Engineered Outer Membrane Vesicles for Antigen Delivery: Exploratory Study on Adjuvant Activity and Systemic Reactogenicity
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth
2.2. Construction of Mut4_STM
2.3. Isolation of Outer Membrane Vesicles (OMVs)
2.4. Characterization of WT_OMVs, Mut4_STM and Mut4_OMVs
2.5. Protein Quantification and Particle Size Analysis
2.6. Biocompatibility Analysis
2.7. Evaluation of Hepatic and Renal Function
2.8. Organ Harvesting and H&E Staining
2.9. Expression and Purification of Antigen Protein
2.10. Mice Vaccination
2.11. Antigen-Specific Enzyme-Linked Immunosorbent Assay (ELISA)
2.12. Splenic Lymphocyte Proliferation and Cytokine Quantification
2.13. Statistical Analysis
3. Results
3.1. Construction of Mut4_STM Strain
3.2. Isolation and Characterization of OMVs from Mut4_STM
3.3. The Safety of Mut4_OMV
3.4. The Mut4_OMVs Show the Adjuvant Properties
3.5. Analysis of the Immune Response Induced by Mut4_OMVs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cascales, E.; Blenkiron, C.; Simonov, D.; Muthukaruppan, A.; Tsai, P.; Dauros, P.; Green, S.; Hong, J.; Print, C.G.; Swift, S.; et al. Uropathogenic Escherichia coli Releases Extracellular Vesicles That Are Associated with RNA. PLoS ONE 2016, 11, e0160440. [Google Scholar]
- Dehinwal, R.; Gopinath, T.; Smith, R.D.; Ernst, R.K.; Schifferli, D.M.; Waldor, M.K.; Marassi, F.M. A pH-sensitive motif in an outer membrane protein activates bacterial membrane vesicle production. Nat. Commun. 2024, 15, 6958. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, M.; Chen, C.-C.; Chang, C.-Y.; Tsai, Y.-C.; Yang, J.-M.; Wu, T.C.; Huang, C.-H.; Hung, C.-F. Salmonella immunotherapy engineered with highly efficient tumor antigen coating establishes antigen-specific CD8+ T cell immunity and increases in antitumor efficacy with type I interferon combination therapy. OncoImmunology 2023, 13, 2298444. [Google Scholar] [CrossRef]
- Feng, R.; Xue, R.-Y.; Liu, C.; Li, G.-C.; Deng, Y.; Jin, Z.; Liu, J.-Y.; Zhang, S.-S.; Cheng, H.; Guo, M.-Y.; et al. RBD-displaying OMV nanovaccine boosts immunity against SARS-CoV-2. J. Nanobiotechnol. 2025, 23, 97. [Google Scholar] [CrossRef]
- Carvalho, A.L.; Fonseca, S.; Miquel-Clopés, A.; Cross, K.; Kok, K.S.; Wegmann, U.; Gil-Cardoso, K.; Bentley, E.G.; Al Katy, S.H.M.; Coombes, J.L.; et al. Bioengineering commensal bacteria-derived outer membrane vesicles for delivery of biologics to the gastrointestinal and respiratory tract. J. Extracell. Vesicles 2019, 8, 1632100. [Google Scholar] [CrossRef]
- van den Berg van Saparoea, H.B.; Houben, D.; de Jonge, M.I.; Jong, W.S.P.; Luirink, J.; Drake, H.L. Display of Recombinant Proteins on Bacterial Outer Membrane Vesicles by Using Protein Ligation. Appl. Environ. Microbiol. 2018, 84, e02567-17. [Google Scholar] [CrossRef]
- van den Berg van Saparoea, H.B.; Houben, D.; Kuijl, C.; Luirink, J.; Jong, W.S.P. Combining Protein Ligation Systems to Expand the Functionality of Semi-Synthetic Outer Membrane Vesicle Nanoparticles. Front. Microbiol. 2020, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Huynh, D.T.; Jong, W.S.P.; Oudejans, M.A.H.; Berg van Saparoea, H.B.v.d.; Luirink, J.; Ulsen, P.V. Heterologous Display of Chlamydia trachomatis PmpD Passenger at the Surface of Salmonella OMVs. Membranes 2023, 13, 366. [Google Scholar] [CrossRef]
- Piao, H.H.; Seong, J.; Song, M.K.; Kim, Y.U.; Shin, D.-J.; Choy, H.E.; Hong, Y. The Bacterial Surface Expression of SARS Viral Epitope using Salmonella typhi Cytolysin A. J. Bacteriol. Virol. 2009, 39, 103–112. [Google Scholar] [CrossRef]
- Chen, D.J.; Osterrieder, N.; Metzger, S.M.; Buckles, E.; Doody, A.M.; DeLisa, M.P.; Putnam, D. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc. Natl. Acad. Sci. USA 2010, 107, 3099–3104. [Google Scholar] [CrossRef]
- Chung, Y.; Rosenthal, J.A.; Huang, C., Jr.; Doody, A.M.; Leung, T.; Mineta, K.; Feng, D.D.; Wayne, E.C.; Nishimura, N.; Leifer, C.; et al. Mechanistic Insight into the TH1-Biased Immune Response to Recombinant Subunit Vaccines Delivered by Probiotic Bacteria-Derived Outer Membrane Vesicles. PLoS ONE 2014, 9, e0112802. [Google Scholar]
- Tong, Z.; Zhang, X.; Guo, X.; Wu, G.; Cao, S.; Zhang, Y.; Meng, X.; Wang, T.; Wang, Y.; Song, Y.; et al. Delivery of Yersinia pestis antigens via Escherichia coli outer membrane vesicles offered improved protection against plague. mSphere 2024, 9, e0033024. [Google Scholar] [CrossRef] [PubMed]
- Pschunder, B.; Locati, L.; López, O.; Martin Aispuro, P.; Zurita, E.; Stuible, M.; Durocher, Y.; Hozbor, D. Outer membrane vesicles derived from Bordetella pertussis are potent adjuvant that drive Th1-biased response. Front. Immunol. 2024, 15, 1387534. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Antenucci, F.; Villumsen, K.R.; Bojesen, A.M.; Garsin, D.A. Bacterial Outer Membrane Vesicles as a Versatile Tool in Vaccine Research and the Fight against Antimicrobial Resistance. mBio 2021, 12, e0170721. [Google Scholar] [CrossRef]
- Kashyap, D.; Panda, M.; Baral, B.; Varshney, N.; Bhandari, V.; Parmar, H.S.; Prasad, A.; Jha, H.C. Outer Membrane Vesicles: An Emerging Vaccine Platform. Vaccines 2022, 10, 1578. [Google Scholar] [CrossRef]
- Prior, J.T.; Davitt, C.; Kurtz, J.; Gellings, P.; McLachlan, J.B.; Morici, L.A. Bacterial-Derived Outer Membrane Vesicles are Potent Adjuvants that Drive Humoral and Cellular Immune Responses. Pharmaceutics 2021, 13, 131. [Google Scholar] [CrossRef]
- Baker, S.; Davitt, C.; Motyka, N.; Kikendall, N.; Russell-Lodrigue, K.; Roy, C.; Morici, L. A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates. Vaccines 2017, 5, 49. [Google Scholar] [CrossRef]
- Henry, T.; Pommier, S.; Journet, L.; Bernadac, A.; Gorvel, J.-P.; Lloubès, R. Improved methods for producing outer membrane vesicles in Gram-negative bacteria. Res. Microbiol. 2004, 155, 437–446. [Google Scholar] [CrossRef]
- De Benedetto, G.; Alfini, R.; Cescutti, P.; Caboni, M.; Lanzilao, L.; Necchi, F.; Saul, A.; MacLennan, C.A.; Rondini, S.; Micoli, F. Characterization of O-antigen delivered by Generalized Modules for Membrane Antigens (GMMA) vaccine candidates against nontyphoidal Salmonella. Vaccine 2017, 35, 419–426. [Google Scholar] [CrossRef]
- McSorley, S.J.; Cookson, B.T.; Jenkins, M.K. Characterization of CD4+ T Cell Responses During Natural Infection with Salmonella typhimurium. J. Immunol. 2000, 164, 986–993. [Google Scholar] [CrossRef]
- Miao, E.A.; Alpuche-Aranda, C.M.; Dors, M.; Clark, A.E.; Bader, M.W.; Miller, S.I.; Aderem, A. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 2006, 7, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Tourlomousis, P.; Wright, J.A.; Bittante, A.S.; Hopkins, L.J.; Webster, S.J.; Bryant, O.J.; Mastroeni, P.; Maskell, D.J.; Bryant, C.E. Modifying bacterial flagellin to evade Nod-like Receptor CARD 4 recognition enhances protective immunity against Salmonella. Nat. Microbiol. 2020, 5, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Rossi, O.; Caboni, M.; Negrea, A.; Necchi, F.; Alfini, R.; Micoli, F.; Saul, A.; MacLennan, C.A.; Rondini, S.; Gerke, C.; et al. Toll-Like Receptor Activation by Generalized Modules for Membrane Antigens from Lipid A Mutants of Salmonella enterica Serovars Typhimurium and Enteritidis. Clin. Vaccine Immunol. 2016, 23, 304–314. [Google Scholar] [CrossRef]
- Gorantala, J.; Grover, S.; Goel, D.; Rahi, A.; Jayadev Magani, S.K.; Chandra, S.; Bhatnagar, R. A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax. Vaccine 2011, 29, 4521–4533. [Google Scholar] [CrossRef]
- Chen, W.; Yu, C.; Fang, T.; Li, J.; Yang, X.; Ren, J.; Zhang, J.; Xu, J.; Yu, R.; Yu, T.; et al. A Kind of Purification Process of Yersinia Pestis F1Vmut Fusion Protein. China Patent CN108070036B, 15 December 2020. [Google Scholar]
- Erova, T.E.; Kirtley, M.L.; Fitts, E.C.; Ponnusamy, D.; Baze, W.B.; Andersson, J.A.; Cong, Y.; Tiner, B.L.; Sha, J.; Chopra, A.K. Protective Immunity Elicited by Oral Immunization of Mice with Salmonella enterica Serovar Typhimurium Braun Lipoprotein (Lpp) and Acetyltransferase (MsbB) Mutants. Front. Cell. Infect. Microbiol. 2016, 6, 148. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, B.; Duan, C.; Sun, B.; Yang, J.; Yang, S.; Kelly, R.M. Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System. Appl. Environ. Microbiol. 2015, 81, 2506–2514. [Google Scholar] [CrossRef] [PubMed]
- Trachtenberg, S.; DeRosier, D.J. Three-dimensional reconstruction of the flagellar filament of Caulobacter crescentus. A flagellin lacking the outer domain and its amino acid sequence lacking an internal segment. J. Mol. Biol. 1988, 202, 787–808. [Google Scholar] [CrossRef]
- Muralinath, M.; Kuehn, M.J.; Roland, K.L.; Curtiss, R., III. Immunization with Salmonella enterica Serovar Typhimurium-Derived Outer Membrane Vesicles Delivering the Pneumococcal Protein PspA Confers Protection against Challenge with Streptococcus pneumoniae. Infect. Immun. 2011, 79, 887–894. [Google Scholar] [CrossRef]
- Jiang, L.; Driedonks, T.A.P.; Jong, W.S.P.; Dhakal, S.; Bart van den Berg van Saparoea, H.; Sitaras, I.; Zhou, R.; Caputo, C.; Littlefield, K.; Lowman, M.; et al. A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants. J. Extracell. Vesicles 2022, 5, e12219. [Google Scholar] [CrossRef]
- Tian, H.; Li, B.; Xu, T.; Yu, H.; Chen, J.; Yu, H.; Li, S.; Zeng, L.; Huang, X.; Liu, Q.; et al. Outer Membrane Vesicles Derived from Salmonella enterica Serotype Typhimurium Can Deliver Shigella flexneri 2a O-Polysaccharide Antigen to Prevent Shigella flexneri 2a Infection in Mice. Appl. Environ. Microbiol. 2021, 87, e0096821. [Google Scholar] [CrossRef]
- Huynh, D.T.; Nolfi, E.; Medfai, L.; van Ulsen, P.; Jong, W.S.P.; Sijts, A.J.A.M.; Luirink, J. Intranasal delivery of Salmonella OMVs decorated with Chlamydia trachomatis antigens induces specific local and systemic immune responses. Hum. Vaccines Immunother. 2024, 20, 2330768. [Google Scholar] [CrossRef] [PubMed]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhao, Q.; Yang, T.; Ding, W.; Zhao, Y. Cellular Metabolism and Macrophage Functional Polarization. Int. Rev. Immunol. 2014, 34, 82–100. [Google Scholar] [CrossRef] [PubMed]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef]
- Watanabe, S.; Yamada, Y.; Murakami, H. Expression of Th1/Th2 cell–related chemokine receptors on CD4+ lymphocytes under physiological conditions. Int. J. Lab. Hematol. 2019, 42, 68–76. [Google Scholar] [CrossRef]
- Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015, 74, 318–326. [Google Scholar] [CrossRef]
Primers | Sequence |
---|---|
tolR_Rp_Fw | GTACCAGGAAAGCCAGGGGAG |
tolR_Rp_Rv | TTTCTTCGCGTCCGCCGCCG |
pagP_Rp_Fw | GCTGATAATAAGCAGAGCCAGACCG |
pagP_Rp_Rv | CGTTTGCCATGACGGCGCTGG |
fliC_Rp_Fw | GTTTTTTCGCTGAGTGCCAT |
fliC_Rp_Rv | AGATCTTCAGTGGTGCTGGA |
tolR_n20_Fw | CCAGGTCTCAGTCCTAGGTATAATACTAGTCAAGTCGACTTCCACGCTCTGTTTTAGAGCTAGAA |
pagP_n20_Fw | CCAGGTCTCAGTCCTAGGTATAATACTAGTGCTGGGACGACAAAGGCAAC GTTTTAGAGCTAGAA |
fliC_n20_Fw | CCAGGTCTCAGTCCTAGGTATAATACTAGTTCATCTGCAGTGTATTTCGT GTTTTAGAGCTAGAA |
sg_R | CCAGGTCTCAGGACTGAGCTAGCTGTCAAGGATCCAGCATATGCGG |
dtolR_Rp_Fw | GCGAACGCGTATTCTGAACGCC |
dtolR_Rp_Rv | CGCTTTCGCCGCCTCGGCC |
dpagP_Rp_Fw | TGATGTATTCAACAATATCTGTTGCGG |
dpagP_Rp_Rv | TGCTGCAAGAGGGGCGCTTTG |
rfliC_Rp_Fw1 | GGCATACACCTGTTCCAGTT |
rfliC_Rp_Rv1 | CCAGTAACTGCTTTTGGTGC |
rfliC_Rp_Fw2 | CTAACAGCACCAAGGTTGGC |
rfliC_Rp_Rv2 | AGATCTTCAGTGGTGCTGGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Zhai, L.; Ou, Q.; Sang, S.; Cao, C.; Guan, Y.; Mao, Y.; Zhai, Y.; Li, K.; Yu, R.; et al. Engineered Outer Membrane Vesicles for Antigen Delivery: Exploratory Study on Adjuvant Activity and Systemic Reactogenicity. Vaccines 2025, 13, 552. https://doi.org/10.3390/vaccines13060552
Lu L, Zhai L, Ou Q, Sang S, Cao C, Guan Y, Mao Y, Zhai Y, Li K, Yu R, et al. Engineered Outer Membrane Vesicles for Antigen Delivery: Exploratory Study on Adjuvant Activity and Systemic Reactogenicity. Vaccines. 2025; 13(6):552. https://doi.org/10.3390/vaccines13060552
Chicago/Turabian StyleLu, Lu, Lina Zhai, Qikun Ou, Shuli Sang, Chen Cao, Yiyan Guan, Yunyun Mao, Yanfang Zhai, Kai Li, Rui Yu, and et al. 2025. "Engineered Outer Membrane Vesicles for Antigen Delivery: Exploratory Study on Adjuvant Activity and Systemic Reactogenicity" Vaccines 13, no. 6: 552. https://doi.org/10.3390/vaccines13060552
APA StyleLu, L., Zhai, L., Ou, Q., Sang, S., Cao, C., Guan, Y., Mao, Y., Zhai, Y., Li, K., Yu, R., & Wang, Y. (2025). Engineered Outer Membrane Vesicles for Antigen Delivery: Exploratory Study on Adjuvant Activity and Systemic Reactogenicity. Vaccines, 13(6), 552. https://doi.org/10.3390/vaccines13060552