Disrupted Vaginal Microbiota and Increased HPV Infection Risk Among Non-Vaccinated Women: Findings from a Prospective Cohort Study in Kazakhstan
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design and Setting
2.2. Study Subjects
2.3. Sample Collection and Study Settings
2.4. Study Variables
2.5. Statistical Analysis
2.6. Ethical Consideration
3. Results
3.1. Study Subjects Description
3.2. STI Prevalence and Associations
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Occhipinti, S.; Incognito, G.G.; Palumbo, M. The influence of the vaginal ecosystem on vaginitis, bacterial vaginosis, and sexually transmitted diseases: An epidemiological study and literature review. Arch. Gynecol. Obstet. 2025, 311, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Alizhan, D.; Ukybassova, T.; Bapayeva, G.; Aimagambetova, G.; Kongrtay, K.; Kamzayeva, N.; Terzic, M. Cervicovaginal Microbiome: Physiology, Age-Related Changes, and Protective Role Against Human Papillomavirus Infection. J. Clin. Med. 2025, 14, 1521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vitali, D.; Wessels, J.M.; Kaushic, C. Role of sex hormones and the vaginal microbiome in susceptibility and mucosal immunity to HIV-1 in the female genital tract. AIDS Res. Ther. 2017, 14, 39. [Google Scholar] [CrossRef] [PubMed]
- Incognito, G.G.; Ronsini, C.; Palmara, V.; Romeo, P.; Vizzielli, G.; Restaino, S.; La Verde, M.; De Tommasi, O.; Palumbo, M.; Cianci, S. The Interplay Between Cervicovaginal Microbiota Diversity, Lactobacillus Profiles and Human Papillomavirus in Cervical Cancer: A Systematic Review. Healthcare 2025, 13, 599. [Google Scholar] [CrossRef]
- Donders, G.G.G.; Bellen, G.; Grinceviciene, S.; Ruban, K.; Vieira-Baptista, P. Aerobic vaginitis: No longer a stranger. Res. Microbiol. 2017, 168, 845–858. [Google Scholar] [CrossRef]
- Usyk, M.; Zolnik, C.P.; Castle, P.E.; Porras, C.; Herrero, R.; Gradissimo, A.; Gonzalez, P.; Safaeian, M.; Schiffman, M.; Burk, R.D.; et al. Cervicovaginal microbiome and natural history of HPV in a longitudinal study. PLoS Pathog. 2020, 16, e1008376. [Google Scholar] [CrossRef]
- Paula Almeida Cunha, A.; Kassandra Pereira Belfort, I.; Pedro Belfort Mendes, F.; Rodrigues Bastos Dos Santos, G.; Henrique de Lima Costa, L.; de Matos Monteiro, P.; Lemos Gaspar, R.; Borges Ferreira, M.; de Sá Ferreira, A.; Cristina Moutinho Monteiro, S.; et al. Human papillomavirus and Its Association with Other Sexually Transmitted Coinfection among Sexually Active Women from the Northeast of Brazil. Interdiscip. Perspect. Infect. Dis. 2020, 2020, 8838317. [Google Scholar] [CrossRef]
- Valasoulis, G.; Pouliakis, A.; Michail, G.; Magaliou, I.; Parthenis, C.; Margari, N.; Kottaridi, C.; Spathis, A.; Leventakou, D.; Ieronimaki, A.I.; et al. Cervical HPV Infections, Sexually Transmitted Bacterial Pathogens and Cytology Findings–A Molecular Epidemiology Study. Pathogens 2023, 12, 1347. [Google Scholar] [CrossRef]
- Gargiulo Isacco, C.; Balzanelli, M.G.; Garzone, S.; Lorusso, M.; Inchingolo, F.; Nguyen, K.C.D.; Santacroce, L.; Mosca, A.; Del Prete, R. Alterations of Vaginal Microbiota and Chlamydia trachomatis as Crucial Co-Causative Factors in Cervical Cancer Genesis Procured by HPV. Microorganisms 2023, 11, 662. [Google Scholar] [CrossRef]
- Tamarelle, J.; Thiébaut, A.C.M.; de Barbeyrac, B.; Bébéar, C.; Ravel, J.; Delarocque-Astagneau, E. The vaginal microbiota and its association with human papillomavirus, Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium infections: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2019, 25, 35–47. [Google Scholar] [CrossRef]
- Onderdonk, A.B.; Delaney, M.L.; Fichorova, R.N. The Human Microbiome during Bacterial Vaginosis. Clin. Microbiol. Rev. 2016, 29, 223–238. [Google Scholar] [CrossRef]
- Anahtar, M.N.; Gootenberg, D.B.; Mitchell, C.M.; Kwon, D.S. Cervicovaginal Microbiota and Reproductive Health: The Virtue of Simplicity. Cell Host Microbe 2018, 23, 159–168. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Q.; Wang, L.; Ji, L. Chlamydia trachomatis enhances HPV persistence through immune modulation. BMC Infect. Dis. 2024, 24, 229. [Google Scholar] [CrossRef] [PubMed]
- Latorre-Millán, M.; Tristancho-Baró, A.; Burillo, N.; Ariza, M.; Milagro, A.M.; Abad, P.; Baquedano, L.; Borque, A.; Rezusta, A. HPV-Associated Sexually Transmitted Infections in Cervical Cancer Screening: A Prospective Cohort Study. Viruses 2025, 17, 247. [Google Scholar] [CrossRef]
- Coorevits, L.; Traen, A.; Bingé, L.; Van Dorpe, J.; Praet, M.; Boelens, J.; Padalko, E. Identifying a consensus sample type to test for Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis and human papillomavirus. Clin. Microbiol. Infect. 2018, 24, 1328–1332. [Google Scholar] [CrossRef] [PubMed]
- Aimagambetova, G.; Azizan, A. Epidemiology of HPV Infection and HPV-Related Cancers in Kazakhstan: A Review. Asian Pac. J. Cancer Prev. 2018, 19, 1175–1180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aimagambetova, G.; Chan, C.K.; Ukybassova, T.; Imankulova, B.; Balykov, A.; Kongrtay, K.; Azizan, A. Cervical cancer screening and prevention in Kazakhstan and Central Asia. J. Med. Screen 2021, 28, 48–50. [Google Scholar] [CrossRef] [PubMed]
- Imankulova, B.; Babi, A.; Issa, T.; Zhumakanova, Z.; Knaub, L.; Yerzhankyzy, A.; Aimagambetova, G. Prevalence of Precancerous Cervical Lesions among Nonvaccinated Kazakhstani Women: The National Tertiary Care Hospital Screening Data (2018). Healthcare 2023, 11, 235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization (WHO). Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem. 2021. Available online: https://www.who.int/publications/i/item/9789240014107 (accessed on 2 April 2025).
- Wang, L.; Zhu, L.; Li, H.; Ma, N.; Huang, H.; Zhang, X.; Li, Y.; Fang, J. Association between asymptomatic sexually transmitted infections and high-risk human papillomavirus in cervical lesions. J. Int. Med. Res. 2019, 47, 5548–5559. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef]
- Aimagambetova, G.; Babi, A.; Issanov, A.; Akhanova, S.; Udalova, N.; Koktova, S.; Balykov, A.; Sattarkyzy, Z.; Abakasheva, Z.; Azizan, A.; et al. The Distribution and Prevalence of High-Risk HPV Genotypes Other than HPV-16 and HPV-18 among Women Attending Gynecologists’ Offices in Kazakhstan. Biology 2021, 10, 794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Babi, A.; Issa, T.; Issanov, A.; Akilzhanova, A.; Nurgaliyeva, K.; Abugalieva, Z.; Ukybassova, T.; Daribay, Z.; Khan, S.A.; Chan, C.K.; et al. Prevalence of high-risk human papillomavirus infection among Kazakhstani women attending gynecological outpatient clinics. Int. J. Infect. Dis. 2021, 109, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Gillet, E.; Meys, J.F.; Verstraelen, H.; Bosire, C.; De Sutter, P.; Temmerman, M. Association between bacterial vaginosis and cervical intraepithelial neoplasia: Systematic review and meta-analysis. PLoS ONE 2011, 6, e45201. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Song, T.; Zeng, X.; Li, L.; Hou, M.; Xi, M. Association between genital mycoplasmas infection and human papillomavirus infection, abnormal cervical cytopathology, and cervical cancer: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2018, 297, 1377–1387. [Google Scholar] [CrossRef]
- Torrone, E.A.; Morrison, C.S.; Chen, P.L.; Kwok, C.; Francis, S.C.; Hayes, R.J.; Looker, K.J.; McCormack, S.; McGrath, N.; van de Wijgert, J.H.; et al. Prevalence of sexually transmitted infections and bacterial vaginosis among women in sub-Saharan Africa: An individual participant data meta-analysis of 18 HIV prevention studies. PLoS Med. 2018, 15, e1002511. [Google Scholar] [CrossRef]
- Xie, L.; Li, Q.; Dong, X.; Kong, Q.; Duan, Y.; Chen, X.; Li, X.; Hong, M.; Liu, T. Investigation of the association between ten pathogens causing sexually transmitted diseases and high-risk human papilloma virus infection in Shanghai. Mol. Clin. Oncol. 2021, 15, 132. [Google Scholar] [CrossRef]
- A, D.; Bi, H.; Zhang, D.; Xiao, B. Association between human papillomavirus infection and common sexually transmitted infections, and the clinical significance of different Mycoplasma subtypes. Front. Cell. Infect. Microbiol. 2023, 13, 1145215. [Google Scholar] [CrossRef]
- Kazakh Scientific Center of Dermatology and Infectious Diseases. STI Control: Recommendations of Kazakhstani Experts. 2024. Available online: https://kncdiz.kz/en/news/item/8011/ (accessed on 9 June 2025).
- Chelimo, C.; Wouldes, T.A.; Cameron, L.D.; Elwood, J.M. Risk factors for and prevention of human papillomaviruses (HPV), genital warts and cervical cancer. J. Infect. 2013, 66, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Chih, H.J.; Lee, A.H.; Colville, L.; Xu, D.; Binns, C.W. Condom and oral contraceptive use and risk of cervical intraepithelial neoplasia in Australian women. J. Gynecol. Oncol. 2014, 25, 183–187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Statistics | HPV Negative | HPV Positive | STI Negative | STI Positive | |
---|---|---|---|---|---|
Age | Mean ± SD | 35.25 ± 6.18 | 33.17 ± 6.60 | 35.50 ± 6.19 | 34.24 ± 6.44 |
Median [Q1–Q3] | 34.96 [31.60–40.00] | 33.86 [27.92–37.48] | 35.66 [31.40–39.99] | 34.26 [30.20–38.64] | |
Min–Max | 19.93–45.88 | 19.90–46.03 | 19.98–45.87 | 19.90–46.03 | |
Shapiro–Wilk (p) | 0.0003 | 0.0197 | 0.0789 | 0.0001 | |
Levene’s p | 0.3625 | 0.7327 | |||
Statistic (p) | t = 3.13 | p = 0.0019 | t = 1.63 | p = 0.1038 | |
Ethnicity | Kazakh | 236 (91.8%) | 125 (89.9%) | 82 (93.2%) | 279 (90.6%) |
Russian | 12 (4.7%) | 8 (5.8%) | 2 (2.3%) | 18 (5.8%) | |
Uzbek | 0 (0.0%) | 1 (0.7%) | 0 (0.0%) | 1 (0.3%) | |
Ukranian | 2 (0.8%) | 0 (0.0%) | 1 (1.1%) | 1 (0.3%) | |
Uighur | 1 (0.4%) | 0 (0.0%) | 0 (0.0%) | 1 (0.3%) | |
Korean | 1 (0.4%) | 0 (0.0%) | 1 (1.1%) | 0 (0.0%) | |
Armenian | 2 (0.8%) | 0 (0.0%) | 0 (0.0%) | 2 (0.6%) | |
Bashkir | 1 (0.4%) | 0 (0.0%) | 0 (0.0%) | 1 (0.3%) | |
Tatar | 1 (0.4%) | 2 (1.4%) | 0 (0.0%) | 3 (1.0%) | |
German | 1 (0.4%) | 1 (0.7%) | 0 (0.0%) | 2 (0.6%) | |
Georgian | 0 (0.0%) | 1 (0.7%) | 1 (1.1%) | 0 (0.0%) | |
Macedonian | 0 (0.0%) | 1 (0.7%) | 1 (1.1%) | 0 (0.0%) | |
Statistic (p) | Chi-square: 11.09 | p = 0.4354 | Chi-square: 16.03 | p = 0.1400 | |
Education | Incomplete secondary | 2 (0.8%) | 1 (0.7%) | 1 (1.1%) | 2 (0.6%) |
Secondary professional | 42 (16.3%) | 17 (12.2%) | 13 (14.8%) | 46 (14.9%) | |
Bachelor | 178 (69.3%) | 98 (70.5%) | 61 (69.3%) | 215 (69.8%) | |
Masters | 32 (12.5%) | 21 (15.1%) | 11 (12.5%) | 42 (13.6%) | |
PhD | 3 (1.2%) | 2 (1.4%) | 2 (2.3%) | 3 (1.0%) | |
Statistic (p) | Chi-square: 1.58 | p = 0.8130 | Chi-square: 1.2 | p = 0.8784 | |
Marital status | Single | 48 (18.7%) | 43 (30.9%) | 20 (22.7%) | 71 (23.1%) |
Married | 184 (71.6%) | 77 (55.4%) | 60 (68.2%) | 201 (65.3%) | |
Divorced | 22 (8.6%) | 18 (12.9%) | 8 (9.1%) | 32 (10.4%) | |
Widow | 3 (1.2%) | 1 (0.7%) | 0 (0.0%) | 4 (1.3%) | |
Statistic (p) | Chi-square: 11.39 | p = 0.0098 | Chi-square: 1.35 | p = 0.7175 | |
BMI | Mean ± SD | 23.85 ± 4.62 | 23.36 ± 4.56 | 23.93 ± 4.29 | 23.61 ± 4.69 |
Median [Q1–Q3] | 23.14 [20.57–26.35] | 22.31 [20.26–25.56] | 23.20 [20.89–26.45] | 22.86 [20.39–25.84] | |
Min–Max | 15.78–43.26 | 14.88–42.80 | 16.65–43.26 | 14.88–42.80 | |
Shapiro–Wilk (p) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Levene’s p | 0.8936 | 0.3703 | |||
Statistic (p) | t = 1.03 | p = 0.3037 | t = 0.58 | p = 0.5639 | |
Menarche | Mean ± SD | 13.41 ± 1.37 | 13.25 ± 1.22 | 13.15 ± 1.37 | 13.41 ± 1.30 |
Median [Q1–Q3] | 13.00 [13.00–14.00] | 13.00 [13.00–14.00] | 13.00 [12.00–14.00] | 13.00 [13.00–14.00] | |
Min–Max | 10.00–18.00 | 10.00–17.00 | 10.00–17.00 | 10.00–18.00 | |
Shapiro–Wilk (p) | 0.0000 | 0.0000 | 0.0004 | 0.0000 | |
Levene’s p | 0.0454 | 0.5541 | |||
Statistic (p) | U = 18,825.00 | p = 0.3537 | t = −1.66 | p = 0.0973 | |
Duration of menstrual cycle | Mean ± SD | 30.37 ± 9.88 | 29.01 ± 3.73 | 30.01 ± 8.41 | 29.86 ± 8.26 |
Median [Q1–Q3] | 28.00 [28.00–30.00] | 28.00 [28.00–30.00] | 28.00 [28.00–30.00] | 28.00 [28.00–30.00] | |
Min–Max | 21.00–100.00 | 20.00–60.00 | 23.00–90.00 | 20.00–100.00 | |
Shapiro–Wilk (p) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Levene’s p | 0.0716 | 0.9024 | |||
Statistic (p) | t = 1.57 | p = 0.1182 | t = 0.15 | p = 0.8778 | |
Regularity of menstrual cycle | Regular | 239 (93.0%) | 132 (95.0%) | 82 (93.2%) | 289 (93.8%) |
Irregular | 18 (7.0%) | 7 (5.0%) | 6 (6.8%) | 19 (6.2%) | |
Statistic (p) | Chi-square: 0.3 | p = 0.5809 | Chi-square: 0.0 | p = 1.0000 | |
Pain during menstruation | Painless | 255 (99.2%) | 138 (99.3%) | 87 (98.9%) | 306 (99.4%) |
Painful | 2 (0.8%) | 1 (0.7%) | 1 (1.1%) | 2 (0.6%) | |
Statistic (p) | Fisher: 0.92 | p = 1.0000 | Fisher: 0.57 | p = 0.5305 | |
Volume of menses | Light | 7 (2.7%) | 3 (2.2%) | 2 (2.3%) | 8 (2.6%) |
Medium | 250 (97.3%) | 136 (97.8%) | 86 (97.7%) | 300 (97.4%) | |
Statistic (p) | Fisher: 1.27 | p = 1.0000 | Fisher: 0.87 | p = 1.0000 | |
Number of sexual partners | Mean ± SD | 1.57 ± 1.79 | 2.18 ± 5.42 | 1.61 ± 1.57 | 1.83 ± 3.91 |
Median [Q1–Q3] | 1.00 [1.00–1.00] | 1.00 [1.00–2.00] | 1.00 [1.00–1.00] | 1.00 [1.00–1.00] | |
Min–Max | 0.00–20.00 | 0.00–60.00 | 0.00–9.00 | 0.00–60.00 | |
Shapiro–Wilk (p) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Levene’s p | 0.0919 | 0.6804 | |||
Statistic (p) | t = −1.65 | p = 0.0991 | t = −0.51 | p = 0.6100 | |
Number of pregnancies | Mean ± SD | 2.38 ± 1.91 | 1.51 ± 1.60 | 2.19 ± 1.89 | 2.04 ± 1.84 |
Median [Q1–Q3] | 2.00 [1.00–4.00] | 1.00 [0.00–2.00] | 2.00 [1.00–3.00] | 2.00 [0.00–3.00] | |
Min–Max | 0.00–8.00 | 0.00–9.00 | 0.00–8.00 | 0.00–9.00 | |
Shapiro–Wilk (p) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Levene’s p | 0.0128 | 0.6853 | |||
Statistic (p) | U = 22,720.00 | p = 0.0000 | t = 0.69 | p = 0.4909 | |
Number of deliveries | Mean ± SD | 1.74 ± 1.39 | 1.20 ± 1.26 | 1.62 ± 1.34 | 1.53 ± 1.38 |
Median [Q1–Q3] | 2.00 [0.00–3.00] | 1.00 [0.00–2.00] | 2.00 [0.75–2.00] | 1.00 [0.00–2.00] | |
Min–Max | 0.00–5.00 | 0.00–5.00 | 0.00–5.00 | 0.00–5.00 | |
Shapiro–Wilk (p) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Levene’s p | 0.0737 | 0.4127 | |||
Statistic (p) | t = 3.81 | p = 0.0002 | t = 0.56 | p = 0.5776 | |
Number of abortions | Mean ± SD | 0.36 ± 0.74 | 0.13 ± 0.43 | 0.33 ± 0.74 | 0.26 ± 0.63 |
Median [Q1–Q3] | 0.00 [0.00–0.00] | 0.00 [0.00–0.00] | 0.00 [0.00–0.00] | 0.00 [0.00–0.00] | |
Min–Max | 0.00–4.00 | 0.00–3.00 | 0.00–4.00 | 0.00–3.00 | |
Shapiro–Wilk (p) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Levene’s p | 0.0009 | 0.4012 | |||
Statistic (p) | U = 20,258.00 | p = 0.0011 | t = 0.84 | p = 0.4012 | |
Number of miscarriages | Mean ± SD | 0.25 ± 0.59 | 0.16 ± 0.49 | 0.18 ± 0.54 | 0.22 ± 0.56 |
Median [Q1–Q3] | 0.00 [0.00–0.00] | 0.00 [0.00–0.00] | 0.00 [0.00–0.00] | 0.00 [0.00–0.00] | |
Min–Max | 0.00–3.00 | 0.00–3.00 | 0.00–3.00 | 0.00–3.00 | |
Shapiro–Wilk (p) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Levene’s p | 0.1391 | 0.5317 | |||
Statistic (p) | t = 1.48 | p = 0.1391 | t = −0.63 | p = 0.5317 | |
Mode of delivery (History of C-section) | Only spontaneous vaginal | 230 (89.5%) | 126 (90.6%) | 77 (87.5%) | 279 (90.6%) |
At least one C-section | 27 (10.5%) | 13 (9.4%) | 11 (12.5%) | 29 (9.4%) | |
Statistic (p) | Chi-square: 0.04 | p = 0.8502 | Chi-square: 0.42 | p = 0.5181 | |
Abortions | no | 198 (77.0%) | 125 (89.9%) | 70 (79.5%) | 253 (82.1%) |
yes | 59 (23.0%) | 14 (10.1%) | 18 (20.5%) | 55 (17.9%) | |
Statistic (p) | Chi-square: 9.12 | p = 0.0025 | Chi-square: 0.16 | p = 0.6904 | |
Ectopic pregnancy | no | 248 (96.5%) | 137 (98.6%) | 84 (95.5%) | 301 (97.7%) |
yes | 9 (3.5%) | 2 (1.4%) | 4 (4.5%) | 7 (2.3%) | |
Statistic (p) | Fisher: 0.4 | p = 0.3416 | Fisher: 0.49 | p = 0.2716 | |
Barrier contraception | no | 182 (70.8%) | 82 (59.0%) | 58 (65.9%) | 206 (66.9%) |
yes | 75 (29.2%) | 57 (41.0%) | 30 (34.1%) | 102 (33.1%) | |
Statistic (p) | Chi-square: 5.16 | p = 0.0232 | Chi-square: 0.0 | p = 0.9659 | |
Hormonal contraception | no | 249 (96.9%) | 136 (97.8%) | 84 (95.5%) | 301 (97.7%) |
yes | 8 (3.1%) | 3 (2.2%) | 4 (4.5%) | 7 (2.3%) | |
Statistic (p) | Fisher: 0.69 | p = 0.7536 | Fisher: 0.49 | p = 0.2716 | |
Any contraception | no | 174 (67.7%) | 79 (56.8%) | 54 (61.4%) | 199 (64.6%) |
yes | 83 (32.3%) | 60 (43.2%) | 34 (38.6%) | 109 (35.4%) | |
Statistic (p) | Chi-square: 4.16 | p = 0.0414 | Chi-square: 0.19 | p = 0.6647 | |
Any gynecological diseases | no | 177 (68.9%) | 93 (66.9%) | 56 (63.6%) | 214 (69.5%) |
yes | 80 (31.1%) | 46 (33.1%) | 32 (36.4%) | 94 (30.5%) | |
Statistic (p) | Chi-square: 0.08 | p = 0.7736 | Chi-square: 0.82 | p = 0.3637 | |
Cervical erosion | no | 136 (52.9%) | 82 (59.0%) | 53 (60.2%) | 165 (53.6%) |
yes | 121 (47.1%) | 57 (41.0%) | 35 (39.8%) | 143 (46.4%) | |
Statistic (p) | Chi-square: 1.11 | p = 0.2919 | Chi-square: 0.97 | p = 0.3244 | |
STI status | STI negative | 53 (20.6%) | 35 (25.2%) | – | – |
STI positive | 204 (79.4%) | 104 (74.8%) | |||
Statistic (p) | Chi-square: 0.84 | p = 0.3604 | |||
STI multiplicity | Mean ± SD | 1.27 ± 0.94 | 1.44 ± 1.19 | – | – |
Median [Q1–Q3] | 1.00 [1.00–2.00] | 1.00 [0.50–2.00] | |||
Min–Max | 0.00–4.00 | 0.00–5.00 | |||
Shapiro–Wilk (p) | 0.0000 | 0.0000 | |||
Levene’s p | 0.0011 | ||||
Statistic (p) | U = 16,784.50 | p = 0.2995 | |||
HPV status | HPV negative | – | – | 53 (60.2%) | 204 (66.2%) |
HPV positive | 35 (39.8%) | 104 (33.8%) | |||
Statistic (p) | Chi-square: 0.84 | p = 0.3604 | |||
HPV multiplicity | Mean ± SD | – | – | 0.60 ± 0.88 | 0.54 ± 0.93 |
Median [Q1–Q3] | 0.00 [0.00–1.00] | 0.00 [0.00–1.00] | |||
Min–Max | 0.00–4.00 | 0.00–6.00 | |||
Shapiro–Wilk (p) | 0.0000 | 0.0000 | |||
Levene’s p | 0.5684 | ||||
Statistic (p) | t = 0.57 | p = 0.5684 |
STI Column | Cases in HPV− (n = 257) | Cases in HPV+ (n = 139) | Crude OR | Crude OR 2.5% | Crude OR 97.5% | Crude OR p-Value | Adjusted OR | Adjusted OR 2.5% | Adjusted OR 97.5% | Adjusted OR p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Candida albicans | 23 (8.94%) | 16 (11.51%) | 1.323 | 0.674 | 2.598 | 0.415 | 1.179 | 0.577 | 2.409 | 0.651 |
Chlamydia trachomatis | 1 (0.39%) | 4 (2.88%) | 7.585 | 0.839 | 68.539 | 0.071 | 8.495 | 0.723 | 99.795 | 0.089 |
Gardnerella vaginalis | 180 (70.04%) | 90 (64.75%) | 0.786 | 0.507 | 1.218 | 0.281 | 0.647 | 0.402 | 1.039 | 0.072 |
Mycoplasma hominis | 25 (9.73%) | 25 (17.99%) | 2.035 | 1.119 | 3.701 | 0.020 | 2.132 | 1.120 | 4.057 | 0.021 |
Trichomonas vaginalis | 2 (0.78%) | 3 (2.16%) | 2.813 | 0.464 | 17.036 | 0.261 | 1.944 | 0.226 | 16.697 | 0.545 |
Ureaplasma urealyticum | 36 (14.01%) | 21 (15.11%) | 1.093 | 0.610 | 1.957 | 0.766 | 1.023 | 0.549 | 1.905 | 0.943 |
Herpes simplex virus 1/2 | 1 (0.39%) | 2 (1.44%) | 3.737 | 0.336 | 41.585 | 0.284 | 1.271 | 0.087 | 18.536 | 0.861 |
Cytomegalovirus | 52 (20.23%) | 36 (25.90%) | 1.378 | 0.847 | 2.241 | 0.196 | 1.509 | 0.902 | 2.523 | 0.117 |
Mycoplasma genitalium | 6 (2.33%) | 3 (2.16%) | 0.923 | 0.227 | 3.748 | 0.911 | 0.622 | 0.140 | 2.757 | 0.532 |
STI status | 204 (79.4%) | 104 (74.8%) | 0.772 | 0.474 | 1.257 | 0.299 | – | – | – | – |
STI multiplicity | 1.27 ± 0.94 | 1.44 ± 1.19 | 1.170 | 0.960 | 1.427 | 0.120 | – | – | – | – |
Barrier contraception | 75 (29.18%) | 57 (41.01%) | 1.687 | 1.095 | 2.598 | 0.018 | 1.528 | 0.958 | 2.436 | 0.075 |
Age | 35.25 ± 6.18 | 33.17 ± 6.60 | 0.950 | 0.919 | 0.982 | 0.002 | 0.955 | 0.921 | 0.990 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongrtay, K.; Kassymbek, K.; Aimagambetova, G.; Kamzayeva, N.; Makhambetova, S.; Galym, M.; Abdiyeva, Z.; Terzic, M.; Nurgaliyeva, K.; Ukybassova, T. Disrupted Vaginal Microbiota and Increased HPV Infection Risk Among Non-Vaccinated Women: Findings from a Prospective Cohort Study in Kazakhstan. Vaccines 2025, 13, 679. https://doi.org/10.3390/vaccines13070679
Kongrtay K, Kassymbek K, Aimagambetova G, Kamzayeva N, Makhambetova S, Galym M, Abdiyeva Z, Terzic M, Nurgaliyeva K, Ukybassova T. Disrupted Vaginal Microbiota and Increased HPV Infection Risk Among Non-Vaccinated Women: Findings from a Prospective Cohort Study in Kazakhstan. Vaccines. 2025; 13(7):679. https://doi.org/10.3390/vaccines13070679
Chicago/Turabian StyleKongrtay, Kuralay, Kuat Kassymbek, Gulzhanat Aimagambetova, Nazira Kamzayeva, Sanimkul Makhambetova, Makhabbat Galym, Zhanar Abdiyeva, Milan Terzic, Kadisha Nurgaliyeva, and Talshyn Ukybassova. 2025. "Disrupted Vaginal Microbiota and Increased HPV Infection Risk Among Non-Vaccinated Women: Findings from a Prospective Cohort Study in Kazakhstan" Vaccines 13, no. 7: 679. https://doi.org/10.3390/vaccines13070679
APA StyleKongrtay, K., Kassymbek, K., Aimagambetova, G., Kamzayeva, N., Makhambetova, S., Galym, M., Abdiyeva, Z., Terzic, M., Nurgaliyeva, K., & Ukybassova, T. (2025). Disrupted Vaginal Microbiota and Increased HPV Infection Risk Among Non-Vaccinated Women: Findings from a Prospective Cohort Study in Kazakhstan. Vaccines, 13(7), 679. https://doi.org/10.3390/vaccines13070679