Decrypting the Immune Symphony for RNA Vaccines
Abstract
1. Introduction
2. Rationale for Evaluating Immune Responses
3. RNA Vaccines and Fundamental Immunological Principles
4. Innate Immune Responses: Piano
4.1. RNA Sensing and Pattern Recognition Receptors (PRRs)
4.2. The Role of RNA Modification and Manufacturing in Innate Immune Activity
4.3. Interferon Production and Early Signalling Pathways
4.4. Cytokine and Chemokine Profiles
5. Innate Cellular Immunity
5.1. Dendritic Cells (DCs)
5.2. Macrophages and Monocytes
5.3. Natural Killer (NK) Cells
6. Adaptive Immune Response: Crescendo
6.1. Humoral Immunity—B Cell Activation and Antibody Production
6.2. Cellular Immunity: T Cell Activation
6.2.1. CD4+ T Cell Differentiation and Functional Specialization
6.2.2. CD8+ T Cell Cytotoxicity and Polyfunctionality
6.2.3. Memory T Cell Formation and Clonal Replenishment
7. Memory Induction and Durability: Sustaining the Immune Symphony
7.1. Harmonizing Humoral and Cellular Memory
7.2. Priming Conditions and Memory Longevity
7.3. Memory Recall and the Role of Boosting
7.4. Hybrid Immunity
8. Vaccine Formulation, Delivery, and Safety
8.1. Vaccine Formulation and Delivery Systems
8.2. Mechanisms of Uptake, Immune Activation, and Delivery Optimization in RNA Vaccines
8.2.1. Cellular Uptake and Endosomal Escape
8.2.2. Intrinsic Adjuvant Properties of Lipid Nanoparticles
8.2.3. Alternative Delivery Platforms
8.2.4. Formulation Stability and Storage
8.2.5. Biodistribution and Pharmacokinetics
8.2.6. mRNA Optimization Strategies
- Untranslated region (UTR) and poly(A) tail engineering, which increase mRNA stability and translation initiation.
- Advanced computational tools, such as LinearDesign, which simultaneously optimize secondary structure folding and codon usage, leading to increased mRNA half-life, protein expression, and antibody titers in animal models [95].
8.3. RNA Vaccine Reactogenicity, Adverse Events and Safety Considerations
8.3.1. Common Reactogenicity and Systemic Adverse Events
8.3.2. Immunological Mechanisms of Specific Adverse Events
8.3.3. Myocarditis/Pericarditis
- Molecular mimicry: One leading hypothesis suggests molecular mimicry between the SARS-CoV-2 spike protein (encoded by the vaccine mRNA) and self-antigens present in cardiac tissue. Antibodies generated against the spike protein could potentially cross-react with structurally similar human peptide sequences, such as α-myosin, leading to an autoimmune attack on cardiac myocytes [119].
- Aberrant Immune Response to mRNA/LNP: In certain genetically predisposed individuals, the immune response to the vaccine’s mRNA or LNP components might be dysregulated. Although nucleoside modifications aim to reduce innate immunogenicity, some individuals may still mount an exaggerated inflammatory response, with dendritic cells or TLR-expressing cells releasing high levels of cytokines and activation markers. This could lead to a proinflammatory cascade that contributes to myocardial inflammation [120,121].
- Off-target spike expression: The biodistribution of LNPs is not strictly confined to immune cells or lymphoid organs; they can reach various tissues, including the heart [58]. If the vaccine mRNA is translated into spike protein in non-APCs within cardiac tissue, these spike-expressing cells could become targets for the antigen-specific adaptive immune response. This immune-mediated attack on healthy cells expressing the vaccine antigen could contribute to inflammation and damage in the affected organ [122].
- Autoantibody production: The generation of autoantibodies targeting cardiac antigens has also been proposed as a mechanism, although their direct pathogenic role versus being a consequence of inflammation is still debated [123].
8.3.4. Anaphylaxis
- Pre-existing Anti-Polyethylene Glycol (PEG) Antibodies: Polyethylene glycol (PEG), a component of LNPs, is a primary suspect. Individuals may have pre-existing antibodies (IgM, IgG, or IgE) against PEG due to prior exposure to PEGylated products (e.g., cosmetics, medications). These antibodies can bind to PEG on the LNP surface, leading to complement activation (via IgM/IgG) or the crosslinking of Fc receptors on mast cells (via IgE/IgG), triggering rapid mast cell degranulation and the release of inflammatory mediators [127,128,129].
- Direct Mast Cell Activation: LNPs or their dispersed components may directly activate mast cells or basophils through various receptors, leading to degranulation independent of pre-existing antibodies [130].
- Contact System Activation: The negatively charged nucleic acid (mRNA) can potentially activate factor XII of the contact system, leading to bradykinin production, which can cause angioedema and anaphylactoid reactions.
8.3.5. Neurological and Thrombotic Events
8.4. Mitigation Strategies and Safety Considerations
- LNP Composition Refinement: This includes exploring and implementing alternative LNP components that are less immunogenic or reactogenic. For instance, replacing PEG with zwitterionic materials like poly(carboxybetaine) (PCB) has shown promise in minimizing undesired immune activation while maintaining delivery efficiency [91,92,93].
- Purity Criteria: Ensuring strict purity criteria for the mRNA product is crucial to minimize contaminants such as double-stranded RNA (dsRNA) or DNA fragments, which can activate innate immune sensors and contribute to inflammation and adverse events [44].
- Dose Optimization: Adjusting vaccine doses, particularly for booster shots or in specific populations, can help balance immunogenicity with reactogenicity, as higher doses have been associated with increased adverse event rates [143].
9. Current and Future RNA Vaccine Projects
9.1. Infectious Disease Vaccines
- Self-amplifying RNA (saRNA) vaccines: These vaccines encode not only the antigen but also viral replicase enzymes that enable the mRNA to replicate within the host cell, leading to higher and more prolonged antigen expression from a lower initial dose. This can potentially reduce vaccine dosing requirements and associated side effects. Several saRNA COVID-19 vaccine candidates are in clinical trials [147,148,149].
- Circular RNA (circRNA) vaccines: These are novel platforms that utilize circular RNA molecules, which are inherently more stable than linear mRNA due to their covalently closed loop structure, potentially leading to more sustained antigen expression and improved immunogenicity. One circRNA COVID-19 vaccine candidate is in preclinical development [150,151,152].
- Influenza: Multiple mRNA influenza vaccine candidates are in clinical trials, with some already in Phase 3 studies (e.g., Moderna’s mRNA-1010). These aim to improve vaccine effectiveness by increasing antigenic fidelity to circulating strains and enabling faster adaptation to seasonal changes compared to traditional egg-based manufacturing [153].
- RSV (Respiratory Syncytial Virus): mRNA RSV vaccines have shown robust immunogenicity and efficacy. Moderna’s mRNA-1345 RSV vaccine, for instance, has received expanded approval for younger adults with underlying health conditions, demonstrating comparable neutralizing antibody responses to those in older adults and durable efficacy against RSV-LRTD (lower respiratory tract disease). Preclinical studies have also shown strong humoral and cellular immunity without vaccine-enhanced respiratory disease (VERD) [154,155].
- HIV (Human Immunodeficiency Virus): Targeted vaccine strategies employing priming and heterologous boosting doses are showing promise in Phase 1 clinical trials. These strategies aim to guide the immune system through stages of antibody development to activate early immune responses relevant to broadly neutralizing antibodies (bnAbs), which can recognize and block a wide range of HIV variants [156].
- VZV (Varicella Zoster Virus): Unmodified mRNA VZV vaccines have demonstrated immunogenicity comparable to, or even superior to, the licensed Shingrix vaccine in preclinical models, inducing strong Th1-biased antibody and T cell responses [157].
- HSV (Herpes Simplex Virus): A trivalent mRNA vaccine targeting HSV-2 glycoproteins has shown protective efficacy in animal models and is considered a suitable candidate for human testing.
- Other Pathogens: mRNA vaccines are also under development for a range of other viral pathogens, including Cytomegalovirus, Epstein–Barr virus, Chikungunya, Nipah, rabies, and metapneumovirus/parainfluenza virus. Attempts are also being made to develop mRNA vaccines against certain bacterial infections, such as Group A streptococcal antigen (GAS) and Group B streptococcus (GBS), though many are still in preclinical stages [160].
9.2. Cancer Vaccines
- Brain Cancer (Glioblastoma): A novel mRNA vaccine developed at the University of Florida, using a patient’s own tumor cells to create mRNA clusters, rapidly shifted “immune cold” tumors to “hot” (immunologically active) within 48 h in preclinical models and human patients, activating the early immune system against these aggressive cancers [165].
- Hepatocellular Carcinoma (HCC): A vaccine encoding nearly 20 frequently upregulated HCC antigens (ABOR2014) is in its first human clinical trial [163].
- Other Cancers: Clinical studies are also exploring mRNA vaccines for colorectal cancer, breast cancer, prostate cancer, esophageal cancer, leukemia, multiple myeloma, mesothelioma, renal cell carcinoma, ovarian cancer, and non-small cell lung cancer (NSCLC) [161].
9.3. Other Therapeutic Applications
- Protein Replacement Therapy: For diseases caused by the absence or underexpression of specific proteins (e.g., genetic disorders, enzyme deficiencies), mRNA technology can deliver instructions for the in-situ production of the missing protein, offering a novel therapeutic approach [166].
- Gene Editing: mRNA can be used to deliver transiently expressed programmable nucleases (e.g., CRISPR-Cas9 systems) to correct harmful mutations or introduce protective genetic changes within cells, providing a powerful tool for gene editing without the risk of genomic integration associated with DNA-based methods [166].
- Regenerative Medicine: mRNA technology holds potential in regenerative medicine to replace, regenerate, or restore damaged tissues or cells. This could involve delivering mRNA encoding growth factors or other therapeutic proteins to promote tissue repair or cellular differentiation [166].
9.4. The Transformative Journey and Future Horizons of RNA Vaccine Technology
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gote, V.; Bolla, P.K.; Kommineni, N.; Butreddy, A.; Nukala, P.K.; Palakurthi, S.S.; Khan, W. A Comprehensive Review of mRNA Vaccines. Int. J. Mol. Sci. 2023, 24, 2700. [Google Scholar] [CrossRef]
- Al Fayez, N.; Nassar, M.S.; Alshehri, A.A.; Alnefaie, M.K.; Almughem, F.A.; Alshehri, B.Y.; Alawad, A.O.; Tawfik, E.A. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics 2023, 15, 1972. [Google Scholar] [CrossRef]
- Liu, Y.; Ou, Y.; Hou, L. Advances in RNA-Based Therapeutics: Challenges and Innovations in RNA Delivery Systems. Curr. Issues Mol. Biol. 2024, 47, 22. [Google Scholar] [CrossRef]
- Dweh, T.J.; Wulu, G.J.E.; Jallah, J.K.; Miller, D.L.; Sahoo, J.P. Innovations in RNA therapeutics: A review of recent advances and emerging technologies. Nucleosides Nucleotides Nucleic Acids 2025, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Liu, J.; Yang, H.; Xie, N.; Yang, Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J. Control Release 2024, 369, 696–721. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Serio, V.B.; Tong, Y.; Huang, T.; Frullanti, E.; Palmieri, M. Editorial: Recent advancements in RNA-based and targeted therapeutics. Front. Genet. 2025, 16, 1603498. [Google Scholar] [CrossRef]
- Zhao, W.; Hou, X.; Vick, O.G.; Dong, Y. RNA delivery biomaterials for the treatment of genetic and rare diseases. Biomaterials 2019, 217, 119291. [Google Scholar] [CrossRef]
- Baylot, V.; Le, T.K.; Taieb, D.; Rocchi, P.; Colleaux, L. Between hope and reality: Treatment of genetic diseases through nucleic acid-based drugs. Commun. Biol. 2024, 7, 489. [Google Scholar] [CrossRef] [PubMed]
- Saw, P.E.; Song, E. Advancements in clinical RNA therapeutics: Present developments and prospective outlooks. Cell Rep. Med. 2024, 5, 101555. [Google Scholar] [CrossRef]
- Lauffer, M.C.; van Roon-Mom, W.; Aartsma-Rus, A.; Collaborative, N. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. Commun. Med. 2024, 4, 6. [Google Scholar] [CrossRef]
- Sankar, A.; Kumar, Y.S.R.; Singh, A.; Roy, R.; Shukla, R.; Verma, B. Next-generation therapeutics for rare genetic disorders. Mutagenesis 2024, 39, 157–171. [Google Scholar] [CrossRef]
- Dui, W.; Xiaobin, Z.; Haifeng, Z.; Lijuan, D.; Wenhui, H.; Zhengfeng, Z.; Jinling, S. Harnessing RNA therapeutics: Novel approaches and emerging strategies for cardiovascular disease management. Front. Cardiovasc. Med. 2025, 12, 1546515. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, I.; Wang, K. Recent Advances in RNA Therapy and Its Carriers to Treat the Single-Gene Neurological Disorders. Biomedicines 2022, 10, 158. [Google Scholar] [CrossRef]
- SeyedAlinaghi, S.; Karimi, A.; Pashaei, Z.; Afzalian, A.; Mirzapour, P.; Ghorbanzadeh, K.; Ghasemzadeh, A.; Dashti, M.; Nazarian, N.; Vahedi, F.; et al. Safety and Adverse Events Related to COVID-19 mRNA Vaccines: A Systematic Review. Arch. Acad. Emerg. Med. 2022, 10, e41. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.J.; Chan, K.H.; Hung, I.F. Safety and Efficacy of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Different Vaccines at Phase 3. Vaccines 2021, 9, 989. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, M.; Wang, Y.; You, J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct. Target Ther. 2024, 9, 322. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Zhao, T.; Yang, C.; Huang, L. Development and Evaluation of the Immunogenic Potential of an Unmodified Nucleoside mRNA Vaccine for Herpes Zoster. Vaccines 2025, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Kealy, L.; Good-Jacobson, K.L. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. Oxf. Open Immunol. 2021, 2, iqab018. [Google Scholar] [CrossRef]
- Bettini, E.; Locci, M. SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines 2021, 9, 147. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
- Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401. [Google Scholar] [CrossRef]
- Haabeth, O.A.W.; Blake, T.R.; McKinlay, C.J.; Waymouth, R.M.; Wender, P.A.; Levy, R. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc. Natl. Acad. Sci. USA 2018, 115, E9153–E9161. [Google Scholar] [CrossRef]
- Sioud, M. How the initial discovery of modified RNA enabled evasion of innate immune responses and facilitated the development of RNA therapeutics. Scand. J. Immunol. 2023, 98, e13282. [Google Scholar] [CrossRef]
- Seephetdee, C.; Kiss, D.L. Codon optimality modulates cellular stress and innate immune responses triggered by exogenous RNAs. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Wang, L.; Song, G.; Zhou, W. Innate immune responses to RNA: Sensing and signaling. Front. Immunol. 2024, 15, 1287940. [Google Scholar] [CrossRef]
- Li, C.; Lee, A.; Grigoryan, L.; Arunachalam, P.S.; Scott, M.K.D.; Trisal, M.; Wimmers, F.; Sanyal, M.; Weidenbacher, P.A.; Feng, Y.; et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 2022, 23, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.W.; Amarasinghe, G.K. Structural insights into RNA recognition and activation of RIG-I-like receptors. Curr. Opin. Struct. Biol. 2012, 22, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, C.; Chang, M.R.; Devarkar, S.C.; Schweibenz, B.; Crynen, G.C.; Garcia-Ordonez, R.D.; Pascal, B.D.; Novick, S.J.; Patel, S.S.; et al. HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nat. Commun. 2018, 9, 5366. [Google Scholar] [CrossRef]
- Baum, A.; Sachidanandam, R.; García-Sastre, A. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc. Natl. Acad. Sci. USA 2010, 107, 16303–16308. [Google Scholar] [CrossRef]
- Devarkar, S.C.; Wang, C.; Miller, M.T.; Ramanathan, A.; Jiang, F.; Khan, A.G.; Patel, S.S.; Marcotrigiano, J. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. USA 2016, 113, 596–601. [Google Scholar] [CrossRef]
- Klein, C.R.; Heine, A.; Brossart, P.; Karakostas, P.; Schafer, V.S. Anti-MDA5 autoantibodies predict clinical dynamics of dermatomyositis following SARS-CoV-2 mRNA vaccination: A retrospective statistical analysis of case reports. Rheumatol. Int. 2024, 44, 2185–2196. [Google Scholar] [CrossRef]
- Kariko, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833–1840. [Google Scholar] [CrossRef]
- Alameh, M.G.; Tombacz, I.; Bettini, E.; Lederer, K.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; Hicks, P.; et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021, 54, 2877–2892.e7. [Google Scholar] [CrossRef]
- Tahtinen, S.; Tong, A.J.; Himmels, P.; Oh, J.; Paler-Martinez, A.; Kim, L.; Wichner, S.; Oei, Y.; McCarron, M.J.; Freund, E.C.; et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 2022, 23, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Luozhong, S.; Liu, P.; Li, R.; Yuan, Z.; Debley, E.; Chen, Y.; Hu, Y.; Cao, Z.; Cui, M.; McIlhenny, K.; et al. Poly(carboxybetaine) lipids enhance mRNA therapeutics efficacy and reduce their immunogenicity. Nat. Mater. 2025, 1–10. [Google Scholar] [CrossRef]
- Kariko, K.; Muramatsu, H.; Ludwig, J.; Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011, 39, e142. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.; Sorensen, E.W.; Mintri, S.; Rabideau, A.E.; Zheng, W.; Besin, G.; Khatwani, N.; Su, S.V.; Miracco, E.J.; Issa, W.J.; et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 2020, 6, eaaz6893. [Google Scholar] [CrossRef] [PubMed]
- Sharabrin, S.V.; Bondar, A.A.; Starostina, E.V.; Kisakov, D.N.; Kisakova, L.A.; Zadorozhny, A.M.; Rudometov, A.P.; Ilyichev, A.A.; Karpenko, L.I. Removal of Double-Stranded RNA Contaminants During Template-Directed Synthesis of mRNA. Bull. Exp. Biol. Med. 2024, 176, 751–755. [Google Scholar] [CrossRef]
- Lopez de Padilla, C.M.; Niewold, T.B. The type I interferons: Basic concepts and clinical relevance in immune-mediated inflammatory diseases. Gene 2016, 576, 14–21. [Google Scholar] [CrossRef]
- Morlanes Pallás, R. Innate and adaptative immune mechanisms of COVID-19 vaccines. Serious adverse events associated with SARS-CoV-2 vaccination: A systematic review. Vacunas 2024, 25, 285.e1–285.e4. [Google Scholar] [CrossRef]
- Al Rahbani, G.K.; Woopen, C.; Dunsche, M.; Proschmann, U.; Ziemssen, T.; Akgün, K. SARS-CoV-2-Specific Immune Cytokine Profiles to mRNA, Viral Vector and Protein-Based Vaccines in Patients with Multiple Sclerosis: Beyond Interferon Gamma. Vaccines 2024, 12, 684. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Sawada, A.; Ito, T. Comparison of cytokine production in mice inoculated with messenger RNA vaccines BNT162b2 and mRNA-1273. Microbiol. Immunol. 2023, 67, 120–128. [Google Scholar] [CrossRef]
- Ndeupen, S.; Qin, Z.; Jacobsen, S.; Bouteau, A.; Estanbouli, H.; Igyarto, B.Z. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 2021, 24, 103479. [Google Scholar] [CrossRef] [PubMed]
- Igyártó, B.Z.; Qin, Z. The mRNA-LNP vaccines—The good, the bad and the ugly? Front. Immunol. 2024, 15, 1336906. [Google Scholar] [CrossRef]
- Hellgren, F.; Rosdahl, A.; Arcoverde Cerveira, R.; Lenart, K.; Ols, S.; Gwon, Y.D.; Kurt, S.; Delis, A.M.; Joas, G.; Evander, M.; et al. Modulation of innate immune response to mRNA vaccination after SARS-CoV-2 infection or sequential vaccination in humans. JCI Insight 2024, 9, 175401. [Google Scholar] [CrossRef]
- Verbeke, R.; Hogan, M.J.; Lore, K.; Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 2022, 55, 1993–2005. [Google Scholar] [CrossRef]
- Clemente, B.; Denis, M.; Silveira, C.P.; Schiavetti, F.; Brazzoli, M.; Stranges, D. Straight to the point: Targeted mRNA-delivery to immune cells for improved vaccine design. Front. Immunol. 2023, 14, 1294929. [Google Scholar] [CrossRef] [PubMed]
- Simonis, A.; Theobald, S.J.; Koch, A.E.; Mummadavarapu, R.; Mudler, J.M.; Pouikli, A.; Gobel, U.; Acton, R.; Winter, S.; Albus, A.; et al. Persistent epigenetic memory of SARS-CoV-2 mRNA vaccination in monocyte-derived macrophages. Mol. Syst. Biol. 2025, 21, 341–360. [Google Scholar] [CrossRef]
- Peng, K.; Zhao, X.; Li, H.; Fu, Y.-X.; Liang, Y. Membrane-IL12 adjuvant mRNA vaccine polarizes pre-effector T cells for optimized tumor control. J. Exp. Med. 2025, 222, e20241454. [Google Scholar] [CrossRef]
- Ochando, J.; Mulder, W.J.M.; Madsen, J.C.; Netea, M.G.; Duivenvoorden, R. Trained immunity—Basic concepts and contributions to immunopathology. Nat. Rev. Nephrol. 2023, 19, 23–37. [Google Scholar] [CrossRef]
- Lederer, K.; Castano, D.; Gomez Atria, D.; Oguin, T.H., 3rd; Wang, S.; Manzoni, T.B.; Muramatsu, H.; Hogan, M.J.; Amanat, F.; Cherubin, P.; et al. SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity 2020, 53, 1281–1295.e5. [Google Scholar] [CrossRef]
- Goel, R.R.; Painter, M.M.; Apostolidis, S.A.; Mathew, D.; Meng, W.; Rosenfeld, A.M.; Lundgreen, K.A.; Reynaldi, A.; Khoury, D.S.; Pattekar, A.; et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 2021, 374, abm0829. [Google Scholar] [CrossRef]
- Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 2019, 50, 1132–1148. [Google Scholar] [CrossRef]
- Krishnaswamy, J.K.; Gowthaman, U.; Zhang, B.; Mattsson, J.; Szeponik, L.; Liu, D.; Wu, R.; White, T.; Calabro, S.; Xu, L.; et al. Migratory CD11b(+) conventional dendritic cells induce T follicular helper cell-dependent antibody responses. Sci. Immunol. 2017, 2, eaam9169. [Google Scholar] [CrossRef]
- Victora, G.D.; Nussenzweig, M.C. Germinal centers. Annu. Rev. Immunol. 2012, 30, 429–457. [Google Scholar] [CrossRef]
- Laczko, D.; Hogan, M.J.; Toulmin, S.A.; Hicks, P.; Lederer, K.; Gaudette, B.T.; Castano, D.; Amanat, F.; Muramatsu, H.; Oguin, T.H., 3rd; et al. A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity 2020, 53, 724–732.e7. [Google Scholar] [CrossRef]
- Sokal, A.; Chappert, P.; Barba-Spaeth, G.; Roeser, A.; Fourati, S.; Azzaoui, I.; Vandenberghe, A.; Fernandez, I.; Meola, A.; Bouvier-Alias, M.; et al. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell 2021, 184, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Sokal, A.; Barba-Spaeth, G.; Fernandez, I.; Broketa, M.; Azzaoui, I.; de La Selle, A.; Vandenberghe, A.; Fourati, S.; Roeser, A.; Meola, A.; et al. mRNA vaccination of naive and COVID-19-recovered individuals elicits potent memory B cells that recognize SARS-CoV-2 variants. Immunity 2021, 54, 2893–2907.e5. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Chow, R.D.; Song, E.; Mao, T.; Israelow, B.; Kamath, K.; Bozekowski, J.; Haynes, W.A.; Filler, R.B.; Menasche, B.L.; et al. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Sci. Immunol. 2022, 7, eabl5652. [Google Scholar] [CrossRef]
- Turner, J.S.; O’Halloran, J.A.; Kalaidina, E.; Kim, W.; Schmitz, A.J.; Zhou, J.Q.; Lei, T.; Thapa, M.; Chen, R.E.; Case, J.B.; et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021, 596, 109–113. [Google Scholar] [CrossRef]
- Herati, R.S.; Knorr, D.A.; Vella, L.A.; Silva, L.V.; Chilukuri, L.; Apostolidis, S.A.; Huang, A.C.; Muselman, A.; Manne, S.; Kuthuru, O.; et al. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat. Immunol. 2022, 23, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.R.; Painter, M.M.; Lundgreen, K.A.; Apostolidis, S.A.; Baxter, A.E.; Giles, J.R.; Mathew, D.; Pattekar, A.; Reynaldi, A.; Khoury, D.S.; et al. Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell 2022, 185, 1875–1887.e8. [Google Scholar] [CrossRef] [PubMed]
- Collier, D.A.; Ferreira, I.; Kotagiri, P.; Datir, R.P.; Lim, E.Y.; Touizer, E.; Meng, B.; Abdullahi, A.; The CITIID-NIHR BioResource COVID-19 Collaboration; Elmer, A.; et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 2021, 596, 417–422. [Google Scholar] [CrossRef]
- Verheul, M.K.; Nijhof, K.H.; de Zeeuw-Brouwer, M.L.; Duijm, G.; Ten Hulscher, H.; de Rond, L.; Beckers, L.; Eggink, D.; van Tol, S.; Reimerink, J.; et al. Booster Immunization Improves Memory B Cell Responses in Older Adults Unresponsive to Primary SARS-CoV-2 Immunization. Vaccines 2023, 11, 1196. [Google Scholar] [CrossRef]
- Sethi, S.K.; Bradley, C.E.; Bialkowski, L.; Pang, Y.Y.; Thompson, C.D.; Schiller, J.T.; Cuburu, N. Repurposing anti-viral subunit and mRNA vaccines T cell immunity for intratumoral immunotherapy against solid tumors. NPJ Vaccines 2025, 10, 84. [Google Scholar] [CrossRef]
- Gil-Manso, S.; Carbonell, D.; Lopez-Fernandez, L.; Miguens, I.; Alonso, R.; Buno, I.; Munoz, P.; Ochando, J.; Pion, M.; Correa-Rocha, R. Induction of High Levels of Specific Humoral and Cellular Responses to SARS-CoV-2 After the Administration of Covid-19 mRNA Vaccines Requires Several Days. Front. Immunol. 2021, 12, 726960. [Google Scholar] [CrossRef]
- Hurme, A.; Jalkanen, P.; Heroum, J.; Liedes, O.; Vara, S.; Melin, M.; Terasjarvi, J.; He, Q.; Poysti, S.; Hanninen, A.; et al. Long-Lasting T Cell Responses in BNT162b2 COVID-19 mRNA Vaccinees and COVID-19 Convalescent Patients. Front. Immunol. 2022, 13, 869990. [Google Scholar] [CrossRef] [PubMed]
- Muik, A.; Wallisch, A.K.; Sanger, B.; Swanson, K.A.; Muhl, J.; Chen, W.; Cai, H.; Maurus, D.; Sarkar, R.; Tureci, O.; et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 2021, 371, 1152–1153. [Google Scholar] [CrossRef]
- Bettelli, E.; Korn, T.; Oukka, M.; Kuchroo, V.K. Induction and effector functions of T(H)17 cells. Nature 2008, 453, 1051–1057. [Google Scholar] [CrossRef]
- Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006, 441, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Mudd, P.A.; Minervina, A.A.; Pogorelyy, M.V.; Turner, J.S.; Kim, W.; Kalaidina, E.; Petersen, J.; Schmitz, A.J.; Lei, T.; Haile, A.; et al. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 2022, 185, 603–613.e615. [Google Scholar] [CrossRef]
- Chen, M.; Venturi, V.; Munier, C.M.L. Dissecting the Protective Effect of CD8(+) T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8(+) T Cells. Biology 2023, 12, 1035. [Google Scholar] [CrossRef]
- Dailing, E.A.; Setterberg, W.K.; Shah, P.K.; Stansbury, J.W. Photopolymerizable nanogels as macromolecular precursors to covalently crosslinked water-based networks. Soft Matter 2015, 11, 5647–5655. [Google Scholar] [CrossRef]
- Pross, V.; Sattler, A.; Lukassen, S.; Toth, L.; Thole, L.M.L.; Siegle, J.; Stahl, C.; He, A.; Damm, G.; Seehofer, D.; et al. SARS-CoV-2 mRNA vaccination-induced immunological memory in human nonlymphoid and lymphoid tissues. J. Clin. Investig. 2023, 133, e171797. [Google Scholar] [CrossRef]
- Ssemaganda, A.; Nguyen, H.M.; Nuhu, F.; Jahan, N.; Card, C.M.; Kiazyk, S.; Severini, G.; Keynan, Y.; Su, R.C.; Ji, H.; et al. Expansion of cytotoxic tissue-resident CD8(+) T cells and CCR6(+)CD161(+) CD4(+) T cells in the nasal mucosa following mRNA COVID-19 vaccination. Nat. Commun. 2022, 13, 3357. [Google Scholar] [CrossRef]
- Reinscheid, M.; Luxenburger, H.; Karl, V.; Graeser, A.; Giese, S.; Ciminski, K.; Reeg, D.B.; Oberhardt, V.; Roehlen, N.; Lang-Meli, J.; et al. COVID-19 mRNA booster vaccine induces transient CD8+ T effector cell responses while conserving the memory pool for subsequent reactivation. Nat. Commun. 2022, 13, 4631. [Google Scholar] [CrossRef]
- Oberhardt, V.; Luxenburger, H.; Kemming, J.; Schulien, I.; Ciminski, K.; Giese, S.; Csernalabics, B.; Lang-Meli, J.; Janowska, I.; Staniek, J.; et al. Rapid and stable mobilization of CD8(+) T cells by SARS-CoV-2 mRNA vaccine. Nature 2021, 597, 268–273. [Google Scholar] [CrossRef]
- Goel, R.R.; Apostolidis, S.A.; Painter, M.M.; Mathew, D.; Pattekar, A.; Kuthuru, O.; Gouma, S.; Hicks, P.; Meng, W.; Rosenfeld, A.M.; et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals following mRNA vaccination. Sci. Immunol. 2021, 6, abi6950. [Google Scholar] [CrossRef] [PubMed]
- Stamatatos, L.; Czartoski, J.; Wan, Y.H.; Homad, L.J.; Rubin, V.; Glantz, H.; Neradilek, M.; Seydoux, E.; Jennewein, M.F.; MacCamy, A.J.; et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021, 372, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Halliley, J.L.; Tipton, C.M.; Liesveld, J.; Rosenberg, A.F.; Darce, J.; Gregoretti, I.V.; Popova, L.; Kaminiski, D.; Fucile, C.F.; Albizua, I.; et al. Long-Lived Plasma Cells Are Contained within the CD19(-)CD38(hi)CD138(+) Subset in Human Bone Marrow. Immunity 2015, 43, 132–145. [Google Scholar] [CrossRef]
- Slifka, M.K.; Amanna, I. How advances in immunology provide insight into improving vaccine efficacy. Vaccine 2014, 32, 2948–2957. [Google Scholar] [CrossRef]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef]
- Rodda, L.B.; Netland, J.; Shehata, L.; Pruner, K.B.; Morawski, P.A.; Thouvenel, C.D.; Takehara, K.K.; Eggenberger, J.; Hemann, E.A.; Waterman, H.R.; et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell 2021, 184, 169–183.e117. [Google Scholar] [CrossRef] [PubMed]
- Bowman, K.A.; Stein, D.; Shin, S.; Ferbas, K.G.; Tobin, N.H.; Mann, C.; Fischinger, S.; Ollmann Saphire, E.; Lauffenburger, D.; Rimoin, A.W.; et al. Hybrid Immunity Shifts the Fc-Effector Quality of SARS-CoV-2 mRNA Vaccine-Induced Immunity. mBio 2022, 13, e0164722. [Google Scholar] [CrossRef] [PubMed]
- Feldstein, L.R.; Ruffin, J.; Wiegand, R.E.; Borkowf, C.B.; James-Gist, J.; Babu, T.M.; Briggs-Hagen, M.; Chappell, J.; Chu, H.Y.; Englund, J.A.; et al. Effectiveness of mRNA COVID-19 Vaccines and Hybrid Immunity in Preventing SARS-CoV-2 Infection and Symptomatic COVID-19 Among Adults in the United States. J. Infect. Dis. 2025, 231, e743–e753. [Google Scholar] [CrossRef]
- Grijalvo, S.; Alagia, A.; Jorge, A.F.; Eritja, R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes 2018, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, Z.M.; Song, D.; Chen, M.; Xu, Q. Rational design of lipid nanoparticles: Overcoming physiological barriers for selective intracellular mRNA delivery. Curr. Opin. Chem. Biol. 2024, 81, 102499. [Google Scholar] [CrossRef]
- Zelkoski, A.E.; Lu, Z.; Sukumar, G.; Dalgard, C.; Said, H.; Alameh, M.G.; Mitre, E.; Malloy, A.M.W. Ionizable lipid nanoparticles of mRNA vaccines elicit NF-kappaB and IRF responses through toll-like receptor 4. NPJ Vaccines 2025, 10, 73. [Google Scholar] [CrossRef]
- Schroder, R.; Ozuguzel, U.; Du, Y.; Corts, T.M.; Liu, Y.; Mittal, S.; Templeton, A.C.; Chaudhuri, B.; Gindy, M.; Wagner, A.; et al. Molecular Dynamics of Lipid Nanoparticles Explored through Solution and Solid-State NMR Spectroscopy and MD Simulations. J. Phys. Chem. B 2025, 129, 6200–6219. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef]
- Kong, W.; Wei, Y.; Dong, Z.; Liu, W.; Zhao, J.; Huang, Y.; Yang, J.; Wu, W.; He, H.; Qi, J. Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA. J. Nanobiotechnol. 2024, 22, 553. [Google Scholar] [CrossRef]
- Zhang, L.; Seow, B.Y.L.; Bae, K.H.; Zhang, Y.; Liao, K.C.; Wan, Y.; Yang, Y.Y. Role of PEGylated lipid in lipid nanoparticle formulation for in vitro and in vivo delivery of mRNA vaccines. J. Control Release 2025, 380, 108–124. [Google Scholar] [CrossRef]
- Larson, N.R.; Hu, G.; Wei, Y.; Tuesca, A.D.; Forrest, M.L.; Middaugh, C.R. pH-Dependent Phase Behavior and Stability of Cationic Lipid-mRNA Nanoparticles. J. Pharm. Sci. 2022, 111, 690–698. [Google Scholar] [CrossRef]
- Zhang, R.; Shao, S.; Piao, Y.; Xiang, J.; Wei, X.; Zhang, Z.; Zhou, Z.; Tang, J.; Qiu, N.; Xu, X.; et al. Esterase-Labile Quaternium Lipidoid Enabling Improved mRNA-LNP Stability and Spleen-Selective mRNA Transfection. Adv. Mater. 2023, 35, e2303614. [Google Scholar] [CrossRef]
- Li, Y.; Liu, R.; Shi, Y.; Zhang, Z.; Zhang, X. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon. Theranostics 2015, 5, 583–596. [Google Scholar] [CrossRef]
- Bahl, K.; Senn, J.J.; Yuzhakov, O.; Bulychev, A.; Brito, L.A.; Hassett, K.J.; Laska, M.E.; Smith, M.; Almarsson, O.; Thompson, J.; et al. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol. Ther. 2017, 25, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Paramasivam, P.; Franke, C.; Stoter, M.; Hoijer, A.; Bartesaghi, S.; Sabirsh, A.; Lindfors, L.; Arteta, M.Y.; Dahlen, A.; Bak, A.; et al. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J. Cell Biol. 2022, 221, e202110137. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, M.; Nawaz, M.; Papadimitriou, A.; Angerfors, A.; Camponeschi, A.; Na, M.; Holtta, M.; Skantze, P.; Johansson, S.; Sundqvist, M.; et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat. Commun. 2019, 10, 4333. [Google Scholar] [CrossRef]
- Chatterjee, S.; Kon, E.; Sharma, P.; Peer, D. Endosomal escape: A bottleneck for LNP-mediated therapeutics. Proc. Natl. Acad. Sci. USA 2024, 121, e2307800120. [Google Scholar] [CrossRef] [PubMed]
- Anindita, J.; Tanaka, H.; Yamakawa, T.; Sato, Y.; Matsumoto, C.; Ishizaki, K.; Oyama, T.; Suzuki, S.; Ueda, K.; Higashi, K.; et al. The Effect of Cholesterol Content on the Adjuvant Activity of Nucleic-Acid-Free Lipid Nanoparticles. Pharmaceutics 2024, 16, 181. [Google Scholar] [CrossRef]
- Dai, W.; Xing, M.; Sun, L.; Lv, L.; Wang, X.; Wang, Y.; Pang, X.; Guo, Y.; Ren, J.; Zhou, D. Lipid nanoparticles as adjuvant of norovirus VLP vaccine augment cellular and humoral immune responses in a TLR9- and type I IFN-dependent pathway. J. Virol. 2024, 98, e0169924. [Google Scholar] [CrossRef] [PubMed]
- Sharifnia, Z.; Bandehpour, M.; Hamishehkar, H.; Mosaffa, N.; Kazemi, B.; Zarghami, N. In-vitro Transcribed mRNA Delivery Using PLGA/PEI Nanoparticles into Human Monocyte-derived Dendritic Cells. Iran J. Pharm. Res. 2019, 18, 1659–1675. [Google Scholar] [CrossRef]
- Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol. 2019, 10, 594. [Google Scholar] [CrossRef]
- Hassett, K.J.; Benenato, K.E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B.M.; Ketova, T.; et al. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol. Ther. Nucleic Acids 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Ren, Y.; Lin, L.; Abdallah, M.; Zhu, X.; Liu, H.; Fabb, S.A.; Payne, T.J.; Pouton, C.W.; Johnston, A.P.R.; Trevaskis, N.L. Impact of ionizable lipid type on the pharmacokinetics and biodistribution of mRNA-lipid nanoparticles after intravenous and subcutaneous injection. J. Control Release 2025, 384, 113945. [Google Scholar] [CrossRef]
- Di, J.; Du, Z.; Wu, K.; Jin, S.; Wang, X.; Li, T.; Xu, Y. Biodistribution and Non-linear Gene Expression of mRNA LNPs Affected by Delivery Route and Particle Size. Pharm. Res. 2022, 39, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, K.J.; Dorkin, J.R.; Yang, J.H.; Heartlein, M.W.; DeRosa, F.; Mir, F.F.; Fenton, O.S.; Anderson, D.G. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. 2015, 15, 7300–7306. [Google Scholar] [CrossRef] [PubMed]
- Hassett, K.J.; Higgins, J.; Woods, A.; Levy, B.; Xia, Y.; Hsiao, C.J.; Acosta, E.; Almarsson, O.; Moore, M.J.; Brito, L.A. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J. Control Release 2021, 335, 237–246. [Google Scholar] [CrossRef]
- Nance, K.D.; Meier, J.L. Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Cent. Sci. 2021, 7, 748–756. [Google Scholar] [CrossRef]
- Chen, T.H.; Potapov, V.; Dai, N.; Ong, J.L.; Roy, B. N(1)-methyl-pseudouridine is incorporated with higher fidelity than pseudouridine in synthetic RNAs. Sci. Rep. 2022, 12, 13017. [Google Scholar] [CrossRef]
- Parr, C.J.C.; Wada, S.; Kotake, K.; Kameda, S.; Matsuura, S.; Sakashita, S.; Park, S.; Sugiyama, H.; Kuang, Y.; Saito, H. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res. 2020, 48, e35. [Google Scholar] [CrossRef] [PubMed]
- Gorochowski, T.E.; Ignatova, Z.; Bovenberg, R.A.; Roubos, J.A. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Res. 2015, 43, 3022–3032. [Google Scholar] [CrossRef]
- Mauro, V.P.; Chappell, S.A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 2014, 20, 604–613. [Google Scholar] [CrossRef]
- Rosenblum, H.G.; Gee, J.; Liu, R.; Marquez, P.L.; Zhang, B.; Strid, P.; Abara, W.E.; McNeil, M.M.; Myers, T.R.; Hause, A.M.; et al. Safety of mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme: An observational study of reports to the Vaccine Adverse Event Reporting System and v-safe. Lancet Infect. Dis. 2022, 22, 802–812. [Google Scholar] [CrossRef]
- Shepherd, P. Early discharge from hospital after surgery. Midwife Health Visit. Community Nurse 1976, 12, 289–290. [Google Scholar] [PubMed]
- Korzun, T.; Moses, A.S.; Jozic, A.; Grigoriev, V.; Newton, S.; Kim, J.; Diba, P.; Sattler, A.; Levasseur, P.R.; Le, N.; et al. Lipid Nanoparticles Elicit Reactogenicity and Sickness Behavior in Mice Via Toll-Like Receptor 4 and Myeloid Differentiation Protein 88 Axis. ACS Nano 2024, 18, 24842–24859. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kimura, M.; Karaki, T.; Tanaka, H.; Ono, C.; Ishida, T.; Matsuura, Y.; Hirai, T.; Akita, H.; Shimizu, T.; et al. Modulating Immunogenicity and Reactogenicity in mRNA-Lipid Nanoparticle Vaccines through Lipid Component Optimization. ACS Nano 2025, 19, 27977–28001. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Castilla, J.; Stebliankin, V.; Baral, P.; Balbin, C.A.; Sobhan, M.; Cickovski, T.; Mondal, A.M.; Narasimhan, G.; Chapagain, P.; Mathee, K.; et al. Potential Autoimmunity Resulting from Molecular Mimicry between SARS-CoV-2 Spike and Human Proteins. Viruses 2022, 14, 1415. [Google Scholar] [CrossRef]
- Giannotta, G.; Murrone, A.; Giannotta, N. COVID-19 mRNA Vaccines: The Molecular Basis of Some Adverse Events. Vaccines 2023, 11, 747. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Cho, S.H.; Roh, G.; Park, H.J.; Lee, Y.J.; Jeon, H.E.; Lee, Y.S.; Bae, S.H.; Youn, S.B.; et al. Assessing the impact of mRNA vaccination in chronic inflammatory murine model. NPJ Vaccines 2024, 9, 34. [Google Scholar] [CrossRef]
- Switzer, C.; Loeb, M. Evaluating the relationship between myocarditis and mRNA vaccination. Expert Rev. Vaccines 2022, 21, 83–89. [Google Scholar] [CrossRef]
- Patel, H.; Sintou, A.; Chowdhury, R.A.; Rothery, S.; Iacob, A.O.; Prasad, S.; Rainer, P.P.; Martinon-Torres, F.; Sancho-Shimizu, V.; Shimizu, C.; et al. Evaluation of Autoantibody Binding to Cardiac Tissue in Multisystem Inflammatory Syndrome in Children and COVID-19 Vaccination-Induced Myocarditis. JAMA Netw. Open 2023, 6, e2314291. [Google Scholar] [CrossRef]
- Tsang, H.W.; Kwan, M.Y.W.; Chua, G.T.; Tsao, S.S.L.; Wong, J.S.C.; Tung, K.T.S.; Chan, G.C.F.; To, K.K.W.; Wong, I.C.K.; Leung, W.H.; et al. The central role of natural killer cells in mediating acute myocarditis after mRNA COVID-19 vaccination. Med 2024, 5, 335–347.e333. [Google Scholar] [CrossRef]
- Bozkurt, B.; Kamat, I.; Hotez, P.J. Myocarditis with COVID-19 mRNA Vaccines. Circulation 2021, 144, 471–484. [Google Scholar] [CrossRef]
- Khalid, M.B.; Frischmeyer-Guerrerio, P.A. The conundrum of COVID-19 mRNA vaccine-induced anaphylaxis. J. Allergy Clin. Immunol. Glob. 2023, 2, 1–13. [Google Scholar] [CrossRef]
- Omata, D.; Kawahara, E.; Munakata, L.; Tanaka, H.; Akita, H.; Yoshioka, Y.; Suzuki, R. Effect of Anti-PEG Antibody on Immune Response of mRNA-Loaded Lipid Nanoparticles. Mol. Pharm. 2024, 21, 5672–5680. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Carreno, J.M.; Simon, V.; Dawson, K.; Krammer, F.; Kent, S.J. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat. Rev. Immunol. 2023, 23, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Y.; Yuan, C.; Xu, X.; Zhou, W.; Huang, Y.; Lu, H.; Zheng, Y.; Luo, G.; Shang, J.; et al. Polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant lipid nanoparticles in rats. NPJ Vaccines 2023, 8, 169. [Google Scholar] [CrossRef]
- Risma, K.A.; Edwards, K.M.; Hummell, D.S.; Little, F.F.; Norton, A.E.; Stallings, A.; Wood, R.A.; Milner, J.D. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. J. Allergy Clin. Immunol. 2021, 147, 2075–2082.e2072. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jacques, S.; Gaikwad, H.; Nebbia, M.; Banda, N.K.; Holers, V.M.; Tomlinson, S.A.; Scheinman, R.I.; Monte, A.; Saba, L.; et al. Enhanced immunocompatibility and hemocompatibility of nanomedicines across multiple species using complement pathway inhibitors. Sci. Adv. 2025, 11, eadw1731. [Google Scholar] [CrossRef]
- La-Beck, N.M.; Islam, M.R.; Markiewski, M.M. Nanoparticle-Induced Complement Activation: Implications for Cancer Nanomedicine. Front. Immunol. 2020, 11, 603039. [Google Scholar] [CrossRef]
- Somiya, M.; Mine, S.; Yasukawa, K.; Ikeda, S. Sex differences in the incidence of anaphylaxis to LNP-mRNA COVID-19 vaccines. Vaccine 2021, 39, 3313–3314. [Google Scholar] [CrossRef]
- Green, M.S.; Peer, V.; Magid, A.; Hagani, N.; Anis, E.; Nitzan, D. Gender Differences in Adverse Events Following the Pfizer-BioNTech COVID-19 Vaccine. Vaccines 2022, 10, 233. [Google Scholar] [CrossRef]
- Eslait-Olaciregui, S.; Llinas-Caballero, K.; Patino-Manjarres, D.; Urbina-Ariza, T.; Cediel-Becerra, J.F.; Dominguez-Dominguez, C.A. Serious neurological adverse events following immunization against SARS-CoV-2: A narrative review of the literature. Ther. Adv. Drug Saf. 2023, 14, 20420986231165674. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, A.; Salameh, M.A.; Laswi, I.; Mohammed, I.; Mhaimeed, O.; Mhaimeed, N.; Mhaimeed, N.; Paul, P.; Mushannen, M.; Elshafeey, A.; et al. Neurological Immune-Related Adverse Events After COVID-19 Vaccination: A Systematic Review. J. Clin. Pharmacol. 2022, 62, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Birnbach, D.J.; Rosen, L.F.; Fitzpatrick, M.; Shekhter, I.; Arheart, K.L. Preparing Anesthesiology Residents for Operating Room Communication Challenges: A New Approach for Conflict Resolution Training. Anesth. Analg. 2021, 133, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Frontera, J.A.; Tamborska, A.A.; Doheim, M.F.; Garcia-Azorin, D.; Gezegen, H.; Guekht, A.; Yusof Khan, A.H.K.; Santacatterina, M.; Sejvar, J.; Thakur, K.T.; et al. Neurological Events Reported after COVID-19 Vaccines: An Analysis of VAERS. Ann. Neurol. 2022, 91, 756–771. [Google Scholar] [CrossRef]
- See, I.; Lale, A.; Marquez, P.; Streiff, M.B.; Wheeler, A.P.; Tepper, N.K.; Woo, E.J.; Broder, K.R.; Edwards, K.M.; Gallego, R.; et al. Case Series of Thrombosis with Thrombocytopenia Syndrome After COVID-19 Vaccination-United States, December 2020 to August 2021. Ann. Intern. Med. 2022, 175, 513–522. [Google Scholar] [CrossRef]
- Hafeez, M.U.; Ikram, M.; Shafiq, Z.; Sarfraz, A.; Sarfraz, Z.; Jaiswal, V.; Sarfraz, M.; Cherrez-Ojeda, I. COVID-19 Vaccine-Associated Thrombosis with Thrombocytopenia Syndrome (TTS): A Systematic Review and Post Hoc Analysis. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211048815. [Google Scholar] [CrossRef]
- Valnet-Rabier, M.B.; Tebacher, M.; Gautier, S.; Micallef, J.; Salvo, F.; Pariente, A.; Bagheri, H. Pharmacovigilance signals from active surveillance of mRNA platform vaccines (tozinameran and elasomeran). Therapie 2023, 78, 499–507. [Google Scholar] [CrossRef]
- Crommelynck, S.; Grandvuillemin, A.; Ferard, C.; Mounier, C.; Gault, N.; Pierron, E.; Jacquot, B.; Vaillant, T.; Chatelet, I.P.D.; Jacquet, A.; et al. The enhanced national pharmacovigilance system implemented for COVID-19 vaccines in France: A 2-year experience report. Therapie 2025, 80, 429–437. [Google Scholar] [CrossRef]
- Munro, A.P.S.; Feng, S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): A multicentre, blinded, phase 2, randomised trial. Lancet Infect. Dis. 2022, 22, 1131–1141. [Google Scholar] [CrossRef]
- Parvin, N.; Joo, S.W.; Mandal, T.K. Enhancing Vaccine Efficacy and Stability: A Review of the Utilization of Nanoparticles in mRNA Vaccines. Biomolecules 2024, 14, 1036. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Salari, S.; Sharifi, I.; Keyhani, A.R.; Ghasemi Nejad Almani, P. Evaluation of a new live recombinant vaccine against cutaneous leishmaniasis in BALB/c mice. Parasit. Vectors 2020, 13, 415. [Google Scholar] [CrossRef] [PubMed]
- Wayne, C.J.; Blakney, A.K. Self-amplifying RNA COVID-19 vaccine. Cell 2024, 187, 1822.e1. [Google Scholar] [CrossRef] [PubMed]
- Akahata, W.; Sekida, T.; Nogimori, T.; Ode, H.; Tamura, T.; Kono, K.; Kazami, Y.; Washizaki, A.; Masuta, Y.; Suzuki, R.; et al. Safety and immunogenicity of SARS-CoV-2 self-amplifying RNA vaccine expressing an anchored RBD: A randomized, observer-blind phase 1 study. Cell Rep. Med. 2023, 4, 101134. [Google Scholar] [CrossRef] [PubMed]
- Oda, Y.; Kumagai, Y.; Kanai, M.; Iwama, Y.; Okura, I.; Minamida, T.; Yagi, Y.; Kurosawa, T.; Greener, B.; Zhang, Y.; et al. Immunogenicity and safety of a booster dose of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2 mRNA COVID-19 vaccine: A double-blind, multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet Infect. Dis. 2024, 24, 351–360. [Google Scholar] [CrossRef]
- Qu, L.; Yi, Z.; Shen, Y.; Lin, L.; Chen, F.; Xu, Y.; Wu, Z.; Tang, H.; Zhang, X.; Tian, F.; et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 2022, 185, 1728–1744.e16. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, D.; He, Q.; Liu, J.; Mao, Q.; Liang, Z. Research progress on circular RNA vaccines. Front. Immunol. 2022, 13, 1091797. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Bajgiran, S.R.; Samghabadi, F.S.; Dutta, C.; Gillett, E.; Rossky, P.J.; Conrad, J.C.; Marciel, A.B.; Landes, C.F. Imaging Heterogeneous 3D Dynamics of Individual Solutes in a Polyelectrolyte Brush. Langmuir 2023, 39, 8532–8539. [Google Scholar] [CrossRef]
- Soens, M.; Ananworanich, J.; Hicks, B.; Lucas, K.J.; Cardona, J.; Sher, L.; Livermore, G.; Schaefers, K.; Henry, C.; Choi, A.; et al. A phase 3 randomized safety and immunogenicity trial of mRNA-1010 seasonal influenza vaccine in adults. Vaccine 2025, 50, 126847. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.A.; Essink, B.; Harper, C.; Mithani, R.; Kapoor, A.; Dhar, R.; Wilson, L.; Guo, R.; Panozzo, C.A.; Wilson, E.; et al. Safety and Immunogenicity of an mRNA-Based RSV Vaccine Including a 12-Month Booster in a Phase 1 Clinical Trial in Healthy Older Adults. J. Infect. Dis. 2024, 230, e647–e656. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.; Goswami, J.; Baqui, A.H.; Doreski, P.A.; Perez-Marc, G.; Zaman, K.; Monroy, J.; Duncan, C.J.A.; Ujiie, M.; Ramet, M.; et al. Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults. N. Engl. J. Med. 2023, 389, 2233–2244. [Google Scholar] [CrossRef]
- Willis, J.R.; Prabhakaran, M.; Muthui, M.; Naidoo, A.; Sincomb, T.; Wu, W.; Cottrell, C.A.; Landais, E.; deCamp, A.C.; Keshavarzi, N.R.; et al. Vaccination with mRNA-encoded nanoparticles drives early maturation of HIV bnAb precursors in humans. Science 2025, 389, eadr8382. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, T.; Zhao, W.; Shao, A.; Zhao, H.; Ma, W.; Gong, Y.; Zeng, X.; Weng, C.; Bu, L.; et al. Herpes zoster mRNA vaccine induces superior vaccine immunity over licensed vaccine in mice and rhesus macaques. Emerg. Microbes Infect. 2024, 13, 2309985. [Google Scholar] [CrossRef]
- Essink, B.; Chu, L.; Seger, W.; Barranco, E.; Le Cam, N.; Bennett, H.; Faughnan, V.; Pajon, R.; Paila, Y.D.; Bollman, B.; et al. The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: The results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. Lancet Infect. Dis. 2023, 23, 621–633. [Google Scholar] [CrossRef]
- Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell 2017, 168, 1114–1125.e10. [Google Scholar] [CrossRef]
- Brandi, R.; Paganelli, A.; D’Amelio, R.; Giuliani, P.; Lista, F.; Salemi, S.; Paganelli, R. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines 2024, 12, 1418. [Google Scholar] [CrossRef]
- Weber, J.S.; Carlino, M.S.; Khattak, A.; Meniawy, T.; Ansstas, G.; Taylor, M.H.; Kim, K.B.; McKean, M.; Long, G.V.; Sullivan, R.J.; et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): A randomised, phase 2b study. Lancet 2024, 403, 632–644. [Google Scholar] [CrossRef]
- American Association for Cancer Research. Personalized mRNA Vaccine Immunogenic against PDAC. Cancer Discov. 2023, 13, 1504. [Google Scholar] [CrossRef] [PubMed]
- Gainor, J.F.; Patel, M.R.; Weber, J.S.; Gutierrez, M.; Bauman, J.E.; Clarke, J.M.; Julian, R.; Scott, A.J.; Geiger, J.L.; Kirtane, K.; et al. T-cell Responses to Individualized Neoantigen Therapy mRNA-4157 (V940) Alone or in Combination with Pembrolizumab in the Phase 1 KEYNOTE-603 Study. Cancer Discov. 2024, 14, 2209–2223. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef]
- Trivedi, V.; Yang, C.; Klippel, K.; Yegorov, O.; von Roemeling, C.; Hoang-Minh, L.; Fenton, G.; Ogando-Rivas, E.; Castillo, P.; Moore, G.; et al. mRNA-based precision targeting of neoantigens and tumor-associated antigens in malignant brain tumors. Genome Med. 2024, 16, 17. [Google Scholar] [CrossRef]
- Sahin, U.; Kariko, K.; Tureci, O. mRNA-based therapeutics--developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, X.; Ge, T.; Hua, C.; Zhu, X.; Wang, Q.; Yu, Z.; Zhang, R. A Novel Tool for the Risk Assessment and Personalized Chemo-/Immunotherapy Response Prediction of Adenocarcinoma and Squamous Cell Carcinoma Lung Cancer. Int. J. Gen. Med. 2021, 14, 5771–5785. [Google Scholar] [CrossRef]
- Szabo, G.T.; Mahiny, A.J.; Vlatkovic, I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther. 2022, 30, 1850–1868. [Google Scholar] [CrossRef]
- Zhao, E.M.; Mao, A.S.; de Puig, H.; Zhang, K.; Tippens, N.D.; Tan, X.; Ran, F.A.; Han, I.; Nguyen, P.Q.; Chory, E.J.; et al. RNA-responsive elements for eukaryotic translational control. Nat. Biotechnol. 2022, 40, 539–545. [Google Scholar] [CrossRef]
- Urquidi, C.; Sepulveda-Penaloza, A.; Valenzuela, M.T.; Ponce, A.; Menares, V.; Cortes, C.P.; Benitez, R.; Santelices, E.; Anfossi, R.; Moller, A.; et al. Vaccine effectiveness in reducing COVID-19-related hospitalization after a risk-age-based mass vaccination program in a Chilean municipality: A comparison of observational study designs. Vaccine 2024, 42, 3851–3856. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.S.; de Assis Burle-Caldas, G.; Sergio, S.A.R.; Braz, A.F.; da Silva Leite, N.P.; Pereira, M.; de Oliveira Silva, J.; Hojo-Souza, N.S.; de Oliveira, B.; Fernandes, A.; et al. The immunogenic potential of an optimized mRNA lipid nanoparticle formulation carrying sequences from virus and protozoan antigens. J. Nanobiotechnol. 2025, 23, 221. [Google Scholar] [CrossRef]
- Liu, C.; Tsang, T.K.; Sullivan, S.G.; Cowling, B.J.; Yang, B. Comparative duration of neutralizing responses and protections of COVID-19 vaccination and correlates of protection. Nat. Commun. 2025, 16, 4748. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wen, Y.; Yu, W.; Lu, L.; Yang, Y.; Liu, C.; Hu, Z.; Fang, Z.; Huang, S. Optimized circular RNA vaccines for superior cancer immunotherapy. Theranostics 2025, 15, 1420–1438. [Google Scholar] [CrossRef]
- Bu, T.; Yang, Z.; Zhao, J.; Gao, Y.; Li, F.; Yang, R. Expanding the Potential of Circular RNA (CircRNA) Vaccines: A Promising Therapeutic Approach. Int. J. Mol. Sci. 2025, 26, 379. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Hu, W.; Zhou, C.; Guo, J.; Yang, L.; Wang, B. Recent advances and perspectives on the development of circular RNA cancer vaccines. NPJ Vaccines 2025, 10, 41. [Google Scholar] [CrossRef]
- Fuselier, K.T.B.; Salbaum, J.M.; Kappen, C. Broad spectrum of CRISPR-induced edits in an embryonic lethal gene. Sci. Rep. 2021, 11, 23732. [Google Scholar] [CrossRef] [PubMed]
- Magoola, M.; Niazi, S.K. Current Progress and Future Perspectives of RNA-Based Cancer Vaccines: A 2025 Update. Cancers 2025, 17, 1882. [Google Scholar] [CrossRef]
- Pop, C.F.; Stanciu-Pop, C.M.; Jungels, C.; Chintinne, M.; Artigas Guix, C.; Grosu, F.; Juravle, C.; Veys, I. Uterine embryonal rhabdomyosarcoma in adult women: A case report on the challenging diagnosis and treatment. Rom. J. Morphol. Embryol. 2023, 64, 83–88. [Google Scholar] [CrossRef]
- Fabris, M.; De Marchi, G.; Domenis, R.; Caponnetto, F.; Guella, S.; Dal Secco, C.; Cabas, N.; De Vita, S.; Beltrami, A.P.; Curcio, F.; et al. High T-cell response rate after COVID-19 vaccination in belimumab and rituximab recipients. J. Autoimmun. 2022, 129, 102827. [Google Scholar] [CrossRef]
- Kajtazi, N.I.; Khalid, E.; AlGhamdi, J.; Altaf, S.; AlHameed, M.H. Chronic inflammatory demyelinating polyneuropathy evolving to primary CNS lymphoma. BMJ Case Rep. 2021, 14, e244767. [Google Scholar] [CrossRef]
- Whitley, J.; Zwolinski, C.; Denis, C.; Maughan, M.; Hayles, L.; Clarke, D.; Snare, M.; Liao, H.; Chiou, S.; Marmura, T.; et al. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl. Res. 2022, 242, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.H.; Androsavich, J.R.; So, N.; Jenkins, M.P.; MacCormack, D.; Prigodich, A.; Welch, V.; True, J.M.; Dolsten, M. Breaking the mold with RNA-a “RNAissance” of life science. NPJ Genom. Med. 2024, 9, 2. [Google Scholar] [CrossRef] [PubMed]
Innovation | Effect on Dosing Frequency & Tailoring | Example | Reference |
---|---|---|---|
RNA chemical modifications | Extends RNA half-life and activity | N1-methylpseudouridine in mRNA | [5] |
Targeted delivery (LNPs, GalNAc, AOCs) | Tissue-selective delivery and reduced frequency | Vutrisiran (GalNAc-siRNA) | [8] |
Self-amplifying/Circular RNA | Longer-lasting protein expression | Preclinical saRNA and circRNA therapies | [9] |
Personalized RNA design | Patient/disease-specific schedules and targeting | Nusinersen for spinal muscular atrophy | [10] |
Antisense oligonucleotides (ASOs) with improved chemistry | Reduced immune responses, enhanced stability, and tailored dosing | Mipomersen for familial hypercholesterolemia | [10] |
Ligand conjugation for targeted delivery | Specific organ targeting and lower and less frequent dosing | Lumasiran for acute hepatic porphyria | [11] |
Biodegradable polymer carriers | Sustained release and reduction in dosing frequency | siRNA formulations for hypercholesterolemia | [12] |
Nanoparticle encapsulation | Enhanced stability and bioavailability | Patisiran (Onpattro) for hATTR amyloidosis | [8] |
MicroRNA mimics and inhibitors | Gene expression modulation with potential for personalized dosing | AMT-130 in Huntington’s disease (ongoing trial) | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weidensee, B.; Sahu, I. Decrypting the Immune Symphony for RNA Vaccines. Vaccines 2025, 13, 882. https://doi.org/10.3390/vaccines13080882
Weidensee B, Sahu I. Decrypting the Immune Symphony for RNA Vaccines. Vaccines. 2025; 13(8):882. https://doi.org/10.3390/vaccines13080882
Chicago/Turabian StyleWeidensee, Brian, and Itishri Sahu. 2025. "Decrypting the Immune Symphony for RNA Vaccines" Vaccines 13, no. 8: 882. https://doi.org/10.3390/vaccines13080882
APA StyleWeidensee, B., & Sahu, I. (2025). Decrypting the Immune Symphony for RNA Vaccines. Vaccines, 13(8), 882. https://doi.org/10.3390/vaccines13080882