dis. 2025, 25, 1044–1054. [Google Scholar]
- Principi, N.; Perrone, S.; Esposito, S. Challenges and Limitations of Current RSV Prevention Strategies in Infants and Young Children: A Narrative Review. Vaccines 2025, 13, 717. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommendations for Routine Immunization. Summary Tables. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/policies/who-recommendations-for-routine-immunization---summary-tables (accessed on 5 November 2025).
- European Center for Disease Prevention and Control. Vaccine Scheduler. Available online: https://vaccine-schedule.ecdc.europa.eu/Scheduler/ByDisease?SelectedDiseaseId=15&SelectedCountryIdByDisease=-1 (accessed on 5 November 2025).
- Jefferson, T.; Rivetti, A.; Di Pietrantonj, C.; Demicheli, V. Vaccines for preventing influenza in healthy children. Cochrane Database Syst. Rev. 2018, 2, CD004879. [Google Scholar] [CrossRef]
- Shim, E.; Brown, S.T.; DePasse, J.; Nowalk, M.P.; Raviotta, J.M.; Smith, K.J.; Zimmerman, R.K. Cost effectiveness of influenza vaccine for U.S. children. Am. J. Prev. Med. 2016, 51, 309–317. [Google Scholar] [CrossRef]
- Kildegaard, H.; Lund, L.C.; Pottegård, A.; Stensballe, L.G. Effectiveness of the quadrivalent live attenuated influenza vaccine against influenza-related hospitalisations and morbidity among children aged 2 to 6 years in Denmark: A nationwide cohort study emulating a target trial. Lancet Child Adolesc. Health 2023, 7, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Boddington, N.L.; Pearson, I.; Whitaker, H.; Mangtani, P.; Pebody, R.G. Effectiveness of influenza vaccination in preventing hospitalization due to influenza in children: A systematic review and meta-analysis. Clin. Infect. Dis. 2021, 73, 1722–1732. [Google Scholar] [CrossRef]
- Bare, I.; Crawford, J.; Pon, K.; Farida, N.; Dehghani, P. Frequency and Consequences of Influenza Vaccination in Adults with Congenital Heart Disease. Am. J. Cardiol. 2018, 121, 491–494. [Google Scholar] [CrossRef]
- Gkentzi, D.; Mpania, L.; Fouzas, S.; Sinopidis, X.; Dimitriou, G.; Karatza, A.A. Influenza vaccination among caregivers and household contacts of children with congenital heart disease before and during COVID-19 pandemic. J. Paediatr. Child Health 2022, 58, 468–473. [Google Scholar] [CrossRef]
- Livni, G.; Wainstein, A.; Birk, E.; Chodick, G.; Levy, I. Influenza Vaccination Rate and Reasons for Nonvaccination in Children with Cardiac Disease. Pediatr. Infect. Dis. J. 2017, 36, e268–e271. [Google Scholar] [CrossRef] [PubMed]
- Moons, P.; Fieuws, S.; Vandermeulen, C.; Ombelet, F.; Willems, R.; Goossens, E.; Van Bulck, L.; de Hosson, M.; Annemans, L.; Budts, W.; et al. Influenza Vaccination in Patients with Congenital Heart Disease in the Pre-COVID-19 Era: Coverage Rate, Patient Characteristics, and Outcomes. Can. J. Cardiol. 2021, 37, 1472–1479. [Google Scholar] [CrossRef] [PubMed]
- Lababidi, G.; Lababidi, H.; Bitar, F.; Arabi, M. COVID-19 Vaccines in the Pediatric Population: A Focus on Cardiac Patients. Can. J. Infect. Dis. Med. Microbiol. 2024, 2024, 2667033. [Google Scholar] [CrossRef]
- Wee, L.E.; Tang, N.; Pang, D.; Chiew, C.; Yung, C.-F.; Chong, C.Y.; Lee, V.; Ong, B.; Lye, D.C.; Tan, K.B. Effectiveness of Monovalent mRNA Vaccines Against Omicron XBB Infection in Singaporean Children Younger Than 5 Years. JAMA Pediatr. 2023, 177, 1324–1331. [Google Scholar] [CrossRef] [PubMed]
- 87; Watanabe, A.; Kani, R.; Iwagami, M.; Takagi, H.; Yasuhara, J.; Kuno, T. Assessment of Efficacy and Safety of mRNA COVID-19 Vaccines in Children Aged 5 to 11 Years: A Systematic Review and Meta-analysis. JAMA Pediatr. 2023, 177, 384–394. [Google Scholar]
- Lan, Z.; Yan, J.; Yang, Y.; Tang, Z.; Guo, X.; Wu, Z.; Jin, Q. Effectiveness of COVID-19 vaccines among children and adolescents against SARS-CoV-2 variants: A meta-analysis. Eur. J. Pediatr. 2023, 182, 5235–5244. [Google Scholar] [CrossRef]
- Olson, S.M.; Newhams, M.M.; Halasa, N.B.; Price, A.M.; Boom, J.A.; Sahni, L.C.; Pannaraj, P.S.; Irby, K.; Walker, T.C.; Schwartz, S.P.; et al. Effectiveness of BNT162b2 vaccine against critical covid-19 in adolescents. N. Engl. J. Med. 2022, 386, 713–723. [Google Scholar] [CrossRef]
- Razzaghi, H.; Forrest, C.B.; Hirabayashi, K.; Wu, Q.; Allen, A.; Rao, S.; Chen, Y.; Bunnell, H.T.; Chrischilles, E.A.; Cowell, L.G.; et al. Vaccine Effectiveness Against Long COVID in Children. Pediatrics 2024, 153, e2023064446. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.P.; Alias, H.; Lee, H.Y. Understanding public confidence in locally-produced mRNA vaccines: Insights for future pandemic preparedness. Hum. Vaccin. Immunother. 2025, 21, 2573562. [Google Scholar] [CrossRef]
- Australian Government. Healthy Infants, Children and Adolescents Aged <18 Years Are Not Recommended to Receive COVID-19 Vaccine. Available online: https://immunisationhandbook.health.gov.au/recommendations/healthy-infants-children-and-adolescents-aged#:~:text=COVID%2D19%20vaccine%20is%20not,to%20outweigh%20the%20potential%20harms (accessed on 5 November 2025).
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/covid/hcp/vaccine-considerations/routine-guidance.html#:~:text=At%20a%20glance,of%20COVID%2D19%20risk%20factors (accessed on 5 November 2025).
- Assenza, G.E.; Castaldi, B.; Flocco, S.; Luciani, G.B.; Meliota, G.; Rinelli, G.; Vairo, U.; Favilli, S.; Of, B. COVID-19 Vaccine Priority Access for Adults and Children with Congenital Heart Disease: A Statement of the Italian Society of Pediatric Cardiology. Congenit. Heart Dis. 2021, 16, 427–431. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. COVID-19 Vaccination Coverage and Intent for Vaccination, Children 6 Months Through 17 Years, United States. Available online: https://www.cdc.gov/covidvaxview/weekly-dashboard/child-coverage-vaccination.html (accessed on 5 November 2025).
- Aldridge, S.J.; Agrawal, U.; Murphy, S.; Millington, T.; Akbari, A.; Almaghrabi, F.; Anand, S.N.; Bedston, S.; Goudie, R.; Griffiths, R.; et al. Uptake of COVID-19 vaccinations amongst 3,433,483 children and young people: Meta-analysis of UK prospective cohorts. Nat. Commun. 2024, 15, 2363. [Google Scholar] [CrossRef]
- Harrison, C.; Frain, S.; Jalalinajafabadi, F.; Williams, S.G.; Keavney, B. CVD-COVID-UK/COVID-IMPACT consortium. The impact of COVID-19 vaccination on patients with congenital heart disease in England: A case-control study. Heart 2024, 110, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Kest, H.; Kaushik, A.; Shaheen, S.; Debruin, W.; Zaveri, S.; Colletti, M.; Gupta, S. Epidemiologic Characteristics of Adolescents with COVID-19 Disease with Acute Hypoxemic Respiratory Failure. Crit. Care Res. Pract. 2022, 2022, 7601185. [Google Scholar] [CrossRef] [PubMed]
- Principi, N.; Esposito, S. Pneumococcal Disease Prevention: Are We on the Right Track? Vaccines 2021, 9, 305. [Google Scholar] [CrossRef]
- European Center for Disease Prevention and Control. Available online: https://vaccine-schedule.ecdc.europa.eu/Scheduler/ByCountry?SelectedCountryId=46&IncludeChildAgeGroup=true&IncludeAdultAge-Group=true&SelectedVersionId=1192#:~:text=*%20MMR%20is%20recommended%20at%20the%20age,those%20not%20been%20vaccinated%20earlier%20was%20removed (accessed on 5 November 2025).
- Centers for Disease Control and Prevention. Summary of Risk-Based Pneumococcal Vaccination Recommendations. Available online: https://www.cdc.gov/pneumococcal/hcp/vaccine-recommendations/risk-indications.html#:~:text=Give%201%20dose%20of%20PCV20%20or%20PPSV23%20at%20least%208,Their%20pneumococcal%20vaccinations%20are%20complete (accessed on 5 November 2025).
- Seazzu, M.; Mueller, K.; Day, K.; Koury, J.; Anderson, J.; Marshik, P.L.; Hellinga, R.C.; Shenk, E.; Salas, N.M.; Sarangarm, P.; et al. Pneumococcal Pure Polysaccharide Vaccination in Pediatric Patients with Chronic Heart Disease. J. Pediatr. Health Care 2023, 37, 710–717. [Google Scholar] [CrossRef] [PubMed]
| Mechanism | Description | Associated CHD Types | Key References |
|---|---|---|---|
| Impaired neutrophil function | Reduced effector activity and bacterial killing | More common in severe CHD | [9] |
| Lymphocyte abnormalities | Reduced T and B cell counts; decreased naïve T-cell production | Critical, cyanotic, conotruncal defects | [10,13] |
| Reduced thymic output | Lower TRECs; thymus hypoplasia or surgical removal | Complex CHD; early surgery | [11,22,23] |
| Immunoglobulin deficiencies | Low IgA, IgG; reduced complement levels | Severe CHD | [12] |
| Chronic inflammation | Elevated IL-6, IL-10, TNF-α; abnormal hemodynamics; gut dysbiosis | Cyanotic CHD; VSD; coarctation | [14,15,16,17,18,19] |
| Hypoxia-related impairment | Reduced ROS and NETs formation | Cyanotic CHD | [20,21] |
| Genetic syndromes | Immune + cardiac defects in 22q11.2, DS, TS | Multiple CHD subtypes | [24,25,26,27,28,29,30,31] |
| Virus | Major Clinical Findings in CHD | Comparative Risk vs. Healthy Children | Key References |
|---|---|---|---|
| RSV | Higher ICU admission, ventilation, mortality; worsened surgical outcomes | 3–10× more severe disease | [32,33,34,35,36,37,38,39] |
| Influenza | ↑ Mortality, respiratory failure, ventilation, AKI, LOS | 2–3× higher risk of severe outcomes | [40,41,42,43] |
| SARS-CoV-2 | ↑ Arrhythmias, heart block, respiratory failure, AKI, ventilation | Higher morbidity; similar mortality | [44,45,46,47,48,49,50] |
| Pathogen | Prevention Strategy | Age/Population | Effectiveness | Key References |
|---|---|---|---|---|
| RSV | Nirsevimab | Infants < 8 months; high-risk older infants | ~80–85% reduction in severe RSV | [67,68,69] |
| RSV | Clesrovimab | Infants < 8 months | 60–84% protection | [70] |
| RSV | Maternal vaccine | 24–36 weeks of gestation | ~70% protection for 6 months | [73] |
| Influenza | IIV/LAIV annual vaccination | All CHD children ≥ 6 months | ≥50% effectiveness | [75,76,77,78,79,80,81,82,83,84] |
| SARS-CoV-2 | mRNA vaccines | ≥6 months; high-risk groups | Strong protection vs. severe disease | [85,86,87,88,89,90,91,92,93,94,95,96,97,98] |
| Streptococcus pneumoniae | PCV13/15/20 + PPSV23 | Standard pediatric schedule | ~60% pneumonia reduction | [51,54,57,99,100,101,102] |
| Hib | Hib vaccine | Standard schedule | High effectiveness | — |
| Barrier | Description | Proposed Strategy |
|---|---|---|
| Delayed vaccination | Frequent illness/hospitalization postpones doses | Check immunization status at every cardiology visit |
| Provider hesitancy | Unclear guidelines and safety concerns | Update protocols; specialist collaboration |
| Parental concerns | Safety, efficacy, and side-effect worries | Provide CHD-specific counseling and guidance |
| Limited evidence | Few CHD-specific vaccine trials | Support further clinical research |
| Poor care coordination | Fragmented follow-up between specialists and primary care | Use integrated tracking systems |
| Cost/availability | High costs limit mAb uptake in LMICs | Broaden access and reimbursement programs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Esposito, S.; Aurelio, C.; Cifaldi, M.; Lazzara, A.; Viafora, F.; Principi, N. Prevention of Respiratory Infections in Children with Congenital Heart Disease: Current Evidence and Clinical Strategies. Vaccines 2026, 14, 11. https://doi.org/10.3390/vaccines14010011
Esposito S, Aurelio C, Cifaldi M, Lazzara A, Viafora F, Principi N. Prevention of Respiratory Infections in Children with Congenital Heart Disease: Current Evidence and Clinical Strategies. Vaccines. 2026; 14(1):11. https://doi.org/10.3390/vaccines14010011
Chicago/Turabian StyleEsposito, Susanna, Camilla Aurelio, Marina Cifaldi, Angela Lazzara, Federico Viafora, and Nicola Principi. 2026. "Prevention of Respiratory Infections in Children with Congenital Heart Disease: Current Evidence and Clinical Strategies" Vaccines 14, no. 1: 11. https://doi.org/10.3390/vaccines14010011
APA StyleEsposito, S., Aurelio, C., Cifaldi, M., Lazzara, A., Viafora, F., & Principi, N. (2026). Prevention of Respiratory Infections in Children with Congenital Heart Disease: Current Evidence and Clinical Strategies. Vaccines, 14(1), 11. https://doi.org/10.3390/vaccines14010011

