Human Alpha Herpesviruses Infections (HSV1, HSV2, and VZV), Alzheimer’s Disease, and the Potential Benefits of Targeted Treatment or Vaccination—A Virological Perspective
Abstract
:1. Introduction
2. The Human Alphaherpesviruses
3. The Herpes Simplex Viruses
3.1. Virology
3.2. Epidemiology
3.3. Epidemiological Associations with Alzheimer’s Disease (AD)
3.4. Prevention and Treatment
4. Varicella Zoster Virus
4.1. Virology
4.2. Epidemiology
4.3. Epidemiological Associations with Alzheimer’s Disease
4.4. Prevention and Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheltens, P.; de Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, S.; Ranson, J.M.; Peetom, K.; Lourida, I.; Tai, X.Y.; de Vugt, M.; Llewelyn, D.J.; Köhler, S. Risk factors for young-onset dementia in the UK Biobank. JAMA Neurol. 2024, 81, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Cornutiu, G. The epidemiological scale of Alzheimer’s disease. J. Clin. Med. Res. 2015, 7, 657–666. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [Google Scholar] [CrossRef]
- Gatherer, D.; Depledge, D.P.; Hartley, C.A.; Szpara, M.L.; Vaz, P.K.; Benko, M.; Brandt, C.R.; Bryant, N.A.; Dastjerdi, A.; Doszpoly, A.; et al. ICTV virus taxonomy profile: Herpesviridae 2021. J. Gen. Virol. 2021, 102, 001673. [Google Scholar] [CrossRef]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C.; Junglen, S.; et al. Changes to virus taxonomy and the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch. Virol. 2019, 164, 2417–2429. [Google Scholar] [CrossRef]
- Weidner-Glunde, M.; Kruminis-Kaszkiel, E.; Savanagouder, M. Herpesviral latency—Common themes. Pathogens 2020, 9, 125. [Google Scholar] [CrossRef]
- Salazar, S.; Luong, K.T.Y.; Koyuncu, O.O. Cell intrinsic determinants of alpha herpesvirus latency and pathogenesis in the nervous system. Viruses 2023, 15, 2284. [Google Scholar] [CrossRef]
- Steiner, I.; Kennedy, P.G.E.; Pachner, A.R. The neurotropic herpesviruses: Herpes simplex and varicella-zoster. Lancet Neurol. 2007, 6, 1015–1028. [Google Scholar] [CrossRef]
- Gilden, D.H.; Mahalingam, R.; Cohrs, R.J.; Tyler, K. Herpesvirus infections of the nervous system. Nat. Clin. Pract. Neurol. 2007, 3, 82–94. [Google Scholar] [CrossRef]
- Athanasiou, E.; Gargalionis, A.N.; Anastassopoulo, C.; Tsakris, A.; Boufidou, F. New insights into the molecular interplay between human herpesviruses and Alzheimer’s disease—A narrative review. Brain Sci. 2022, 12, 1010. [Google Scholar] [CrossRef]
- Hogestyn, J.M.; Mock, D.J.; Mayer-Proschel, M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen. Res. 2018, 13, 211–221. [Google Scholar] [PubMed]
- Khalesi, Z.; Tamrchi, V.; Razizadeh, M.H.; Letafati, A.; Moradi, P.; Habibi, A.; Habibi, N.; Heidari, J.; Noori, M.; Samiei, M.N.; et al. Association between human herpesviruses and multiple sclerosis: A systematic review and meta-analysis. Microb. Pathog. 2023, 177, 106031. [Google Scholar] [CrossRef] [PubMed]
- Beswick, T.S. The origin and the use of the word Herpes. Med. Hist. 1962, 6, 214–232. [Google Scholar] [CrossRef] [PubMed]
- Hutfield, D.C. History of herpes genitalis. Brit. J. Vener. Dis. 1966, 42, 263–268. [Google Scholar] [CrossRef]
- Nahmias, A.J.; Dowdle, W.R.; Naib, Z.M.; Josey, W.E.; McLone, D.; Domescik, G. Genital infection with type 2 herpes virus hominis. Brit. J. Vener. Dis. 1969, 45, 294–298. [Google Scholar] [CrossRef]
- Figueroa, M.E.; Rawls, W.E. Biological markers for differentiation of herpesvirus strains of oral and genital origin. J. Gen. Virol. 1969, 4, 259–267. [Google Scholar] [CrossRef]
- Nahmias, A.J.; Roizman, B. Infection with herpes-simplex viruses 1 and 2. 1. N. Engl. J. Med. 1973, 289, 667–674. [Google Scholar] [CrossRef]
- McGeoch, D.J.; Dalrymple, M.A.; Davison, A.J.; Dolan, A.; Frame, M.C.; McNab, D.; Perry, L.J.; Scott, J.E.; Taylor, P. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 1988, 69, 1531–1574. [Google Scholar] [CrossRef]
- Dolan, A.; Jamieson, F.E.; Cunningham, C.; Barnett, B.C.; McGeoch, D.J. The genome sequence of herpes simplex virus type 2. J. Virol. 1998, 72, 2010–2021. [Google Scholar] [CrossRef]
- Dowbenko, D.J.; Lasky, L.A. Extensive homology between the herpes simplex virus type 2 glycoprotein F gene and the herpes simplex virus type 1 glycoprotein C gene. J. Virol. 1984, 52, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Ashley, R.; Cent, A.; Maggs, V.; Nahmias, A.; Corey, L. Inability of enzyme immunoassays to discriminate between infections with herpes simplex virus types 1 and 2. Ann. Intern. Med. 1991, 115, 520–526. [Google Scholar] [CrossRef]
- Marsden, H.S.; Buckmaster, A.; Palfreyman, J.W.; Hope, R.G.; Minson, A.C. Characterization of the 92,000-Dalton glycoprotein induced by herpes simplex virus type 2. J. Virol. 1984, 50, 547–554. [Google Scholar] [CrossRef]
- Roizman, B.; Norrild, B.; Chan, C.; Pereira, L. Identification and preliminary mapping with monoclonal antibodies of a herpes simplex virus 2 glycoprotein lacking a known type 1 counterpart. Virology 1984, 133, 242–247. [Google Scholar] [CrossRef]
- Bergström, T.; Trybala, E. Antigenic differences between HSV-1 and HSV-2 glycoproteins and their importance for type-specific serology. Intervirology 1996, 39, 176–184. [Google Scholar] [CrossRef]
- Ashley, R.L. Sorting out the new HSV type specific antibody tests. Sex. Transm. Infect. 2001, 77, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Ashley Morrow, R.; Friedrich, D. Inaccuracy of certain commercial enzyme immunoassays in diagnosing genital infections with herpes simplex virus types 1 or 2. Am. J. Clin. Pathol. 2003, 120, 839–844. [Google Scholar] [CrossRef]
- Schmid, D.S.; Brown, D.R.; Nisenbaum, R.; Burke, R.L.; Alexander, D.; Ashley, R.; Pellett, P.E.; Reeves, W.C. Limits in reliability of glycoprotein G-based type-specific serologic assays for herpes simplex virus types 1 and 2. J. Clin. Microbiol. 1999, 37, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Bailey, R.C.; Westreich, D.J.; Maclean, I.; Agot, K.; Ndinya-Achola, J.O.; Hogrefe, W.; Morrow, R.A.; Moses, S. Herpes simplex virus type 2 antibody detection performance in Kisumu, Kenya, using the herpeselect ELISA, Kalon ELISA, Western blot and inhibition testing. Sex. Transm. Infect. 2009, 85, 92–96. [Google Scholar] [CrossRef]
- Bai, L.; Xu, J.; Zeng, L.; Zhang, L.; Zhou, F. A review of HSV pathogenesis, vaccine development, and advanced applications. Mol. Biomed. 2024, 5, 35. [Google Scholar] [CrossRef]
- Whitley, R.J.; Roizman, B. Herpes simplex virus infections. Lancet 2001, 357, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Melvin, A.J.; Mohan, K.M.; Vora, S.B.; Selke, S.; Wald, A. Neonatal herpes simplex virus infection: Epidemiology and outcomes in the modern era. J. Pediatric Infect. Dis. Soc. 2022, 11, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Sili, U.; Kaya, A.; Mert, A.; HSV Encephalitis Study Group. Herpes simplex virus encephalitis: Clinical manifestations, diagnosis and outcome in 106 adult patients. J. Clin. Virol. 2014, 60, 112–118. [Google Scholar] [CrossRef]
- Johnston, C.; Wald, A. Genital herpes. JAMA 2024, 332, 835–836. [Google Scholar] [CrossRef] [PubMed]
- Tayyar, R.; Ho, D. Herpes simplex virus and varicella zoster virus infections in cancer patients. Viruses 2023, 15, 439. [Google Scholar] [CrossRef]
- Ashley, R.L.; Wald, A. Genital herpes: Review of the epidemic and potential use of type-specific serology. Clin. Microbiol. Rev. 1999, 12, 1–8. [Google Scholar] [CrossRef]
- Cowan, F.M.; Johnson, A.M.; Ashley, R.; Corey, L.; Mindel, A. Antibody to herpes simplex virus 2 as serological marker of sexual lifestyle in populations. BMJ 1994, 309, 1325–1329. [Google Scholar] [CrossRef]
- Ades, A.E.; Peckham, C.S.; Dale, G.E.; Best, J.M.; Jeansson, S. Prevalence of antibodies to herpes simplex virus types 1 and 2 in pregnant women and estimated rates of infection. J. Epidemiol. Community Health 1989, 43, 53–60. [Google Scholar] [CrossRef]
- Eis-Hübinger, A.M.; Nyankye, E.; Bitoungui, D.M.; Ndjomou, J. Prevalence of herpes simplex virus type 2 antibody in Cameroon. Sex. Transm. Dis. 2002, 29, 637–642. [Google Scholar] [CrossRef]
- Alareeki, A.; Osman, A.M.M.; Khandakji, M.N.; Looker, K.J.; Harfouche, M.; Abu-Raddad, L.J. Epidemiology of herpes simplex virus type 2 in Europe: Systematic review, meta-analyses, and meta-regressions. Lancet Reg. Health Eur. 2022, 25, 100558. [Google Scholar] [CrossRef]
- Harfouche, M.; Alareeki, A.; Osman, A.M.M.; Alaama, A.; Hermez, J.G.; Abu-Raddad, L.J. Epidemiology of herpes simplex virus type 2 in the Middle East and North Africa: Systematic review, meta-analyses, and meta-regressions. J. Med. Virol. 2023, 95, e28603. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Sternberg, M.R.; Kottiri, B.J.; McQuillan, G.M.; Lee, F.K.; Nahmias, A.J.; Berman, S.M.; Markowitz, L.E. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 2006, 296, 964–973. [Google Scholar] [CrossRef] [PubMed]
- James, C.; Harfouche, M.; Welton, N.; Turner, K.M.E.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [Google Scholar] [CrossRef]
- Pebody, R.G.; Andrews, N.; Brown, D.; Gopal, R.; de Melker, H.; François, G.; Gatcheva, N.; Hellenbrand, W.; Jokinen, S.; Klavs, I.; et al. The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sex. Transm. Infect. 2004, 80, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Robinson, N.J. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: A global review. J. Infect. Dis. 2002, 186 (Suppl. S1), S3–S28. [Google Scholar] [CrossRef]
- Looker, K.J.; Garnett, G.P. A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex. Transm. Infect. 2005, 81, 103–107. [Google Scholar] [CrossRef]
- Mann, D.M.A.; Yates, P.O.; Davies, J.S.; Hawkes, J. Viruses, Parkinsonism and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 1981, 44, 651. [Google Scholar] [CrossRef]
- Ball, M.J. Limbic predilection in Alzheimer dementia: Is reactivated herpesvirus involved? Can. J. Neurol. Sci. 1982, 9, 303–306. [Google Scholar] [CrossRef]
- Mann, D.M.; Tinkler, A.M.; Yates, P.O. Neurological disease and herpes simplex virus. An immunohistochemical study. Acta Neuropathol. 1983, 60, 24–28. [Google Scholar] [CrossRef]
- Itzhaki, R.F.; Lin, W.R.; Shang, D.; Wilcock, G.K.; Faragher, B.; Jamieson, G.A. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 1997, 349, 241–244. [Google Scholar] [CrossRef]
- Hill, J.M.; Gebhardt, B.M.; Azcuy, A.M.; Matthews, K.E.; Lukiw, W.J.; Steiner, I.; Thompson, H.W.; Ball, M.J. Can a herpes simplex virus type 1 neuroinvasive score be correlated to other risk factors in Alzheimer’s disease? Med. Hypotheses 2005, 64, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Mori, I.; Kimura, Y.; Naiki, H.; Matsubara, R.; Takeuchi, T.; Yokochi, T.; Nishiyama, Y. Reactivation of HSV-1 in the brain of patients with familial Alzheimer’s disease. J. Med. Virol. 2004, 73, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Letenneur, L.; Pérès, K.; Fleury, H.; Garrigue, I.; Barberger-Gateau, P.; Helmer, C.; Orgogozo, J.M.; Gauthier, S.; Dartigues, J.F. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: A population-based cohort study. PLoS ONE 2008, 3, e3637. [Google Scholar] [CrossRef] [PubMed]
- Lövheim, H.; Olsson, J.; Weidung, B.; Johansson, A.; Eriksson, S.; Hallmans, G.; Elgh, F. Interaction between cytomegalovirus and herpes simplex virus type 1 associated with the risk of Alzheimer’s disease development. J. Alzheimer’s Dis. 2018, 61, 939–945. [Google Scholar] [CrossRef]
- Mekli, K.; Lophatananon, A.; Cant, R.; Burns, A.; Dobson, C.B.; Itzhaki, R.F.; Muir, K.R. Investigation of the association between the antibody responses to neurotropic viruses and dementia outcomes in the UK Biobank. PLoS ONE 2022, 17, e0274872. [Google Scholar] [CrossRef]
- Linard, M.; Letenneur, L.; Garrigue, I.; Doize, A.; Dartigues, J.F.; Helmer, C. Interaction between APOE4 and herpes simplex virus type 1 in Alzheimer’s disease. Alzheimer’s Dement. 2020, 16, 200–208. [Google Scholar] [CrossRef]
- Shim, Y.; Park, M.; Kim, J. Increased incidence of dementia following herpesvirus infection in the Korean population. Medicine 2022, 101, e31116. [Google Scholar] [CrossRef]
- Tejeda, M.; Farrell, J.; Zhu, C.; Wetzler, L.; Lunetta, K.L.; Bush, W.S.; Martin, E.R.; Wang, L.S.; Schellenberg, G.D.; Pericak-Vance, M.A.; et al. DNA from multiple viral species is associated with Alzheimer’s disease risk. Alzheimer’s Dement. 2024, 20, 253–265. [Google Scholar] [CrossRef]
- Levine, K.S.; Leonard, H.L.; Blauwendraat, C.; Faghri, F.; Singleton, A.B.; Nalls, M. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron 2023, 111, 1086–1093.e2. [Google Scholar] [CrossRef]
- Elhalag, R.H.; Motawea, K.R.; Talat, N.E.; Rouzan, S.S.; Mahmoud, N.; Hammad, E.M.; Reyad, S.M.; Mohamed, M.S.; Shah, J. Herpes simplex virus infection and the risk of dementia: A systematic review and meta-analysis. Ann. Med. Surg. 2023, 85, 5060–5074. [Google Scholar] [CrossRef]
- Chentoufi, A.A.; Dhanushkodi, N.R.; Srivastava, R.; Prakash, S.; Coulon, P.G.A.; Zayou, L.; Vahed, H.; Chentoufi, H.A.; Hormi-Carver, K.K.; BenMohamed, L. Combinatorial herpes simplex vaccine strategies: From bedside to bench and back. Front. Immunol. 2022, 13, 849515. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.; Scheele, S.; Bachmann, L.; Boily, M.C.; Chaiyakunapruk, N.; Deal, C.; Delany-Moretlwe, S.; Lee, S.; Looker, K.; Marshall, C.; et al. Vaccine value profile for herpes simplex virus. Vaccine 2024, 42, S82–S100. [Google Scholar] [CrossRef] [PubMed]
- Corey, L.; Langenberg, A.G.; Ashley, R.; Sekulovich, R.E.; Izu, A.E.; Douglas, J.M., Jr.; Handsfield, H.H.; Warren, T.; Marr, L.; Tyring, S.; et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: Two randomized controlled trials. JAMA 1999, 282, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, H.J.; Beauchamp, L.; de Miranda, P.; Elion, G.B.; Bauer, D.J.; Collins, P. 9-(2-hydroxyethoxymethyl)guanine activity against viruses of the herpes group. Nature 1978, 272, 583–585. [Google Scholar] [CrossRef]
- De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 2016, 29, 695–747. [Google Scholar] [CrossRef]
- Elion, G.B.; Furman, P.A.; Fyfe, J.A.; de Miranda, P.; Beauchamp, L.; Schaeffer, H.J. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc. Natl. Acad. Sci. USA 1977, 74, 5716–5720. [Google Scholar] [CrossRef]
- Fyfe, J.A.; Keller, P.M.; Furman, P.A.; Miller, R.L.; Elion, G.B. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J. Biol. Chem. 1978, 253, 8721–8727. [Google Scholar] [CrossRef]
- Whitley, R.J.; Gnann Jr, J.W. Acyclovir: A decade later. N. Engl. J. Med. 1992, 327, 782–789. [Google Scholar] [CrossRef]
- Gupta, R.; Wald, A.; Krantz, E.; Selke, S.; Warren, T.; Vagas-Cortes, M.; Miller, G.; Corey, L. Valacyclovir and acyclovir for suppression of shedding of herpes simplex virus in the genital tract. J. Infect. Dis. 2004, 190, 1374–1381. [Google Scholar] [CrossRef]
- Klapper, P.E.; Cleator, G.M. European guidelines for diagnosis and management of patients with suspected herpes simplex encephalitis. Clin. Microbiol. Infect. 1998, 4, 178–180. [Google Scholar] [CrossRef]
- Tzeng, N.S.; Chung, C.H.; Lin, F.H.; Chiang, C.P.; Yeh, C.B.; Huang, S.Y.; Lu, R.B.; Chang, H.A.; Kao, Y.C.; Yeh, H.W.; et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections—A nationwide, population-based cohort study in Taiwan. Neurotherapeutics 2018, 15, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Linard, M.; Bezin, J.; Hucteau, E.; Joly, P.; Garrigue, I.; Dartigues, J.F.; Pariente, A.; Helmer, C. Antiherpetic drugs: A potential way to prevent Alzheimer’s disease? Alzheimers Res. Ther. 2022, 14, 3. [Google Scholar] [CrossRef]
- Protto, V.; Marcocci, M.E.; Miteva, M.T.; Piacentini, R.; Li Puma, D.D.; Grassi, C.; Palamara, A.T.; De Chiara, G. Role of HSV-1 in Alzheimer’s disease pathogenesis: A challenge for novel preventive/therapeutic strategies. Curr. Opin. Pharmacol. 2022, 63, 102200. [Google Scholar] [CrossRef]
- Weidung, B.; Hemmingsson, E.S.; Olsson, J.; Sundström, T.; Blennow, K.; Zetterberg, H.; Ingelsson, M.; Elgh, F.; Lövheim, H. VALZ-pilot: High-dose valacyclovir treatment in patients with early-stage Alzheimer’s disease. Alzheimer’s Dement. 2022, 8, e12264. [Google Scholar] [CrossRef]
- Cairns, D.M.; Itzhaki, R.F.; Kaplan, D.L. Potential involvement of varicella zoster virus in Alzheimer’s disease via reactivation of quiescent herpes simplex virus type 1. J. Alzheimers Dis. 2022, 88, 1189–1200. [Google Scholar] [CrossRef]
- Carver, A.E. The herpes-varicella infection. Brit Med. J. 1921, 1, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Weller, T.H. Varicella: Historical perspective and clinical overview. J. Infect. Dis. 1996, 174 (Suppl. S3), S306–S309. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.G.E.; Gershon, A.A. Clinical features of varicella-zoster virus infection. Viruses 2018, 10, 609. [Google Scholar] [CrossRef]
- Patil, A.; Goldust, M.; Wollina, U. Herpes zoster: A review of clinical manifestations and management. Viruses 2022, 14, 192. [Google Scholar] [CrossRef]
- Weller, T.H.; Witton, H.M.; Bell, E.J. The etiologic agents of varicella and herpes zoster; isolation, propagation, and cultural characteristics in vitro. J. Exp. Med. 1958, 108, 843–868. [Google Scholar] [CrossRef]
- Davison, A.J.; Scott, J.E. The complete DNA sequence of varicella-zoster virus. J. Gen. Virol. 1986, 67 Pt 9, 1759–1816. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Chanasit, J.; Sauerbrei, A. Evolution and world-wide distribution of varicella-zoster virus clades. Infect. Genet. Evol. 2011, 11, 1–10. [Google Scholar] [CrossRef]
- Xu, S.; Chen, M.; Zheng, H.; Wang, H.; Chen, M.; Zhou, J.; Shuang, W.; Yu, P.; Ma, C.; He, J.; et al. Nationwide distribution of varicella-zoster virus clades in China. BMC Infect. Dis. 2016, 16, 542. [Google Scholar] [CrossRef]
- Sauerbrei, A.; Stefanski, J.; Philipps, A.; Krumbholz, A.; Zell, R.; Wutzler, P. Monitoring prevalence of varicella-zoster virus clades in Germany. Med. Microbiol. Immunol. 2011, 200, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Leclair, J.M.; Zaia, J.A.; Levin, M.J.; Congdon, R.G.; Goldmann, D.A. Airborne transmission of chickenpox in a hospital. N. Engl. J. Med. 1980, 302, 450–453. [Google Scholar] [CrossRef]
- Sawyer, M.H.; Chamberlin, C.J.; Wu, Y.N.; Aintablian, N.; Wallace, M.R. Detection of varicella-zoster virus DNA in air samples from hospital rooms. J. Infect. Dis. 1994, 169, 91–94. [Google Scholar] [CrossRef]
- Asano, Y.; Itakura, N.; Kajita, Y.; Suga, S.; Yoshikawa, T.; Yazaki, T.; Ozaki, T.; Yamanishi, K.; Takahashi, M. Severity of viremia and clinical findings in children with varicella. J. Infect. Dis. 1990, 161, 1095–1098. [Google Scholar] [CrossRef]
- Ku, C.C.; Padilla, J.A.; Grose, C.; Butcher, E.C.; Arvin, A.M. Tropism of varicella-zoster virus for human tonsillar CD4+ T lymphocytes that express activation, memory, and skin homing markers. J. Virol. 2002, 76, 11425–11433. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J. Varicella-zoster virus and virus DNA in the blood and oropharynx of people with latent or active varicella-zoster virus infections. J. Clin. Virol. 2014, 61, 487–495. [Google Scholar] [CrossRef]
- Hope-Simpson, R.E. The nature of herpes zoster: A long-term study and a new hypothesis. Proc. R. Soc. Med. 1965, 58, 9–20. [Google Scholar] [CrossRef]
- Kennedy, P.G.E.; Cohrs, R.J. Varicella-zoster virus human ganglionic latency: A current summary. J. Neurovirol. 2010, 16, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.G.E. The spectrum of neurological manifestations of varicella-zoster virus reactivation. Viruses 2023, 15, 1663. [Google Scholar] [CrossRef] [PubMed]
- Gershon, A.A.; Breuer, J.; Cohen, J.I.; Cohrs, R.J.; Gershon, M.D.; Gilden, D.; Grose, C.; Hambleton, S.; Kennedy, P.G.E.; Oxman, M.N.; et al. Varicella zoster virus infection. Nat. Rev. Dis. Primers 2015, 1, 15016. [Google Scholar] [CrossRef]
- Tunbridge, A.J.; Breuer, J.; Jeffery, K.J.M.; British Infection Society. Chickenpox in adults—Clinical management. J. Infect. 2008, 57, 95–102. [Google Scholar] [CrossRef]
- Dayan, R.R.; Peleg, R. Herpes zoster—Typical and atypical presentations. Postgrad. Med. 2017, 129, 567–571. [Google Scholar] [CrossRef]
- Sauerbrei, A.; Eichhorn, U.; Schacke, M.; Wutzler, P. Laboratory diagnosis of herpes zoster. J. Clin. Virol. 1999, 14, 31–36. [Google Scholar] [CrossRef]
- Sauerbrei, A.; Wutzler, P. Laboratory diagnosis of central nervous system infections caused by herpesviruses. J. Clin. Virol. 2002, 25 (Suppl. S1), 545–551. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, I.; Rajasekaran, S.S.; Gopalakrishnan, K.; Gnanaskandan, S.; Jeganathan, S.N.; Athi, J.; Shanmugaraj, R.; Ramesh, R.; Shankar, V.; Krishnasamy, K.; et al. Diagnostic value of anti-VZV IgG in neurological diseases among varicella unvaccinated individuals. J. Neurovirol. 2024, 30, 327–335. [Google Scholar] [CrossRef]
- Grahn, A.; Studahl, M. Varicella-zoster virus infections of the central nervous system—Prognosis, diagnostics and treatment. J. Infect. 2015, 71, 281–293. [Google Scholar] [CrossRef]
- Leung, J.; Harpaz, R.; Baughman, A.L.; Heath, K.; Loparev, V.; Vázquez, M.; Watson, B.M.; Schmid, D.S. Evaluation of laboratory methods for diagnosis of varicella. Clin. Infect. Dis. 2010, 51, 23–32. [Google Scholar] [CrossRef]
- Min, S.W.; Kim, Y.S.; Nahm, F.S.; Yoo, D.H.; Choi, E.; Lee, P.B.; Choo, H.; Park, Z.Y.; Yang, C.S. The positive duration of varicella zoster immunoglobulin M antibody test in herpes zoster. Medicine 2016, 95, e4616. [Google Scholar] [CrossRef] [PubMed]
- Dobec, M.; Bossart, W.; Kaeppeli, F.; Mueller-Schoop, J. Serology and serum DNA detection in shingles. Swiss Med. Wkly. 2008, 138, 47–51. [Google Scholar] [PubMed]
- Kangro, H.O.; Ward, A.; Argent, S.; Heath, R.B.; Cradock-Watson, J.E.; Ridehalgh, M.K.S. Detection of specific IgM in varicella and herpes zoster by antibody-capture radioimmunoassay. Epidemiol. Infect. 1988, 101, 187–195. [Google Scholar] [CrossRef]
- Lewis, G.W. Zoster sine herpete. Brit. Med. J. 1958, 2, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, J.; Ma, L.; Cao, S. Zoster sine herpete: A review. Korean J. Pain 2020, 33, 208–215. [Google Scholar] [CrossRef]
- Gilden, D.; Cohrs, R.J.; Mahalingam, R.; Nagel, M.A. Neurological disease produced by varicella zoster virus reactivation without rash. Curr. Top. Microbiol. Immunol. 2010, 342, 243–253. [Google Scholar]
- Blumenthal, D.T.; Shacham-Shmueli, E.; Bokstein, F.; Schmid, D.S.; Cohrs, R.J.; Nagel, M.A.; Mahalingam, R.; Gilden, D. Zoster sine herpete: Virologic verification by detection of anti-VZV IgG antibody in CSF. Neurology 2011, 76, 484–485. [Google Scholar] [CrossRef]
- Bollaerts, K.; Riera-Montes, M.; Heininger, U.; Hens, N.; Souverain, A.; Verstraeten, T.; Hartwig, S. A systematic review of varicella seroprevalence in European countries before universal childhood immunization: Deriving incidence from seroprevalence data. Epidemiol. Infect. 2017, 145, 2666–2677. [Google Scholar] [CrossRef]
- Holmes, S.J. Review of recommendations of the Advisory Committee on Immunization Practices, Centers for Disease Control and Prevention, on varicella vaccine. J. Infect. Dis. 1996, 174 (Suppl. S3), S342–S344. [Google Scholar] [CrossRef]
- Seward, J.F.; Marin, M.; Vázquez, M. Varicella vaccine effectiveness in the US vaccination program: A review. J. Infect. Dis. 2008, 197 (Suppl. S2), S82–S89. [Google Scholar] [CrossRef]
- Marin, M.; Güris, D.; Chaves, S.S.; Schmid, D.; Seward, J.F. Prevention of varicella: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2007, 56, 1–40. [Google Scholar] [PubMed]
- Bogger-Goren, S.; Baba, K.; Hurley, P.; Yabuuchi, H.; Takahashi, M.; Ogra, P.L. Antibody response to varicella-zoster virus after natural or vaccine-induced infection. J. Infect. Dis. 1982, 146, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Provost, P.J.; Krah, D.L.; Kuter, B.J.; Morton, D.H.; Schofield, T.L.; Wasmuth, E.H.; White, C.J.; Miller, W.J.; Ellis, R.W. Antibody assays suitable for assessing immune responses to live varicella vaccine. Vaccine 1991, 9, 111–116. [Google Scholar] [CrossRef]
- Maple, P.A.C.; Breuer, J.; Quinlivan, M.; Kafatos, G.; Brown, K.E. Comparison of a commercial varicella zoster glycoprotein IgG enzyme immunoassay with a reference time resolved fluorescence immunoassay (VZV TRFIA) for measuring VZV IgG in sera from pregnant women, sera sent for confirmatory testing and pre and post vOka vaccination sera from healthcare workers. J. Clin. Virol. 2012, 53, 201–207. [Google Scholar]
- Marin, M.; Leung, J.; Anderson, T.C.; Lopez, A.S. Monitoring varicella vaccine impact on varicella incidence in the United States: Surveillance challenges and changing epidemiology, 1995–2019. J. Infect. Dis. 2022, 226 (Suppl. S4), S392–S399. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.K.; Mukherjee, P.P.; Murphy, C.; Muckherjee, R.; Naik, T. Adult susceptibility to varicella in the tropics is a rural phenomenon due to the lack of previous exposure. J. Infect. Dis. 1998, 178 (Suppl. S1), S52–S54. [Google Scholar] [CrossRef]
- Lee, B.W. Review of varicella zoster seroepidemiology in India and South-east Asia. Trop. Med. Int. Health 1998, 3, 886–890. [Google Scholar] [CrossRef]
- Migasena, S.; Simasathien, S.; Desakorn, V.; Phonrat, B.; Suntharasamai, P.; Pitisuttitham, P.; Aree, C.; Naksrisook, S.; Supeeranun, L.; Samakoses, R.; et al. Seroprevalence of varicella-zoster virus antibody in Thailand. Int. J. Infect. Dis. 1997, 2, 26–30. [Google Scholar] [CrossRef]
- Fatha, N.; Ang, L.W.; Goh, K.T. Changing seroprevalence of varicella zoster virus infection in a tropical city state, Singapore. Int. J. Infect. Dis. 2014, 22, 73–77. [Google Scholar] [CrossRef]
- Arlant, L.H.F.; Garcia, M.C.P.; Avila Aguero, M.L.; Cashat, M.; Parellada, C.I.; Wolfson, L.J. Burden of varicella in Latin America and the Carribean: Findings from a systematic literature review. BMC Public Health 2019, 19, 528. [Google Scholar] [CrossRef]
- Daulagala, S.W.P.L.; Noordeen, F. Epidemiology and factors influencing varicella infections in tropical countries including Sri Lanka. Virusdisease 2018, 29, 277–284. [Google Scholar] [CrossRef]
- Bruno, F.; Abondio, P.; Bruno, R.; Ceraudo, L.; Paparazzo, E.; Citrigno, L.; Luiselli, D.; Bruni, A.C.; Passarino, G.; Colao, R.; et al. Alzheimer’s disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res. Rev. 2023, 91, 102068. [Google Scholar] [CrossRef]
- Ukraintseva, S.; Yashkin, A.P.; Akushevich, I.; Arbeev, K.; Duan, H.; Gorbunova, G.; Stallard, E.; Yashin, A. Associations of infections and vaccines with Alzheimer’s disease point to a role of compromised immunity rather than specific pathogen in AD. Exp. Gerontol. 2024, 190, 112411. [Google Scholar] [CrossRef]
- Bae, S.; Yun, S.C.; Kim, M.C.; Yoon, W.; Lim, J.S.; Lee, S.O.; Choi, S.H.; Kim, Y.S.; Woo, J.H.; Kim, S.Y.; et al. Association of herpes zoster with dementia and effect of antiviral therapy on dementia: A population-based cohort study. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 987–997. [Google Scholar] [CrossRef]
- Shin, E.; Chi, S.A.; Chung, T.Y.; Kim, H.J.; Kim, K.; Lim, D.H. The associations of herpes simplex virus and varicella zoster virus infection with dementia: A nationwide retrospective cohort study. Alzheimers Res. Ther. 2024, 16, 57. [Google Scholar] [CrossRef]
- Tsai, M.C.; Cheng, W.L.; Sheu, J.J.; Huang, C.C.; Shia, B.C.; Kao, L.T.; Lin, H.C. Increased risk of dementia following herpes zoster ophthalmicus. PLoS ONE 2017, 12, e0188490. [Google Scholar] [CrossRef]
- Warren-Gash, C.; Forbes, H.J.; Williamson, E.; Breuer, J.; Hayward, A.C.; Mavrodaris, A.; Ridha, B.H.; Rossor, M.N.; Thomas, S.L.; Smeeth, L. Human herpesvirus infections and dementia or mild cognitive impairment: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 4743. [Google Scholar] [CrossRef]
- Elhalag, R.H.; Motawea, K.R.; Talat, N.E.; Rouzan, S.S.; Reyad, S.M.; Elsayed, S.M.; Chébi, P.; Abowafia, M.; Shah, J. Herpes zoster virus infection and the risk of developing dementia: A systematic review and meta-analysis. Medicine 2023, 102, e34503. [Google Scholar] [CrossRef]
- Gnann, J.W., Jr.; Whitley, R.J. Clinical practice. Herpes zoster. N. Engl. J. Med. 2002, 347, 340–346. [Google Scholar] [CrossRef]
- Gnann, J.W., Jr. Chapter 65. Antiviral therapy of varicella-zoster virus infections. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis; Arvin, A., Campadelli-Fiume, G., Mocarski, E., Moore, P.S., Roizman, B., Whitley, R., Yamanishi, K., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Cohen, J.; Breuer, J. Chickenpox treatment. BMJ Clin. Evid. 2015, 2015, 0912. [Google Scholar]
- Dworkin, R.H.; Johnson, R.W.; Breuer, J.; Gnann, J.W.; Levin, M.J.; Backonja, M.; Betts, R.F.; Gershon, A.A.; Haanpää, M.L.; McKendrick, M.W.; et al. Recommendations for the management of herpes zoster. Clin. Infect. Dis. 2007, 44 (Suppl. S1), S1–S26. [Google Scholar] [CrossRef] [PubMed]
- Szenborn, L.; Kraszewska-Glomba, B.; Jackowska, T.; Duszczyk, E.; Majda-Stanislawska, E.; Marczynska, M.; Ołdak, E.; Pawłowska, M.; Służewski, W.; Wysocki, J.; et al. Polish consensus guidelines on the use of acyclovir in the treatment and prevention of VZV and HSV infections. J. Infect. Chemother. 2016, 22, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Tyring, S.; Barbarash, R.A.; Nahlik, J.E.; Cunningham, A.; Marley, J.; Jones, T.; Rea, T.; Boon, R.; Saltzman, R. Famciclovir for the treatment of acute herpes zoster: Effects on acute disease and postherpetic neuralgia. A randomized, double-blind, placebo-controlled trial. Collaborative Famciclovir Herpes Zoster Study Group. Ann. Intern. Med. 1995, 123, 89–96. [Google Scholar] [CrossRef]
- Whitley, R.J.; Weiss, H.; Gnann, J.W., Jr.; Tyring, S.; Mertz, G.J.; Pappas, P.G.; Schleupner, C.J.; Hayden, F.; Wolf, J.; Soong, S.J. Acyclovir with and without Prednisone for the Treatment of Herpes Zoster. A Randomized, Placebo-Controlled Trial. Ann. Intern. Med. 1996, 125, 376–383. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Updated recommendations for use of VariZIG—United States, 2013. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 574–576. [Google Scholar]
- de Oliveira Gomes, J.; Gagliardi, A.M.; Andriolo, B.N.; Torloni, M.R.; Andriolo, R.B.; Puga, M.E.D.S.; Canteiro Cruz, E. Vaccines for preventing herpes zoster in older adults. Cochrane Database Syst. Rev. 2023, 10, CD008858. [Google Scholar] [PubMed]
- Dooling, K.L.; Guo, A.; Patel, M.; Lee, G.M.; Moore, K.; Belongia, E.A.; Harpaz, R. Recommendations of the Advisory Committee on Immunization Practices for use of herpes zoster vaccines. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 103–108. [Google Scholar] [CrossRef]
- Lindman, K.L.; Hemmingsson, E.S.; Weidung, B.; Brännström, J.; Josefsson, M.; Olsson, J.; Elgh, F.; Nordström, P.; Lövheim, H. Herpesvirus infections, antiviral treatment, and the risk of dementia—A registry-based cohort study in Sweden. Alzheimers Dement. 2021, 7, e12119. [Google Scholar]
- Ma, Y.N.; Karako, K.; Song, P.; Xia, Y. Can the herpes zoster vaccination be a strategy against dementia? Drug Discov. Ther. 2025, 19, 124–128. [Google Scholar] [CrossRef]
- Schnier, C.; Janbek, J.; Lathe, R.; Haas, J. Reduced dementia incidence after varicella zoster vaccination in Wales 2013–2020. Alzheimer’s Dement. 2022, 8, e12293. [Google Scholar] [CrossRef]
- Scherrer, J.F.; Salas, J.; Wiemken, T.L.; Hoft, D.F.; Jacobs, C.; Morley, J.E. Impact of herpes zoster vaccination on incident dementia: A retrospective study in two patient cohorts. PLoS ONE 2021, 16, e0257405. [Google Scholar] [CrossRef] [PubMed]
- Eyting, M.; Xie, M.; Michalik, F.; Heß, S.; Chung, S.; Geldsetzer, P. A natural experiment on the effect of herpes zoster vaccination on dementia. Nature 2025, 641, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Dercon, Q.; Todd, J.A.; Harrison, P.J. The recombinant shingles vaccine is associated with lower risk of dementia. Nat. Med. 2024, 30, 2777–2781. [Google Scholar] [CrossRef] [PubMed]
- Blandi, L.; Bertuccio, P.; Signorelli, C.; Brand, H.; Clemens, T.; Renzi, C.; Odone, A. Herpes zoster as risk factor for dementia: A matched cohort study over 20 years in a 10-million population in Italy. J. Prev. Alzheimer’s Dis. 2025, 12, 100167. [Google Scholar] [CrossRef]
- Levin, M.J.; Kroehl, M.E.; Johnson, M.J.; Hammes, A.; Reinhold, D.; Lang, N.; Weinberg, A. Th1 memory differentiates recombinant from live herpes zoster vaccines. J. Clin. Investig. 2018, 128, 4429–4440. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Zhao, T.; Yang, C.; Huang, L. Development and evaluation of the immunogenic potential of an unmodified nucleoside mRNA vaccine for herpes zoster. Vaccines 2025, 13, 68. [Google Scholar] [CrossRef]
- Gong, W.; Du, J.; Zhuang, L.; Wu, X. Exploring BCG vaccination as a novel approach to prevent recurrent herpes labialis. EClinicalMedicine 2023, 65, 102279. [Google Scholar] [CrossRef] [PubMed]
- Pittet, L.F.; Moore, C.L.; McDonald, E.; Barry, S.; Bonten, M.; Campbell, J.; Croda, J.; Davidson, A.; Douglas, M.W.; Gardiner, K.; et al. Bacillus Calmette-Guérin vaccination for protection against recurrent herpes labialis: A nested randomised controlled trial. EClinicalMedicine 2023, 64, 102203. [Google Scholar] [CrossRef]
- Adesanya, O.A.; Uche-Orji, C.I.; Adedeji, Y.A.; Joshua, J.I.; Adesola, A.A.; Chukwudike, C.J. Bacillus Calmette-Guerin (BCG): The adroit vaccine. AIMS Microbiol. 2021, 7, 96–113. [Google Scholar] [CrossRef]
- Hippmann, G.; Wekkeli, M.; Rosenkranz, A.R.; Jarisch, R.; Götz, M. Nonspecific immune stimulation with BCG in herpes simplex recidivans. Follow-up 5 to 10 years after BCG vaccination. Wien. Klin. Wochenschr. 1992, 104, 200–204. [Google Scholar]
- Pirtillä, T.; Haanpää, M.; Mehta, P.D.; Lehtimäki, T. Apolipoprotein E (APOE) phenotype and APOE concentrations in multiple sclerosis and acute herpes zoster. Acta Neurol. Scand. 2000, 102, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.A.; Shipley, S.J.; Dobson, C.B.; Parker, S.P.; Scott, F.T.; Leedham-Green, M.; Breuer, J.; Itzhaki, R.F. Does apolipoprotein E determine outcome of infection by varicella zoster virus and by Epstein Barr virus? Eur. J. Hum. Genet. 2007, 15, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Lindman, K.L.; Weidung, B.; Olsson, J.; Josefsson, M.; Kok, E.; Johansson, A.; Eriksson, S.; Hallmans, G.; Elgh, F.; Lövheim, H. A genetic signature including apolipoprotein Eε4 potentiates the risk of herpes simplex-associated Alzheimer’s disease. Alzheimer’s Dement. 2019, 5, 697–704. [Google Scholar] [CrossRef] [PubMed]
Species/ Genus/ Subfamily | Other Names | Examples of Common Clinical Conditions |
---|---|---|
Human alphaherpesvirus
1 Simplexivirus Alphaherpesvirinae | HSV-1—herpes simplex virus type 1; HHV-1—human herpesvirus 1. | Primary infection: herpetic skin infections (e.g., stomatitis), conjunctivitis, and encephalitis. Reactivation: cold sores. HSV-2 may also cause these. |
Human alphaherpesvirus 2 Simplexivirus Alphaherpesvirinae | HSV-2—herpes simplex virus type 2; HHV-2—human herpesvirus 2. | Primary and recurrent genital herpes; neonatal herpes; HSV meningitis. HSV-1 may also cause these conditions. |
Human alphaherpesvirus 3 Varicellovirus Alphaherpesvirinae | VZV—varicella zoster virus; HHV-3—human herpesvirus 3. | Primary infection: chickenpox (varicella). Reactivation: shingles (zoster). |
Study | Aim | Design | Outcome |
---|---|---|---|
Linard M et al. [56] | To investigate the potential association of HSV infection with AD in APOE-ε4 carriers. | A prospective study of individuals who were 65 years or older, non-institutionalized, and enrolled from electoral lists; location: Bordeaux; 1258 serum samples tested. | Among HSV IgG-positive individuals, those who were IgM-positive or had a high level of IgG had a three-fold higher risk of developing AD or mixed dementia. |
Shim Y et al. [57] | To investigate the association between herpesvirus infections and subsequent diagnoses of dementia. | A nationwide population-based, matched-cohort design; patients diagnosed with HSV infections aged older than 50 years; location: South Korea; 92,095 subjects diagnosed with HSV infections during 2009 followed for up to 9 years. | HSV1 infections associated with dementia. Adjusted hazard ratio for developing dementia: 1.18 (95% confidence interval: 1.16–1.200; p < 0.001). |
Tejeda M et al. [58] | To compare the frequencies of viral species in a large sample of AD cases and controls. | An examination of whole genome and whole exome sequences derived from blood and brain samples; obtained from 37,000 participants of the Alzheimer’s Disease Sequencing Project. | Sequences processed using machine learning classifiers. Subsequent regression analyses showed that HSV1 was significantly associated with AD. Odds ratio: 3.71; p = 8.03 × 10−4. |
Levine KS et al. [59] | To assess virus exposure and neurodegenerative disease risk across national biobanks. | An examination of genotyping data from Finnish and UK national biobanks to survey longitudinal and cross-sectional associations between viral exposures and neurodegenerative diseases. | Proposed strong association of viral encephalitis with dementia. In the Finnish cohort, 5.9% of viral encephalitis cases went on to develop AD compared to a general population prevalence of less than 3%. |
Elhalag R et al. [60] | A systematic review and meta-analysis of HSV infection and the risk of dementia. | A comprehensive literature search with a final selection of 19 studies describing 342,535patients. | Statistically significant association between AD and increased levels of HSV IgG. |
Treatment | Primary (Chickenpox) | Reactivation | Evidence Level |
---|---|---|---|
Acyclovir [68,129,130,131] | High-risk patients (immunocompromised, pregnant, etc.) | Initiated within 24 h of rash onset | Strong (RCT *s) |
Immunocompromised Patients [132,133] | IV acyclovir | IV acyclovir for severe cases | Strong (guideline-based) |
Valacyclovir/famciclovir [134] | Not typically used | Preferred for convenience in adults | Strong (RCTs) |
Corticosteroids [135] | Not indicated | Adjunct in older adults without contraindications | Moderate (some RCTs) |
Varicella zoster Immunoglobulin (VariZIG) [136] | Post-exposure prophylaxis for high-risk individuals | Not applicable | Strong (guideline-based) |
Vaccination [111,137,138] | Prevention in children | For prevention of reactivation in adults | Strong (RCTs and guidelines) |
Study | Aim | Design | Outcome |
---|---|---|---|
Scherrer J F et al. [142] | To evaluate the association between zoster vaccination and the risk of developing dementia. | A retrospective cohort study using data from the Veterans Health Administration (VHA) and MarketScan databases, encompassing over 200,000 patients. | Zoster vaccination was associated with a significantly reduced risk of dementia (VHA HR = 0.69; MarketScan HR = 0.65). The association was consistent across different age groups and races. |
Eyting M et al. [143] | To assess whether herpes zoster vaccination reduces the risk of developing dementia. | The utilization of a regression discontinuity design to exploit the age-based eligibility cutoff for the zoster vaccine in Wales; the analysis of health records of 282,541 adults aged 71–88 years over a 7-year follow-up period. | Receiving the zoster vaccine reduced the probability of a new dementia diagnosis by 3.5 percentage points (a 20% relative reduction). The protective effect was more pronounced in women. |
Taquet M et al. [144] | To determine if the recombinant zoster vaccine (Shingrix) is associated with a reduced risk of dementia. | A retrospective cohort study comparing individuals who received the recombinant vaccine to those who received the live vaccine, with a median follow-up of 4.15 years. | Receiving the recombinant vaccine was associated with a significantly lower risk of dementia, translating to 164 additional days lived without a dementia diagnosis among those subsequently affected. |
Blandi L et al. [145] | To investigate whether herpes zoster infection increases the risk of developing dementia. | A population-based matched-cohort study analyzing health records to compare dementia incidence among individuals with and without herpes zoster infection. | The study found an increased risk of developing dementia among individuals with severe herpes zoster cases, supporting the importance of preventing and treating herpes zoster to mitigate dementia risk. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maple, P.A.C.; Hosseini, A.A. Human Alpha Herpesviruses Infections (HSV1, HSV2, and VZV), Alzheimer’s Disease, and the Potential Benefits of Targeted Treatment or Vaccination—A Virological Perspective. Vaccines 2025, 13, 572. https://doi.org/10.3390/vaccines13060572
Maple PAC, Hosseini AA. Human Alpha Herpesviruses Infections (HSV1, HSV2, and VZV), Alzheimer’s Disease, and the Potential Benefits of Targeted Treatment or Vaccination—A Virological Perspective. Vaccines. 2025; 13(6):572. https://doi.org/10.3390/vaccines13060572
Chicago/Turabian StyleMaple, Peter A. C., and Akram A. Hosseini. 2025. "Human Alpha Herpesviruses Infections (HSV1, HSV2, and VZV), Alzheimer’s Disease, and the Potential Benefits of Targeted Treatment or Vaccination—A Virological Perspective" Vaccines 13, no. 6: 572. https://doi.org/10.3390/vaccines13060572
APA StyleMaple, P. A. C., & Hosseini, A. A. (2025). Human Alpha Herpesviruses Infections (HSV1, HSV2, and VZV), Alzheimer’s Disease, and the Potential Benefits of Targeted Treatment or Vaccination—A Virological Perspective. Vaccines, 13(6), 572. https://doi.org/10.3390/vaccines13060572