COVID-19 Vaccination Enhances the Immunogenicity of Seasonal Influenza Vaccination in the Elderly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Consent Statement
2.3. Vaccinees and Formulations
2.4. Hemagglutination Inhibition (HAI) Assay
2.5. SARS-CoV-2 Serum Neutralization Assay
2.6. Statistical Analysis
3. Results
3.1. Demographics of Participants
3.2. Comparison of HAI Titers Between COV-Flu and Mono-Flu Participants
3.3. SARS-Cov-2 Virus Neutralization Titer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piroth, L.; Cottenet, J.; Mariet, A.-S.; Bonniaud, P.; Blot, M.; Tubert-Bitter, P.; Quantin, C. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: A nationwide, population-based retrospective cohort study. Lancet Respir. Med. 2021, 9, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, Q.; Chi, J.; Dong, B.; Lv, W.; Shen, L.; Wang, Y. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 99, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Near, A.; Tse, J.; Young-Xu, Y.; Hong, D.K.; Reyes, C.M. Health Resource Burden of Influenza Among the Elderly with Underlying Conditions in the United States. Open Forum. Infect. Dis. 2020, 7, S174–S175. [Google Scholar] [CrossRef]
- Capone, A. Simultaneous circulation of COVID-19 and flu in Italy: Potential combined effects on the risk of death? Int. J. Infect. Dis. 2020, 99, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Alosaimi, B.; Naeem, A.; Hamed, M.E.; Alkadi, H.S.; Alanazi, T.; Al Rehily, S.S.; Almutairi, A.Z.; Zafar, A. Influenza co-infection associated with severity and mortality in COVID-19 patients. Virol. J. 2021, 18, 127. [Google Scholar] [CrossRef]
- Bai, L.; Zhao, Y.; Dong, J.; Liang, S.; Guo, M.; Liu, X.; Wang, X.; Huang, Z.; Sun, X.; Zhang, Z.; et al. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res. 2021, 31, 395–403. [Google Scholar] [CrossRef]
- Chaves, S.S.; Naeger, S.; Lounaci, K.; Zuo, Y.; Loiacono, M.M.; Pilard, Q.; Nealon, J.; Genin, M.; Mahe, C. High-Dose Influenza Vaccine Is Associated with Reduced Mortality Among Older Adults with Breakthrough Influenza Even When There Is Poor Vaccine-Strain Match. Clin. Infect. Dis. 2023, 77, 1032–1042. [Google Scholar] [CrossRef]
- Griffin, J.B.; Haddix, M.; Danza, P.; Fisher, R.; Koo, T.H.; Traub, E.; Gounder, P.; Jarashow, C.; Balter, S. SARS-CoV-2 Infections and Hospitalizations Among Persons Aged ≥ 16 Years, by Vaccination Status—Los Angeles County, California, 1 May–25 July 2021. MMWR Morb. Mortal Wkly. Rep. 2021, 70, 1170–1176. [Google Scholar] [CrossRef]
- World Health Organization (WHO); Melanie Marti, M.F.; Chadwick, C.; Hombach, J.; Wilder-Smith, A.; Desai, S.; O’Brien, K. Coadministration of Seasonal Inactivated Influenza and COVID-19 Vaccines: Interim Guidance. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-coadministration-influenza-vaccines (accessed on 20 March 2025).
- Lazarus, R.; Baos, S.; Cappel-Porter, H.; Carson-Stevens, A.; Clout, M.; Culliford, L.; Emmett, S.R.; Garstang, J.; Gbadamoshi, L.; Hallis, B.; et al. Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): A multicentre, randomised, controlled, phase 4 trial. Lancet 2021, 398, 2277–2287. [Google Scholar] [CrossRef]
- Toback, S.; Galiza, E.; Cosgrove, C.; Galloway, J.; Goodman, A.L.; Swift, P.A.; Rajaram, S.; Graves-Jones, A.; Edelman, J.; Burns, F.; et al. Safety, immunogenicity, and efficacy of a COVID-19 vaccine (NVX-CoV2373) co-administered with seasonal influenza vaccines: An exploratory substudy of a randomised, observer-blinded, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2022, 10, 167–179. [Google Scholar] [CrossRef]
- Janssen, C.; Mosnier, A.; Gavazzi, G.; Combadière, B.; Crépey, P.; Gaillat, J.; Launay, O.; Botelho-Nevers, E. Coadministration of seasonal influenza and COVID-19 vaccines: A systematic review of clinical studies. Hum. Vaccin. Immunother. 2022, 18, 2131166. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, L.; Quan, K.; Baber, J.A.; Ho, A.W.Y.; Zhang, Y.; Xu, X.; Lu, C.; Cooper, D.; Koury, K.; Lockhart, S.P.; et al. Safety and Immunogenicity of the BNT162b2 Vaccine Coadministered with Seasonal Inactivated Influenza Vaccine in Adults. Infect. Dis. Ther. 2023, 12, 2241–2258. [Google Scholar] [CrossRef]
- Hall, K.T.; Stone, V.E.; Ojikutu, B. Reactogenicity and Concomitant Administration of the COVID-19 Booster and Influenza Vaccine. JAMA Netw. Open 2022, 5, e2222246. [Google Scholar] [CrossRef]
- King, S.M.; Bryan, S.P.; Hilchey, S.P.; Wang, J.; Zand, M.S. First Impressions Matter: Immune Imprinting and Antibody Cross-Reactivity in Influenza and SARS-CoV-2. Pathogens 2023, 12, 169. [Google Scholar] [CrossRef] [PubMed]
- Simon, V.; Kota, V.; Bloomquist Ryan, F.; Hanley Hannah, B.; Forgacs, D.; Pahwa, S.; Pallikkuth, S.; Miller Loren, G.; Schaenman, J.; Yeaman Michael, R.; et al. PARIS and SPARTA: Finding the Achilles’ Heel of SARS-CoV-2. mSphere 2022, 7, e00179-22. [Google Scholar] [CrossRef] [PubMed]
- Carlock, M.A.; Allen, J.D.; Hanley, H.B.; Ross, T.M. Longitudinal assessment of human antibody binding to hemagglutinin elicited by split-inactivated influenza vaccination over six consecutive seasons. PLoS ONE 2024, 19, e0301157. [Google Scholar] [CrossRef]
- World Health Organization. Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Shi, H.; Xiaojian, Z.; Pan, G.; Victoria, M.; Pam, F.; Brandi, L.; Stacey, S.-C.; Ross, T.M. Inactivated influenza virus vaccines expressing COBRA hemagglutinin elicited broadly reactive, long-lived protective antibodies. Hum. Vaccines Immunother. 2024, 20, 2356269. [Google Scholar] [CrossRef]
- Committee for Proprietary Medicinal Products (CPMP). Note for Guidance on Harmonisation of Requirements for Influenza Vaccines; The European Agency for the Evaluation of Medicinal Products: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Kalkeri, R.; Cai, Z.; Lin, S.; Farmer, J.; Kuzmichev, Y.V.; Koide, F. SARS-CoV-2 Spike Pseudoviruses: A Useful Tool to Study Virus Entry and Address Emerging Neutralization Escape Phenotypes. Microorganisms 2021, 9, 1744. [Google Scholar] [CrossRef]
- Ferrara, F.; Temperton, N. Pseudotype Neutralization Assays: From Laboratory Bench to Data Analysis. Methods Protoc. 2018, 1, 8. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Estimates of deaths associated with seasonal influenza—United States, 1976–2007. MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 1057. [Google Scholar]
- CDC. Flu and People 65 Years and Older. Available online: https://www.cdc.gov/flu/highrisk/65over.htm (accessed on 23 March 2025).
- Blomberg, B.B.; Frasca, D. Quantity, not quality, of antibody response decreased in the elderly. JCI 2011, 121, 2981–2983. [Google Scholar] [CrossRef]
- Aydillo, T.; Maria, B.-M.; Amaya, R.-F.; Alba, E.; Celia, S.-R.; Jerónimo, P.; María, D.M.M.-G.; José, S.-C.M.; Javier, S.-C.; Adolfo, G.-S.; et al. Concomitant administration of seasonal influenza and COVID-19 mRNA vaccines. Emerg. Microbes Infect. 2024, 13, 2292068. [Google Scholar] [CrossRef] [PubMed]
- Pattinson, D.; Jester, P.; Gu, C.; Guan, L.; Armbrust, T.; Petrie, J.G.; King, J.P.; Nguyen, H.Q.; Belongia, E.A.; Halfmann, P.; et al. Ipsilateral and contralateral coadministration of influenza and COVID-19 vaccines produce similar antibody responses. eBioMedicine 2024, 103, 105103. [Google Scholar] [CrossRef]
- Nazareth, J.; Martin, C.A.; Pan, D.; Barr, I.G.; Sullivan, S.G.; Peck, H.; Veli, N.; Das, M.; Bryant, L.; George, N.; et al. Immunogenicity of concomitant SARS-CoV-2 and influenza vaccination in UK healthcare workers: A prospective longitudinal observational study. Lancet Reg. Health—Eur. 2024, 44, 101022. [Google Scholar] [CrossRef]
- Richards, K.A.; Moritzky, S.; Shannon, I.; Fitzgerald, T.; Yang, H.; Branche, A.; Topham, D.J.; Treanor, J.J.; Nayak, J.; Sant, A.J. Recombinant HA-based vaccine outperforms split and subunit vaccines in elicitation of influenza-specific CD4 T cells and CD4 T cell-dependent antibody responses in humans. npj Vaccines 2020, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.; Joyner, D.; Mege, N.J.; Cusimano, G.M.; Bell, M.R.; Marcy, J.; Taramangalam, B.; Kim, K.M.; Lin, P.J.C.; Tam, Y.K.; et al. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun. Biol. 2023, 6, 188. [Google Scholar] [CrossRef]
- Xie, C.; Yao, R.; Xia, X. The advances of adjuvants in mRNA vaccines. npj Vaccines 2023, 8, 162. [Google Scholar] [CrossRef]
- Alameh, M.-G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021, 54, 2877–2892.e2877. [Google Scholar] [CrossRef]
- Swaminathan, G.; Thoryk, E.A.; Cox, K.S.; Meschino, S.; Dubey, S.A.; Vora, K.A.; Celano, R.; Gindy, M.; Casimiro, D.R.; Bett, A.J. A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens. Vaccine 2016, 34, 110–119. [Google Scholar] [CrossRef]
- Gasparini, R.; Pozzi, T.; Montomoli, E.; Fragapane, E.; Senatore, F.; Minutello, M.; Podda, A. Increased immunogenicity of the MF59-adjuvanted influenza vaccine compared to a conventional subunit vaccine in elderly subjects. Eur. J. Epidemiol. 2001, 17, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Shichinohe, S.; Watanabe, T. Advances in Adjuvanted Influenza Vaccines. Vaccines 2023, 11, 1391. [Google Scholar] [CrossRef] [PubMed]
- Lofano, G.; Mancini, F.; Salvatore, G.; Cantisani, R.; Monaci, E.; Carrisi, C.; Tavarini, S.; Sammicheli, C.; Rossi Paccani, S.; Soldaini, E.; et al. Oil-in-Water Emulsion MF59 Increases Germinal Center B Cell Differentiation and Persistence in Response to Vaccination. J. Immunol. 2015, 195, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
UGA6 (2021–2022) a | UGA7 (2022–2023) | UGA8 (2023–2024) | Total UGA6-8 (2021–2024) | SPARTA (2021–2024) b | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Demographic Characteristics | COV-Flu c (n = 109) | Mono-Flu d (n = 56) | COV-Flu (n = 61) | Mono-Flu (n = 48) | COV-Flu (n = 31) | Mono-Flu (n = 26) | COV-Flu (n = 201) | Mono-Flu (n = 130) | Mono-COVID-19 e (n = 67) | |
Sex (%) | ||||||||||
Male | 37 (34%) | 16 (29%) | 28 (46%) | 21 (44%) | 9 (29%) | 11 (42%) | 74 (37%) | 48 (37%) | 23 (34%) | |
Female | 72(66%) | 40 (71%) | 33 (54%) | 27 (56%) | 22 (71%) | 15 (58%) | 127 (63%) | 82 (63%) | 44 (66%) | |
Age group (%) | ||||||||||
Young adult (18–64) | 66 (61%) | 41 (73%) | 30 (49%) | 23 (48%) | 18 (58%) | 16 (62%) | 114 (57%) | 80 (62%) | 40 (60%) | |
Elderly (65–90) | 43 (39%) | 15 (27%) | 31 (51%) | 25 (52%) | 13 (42%) | 10 (38%) | 87 (43%) | 50 (38%) | 27 (40%) | |
Average Age (age range) | ||||||||||
Young adult (18–64) | 39.3 (18–63) | 39.7 (18–64) | 44.0 (18–63) | 45.2 (19–63) | 48.3 (25–64) | 44.9 (25–64) | 43.9 (18–64) | 43.3 (18–64) | 44.3 (19–64) | |
Elderly (65–90) | 72.2 (65–86) | 71.3 (65–83) | 71.8 (65–87) | 72.0 (66–84) | 71.7 (65–80) | 71.1 (65–76) | 71.9 (65–87) | 71.5 (65–84) | 73.3 (65–83) | |
Race/Ethnicity (%) | ||||||||||
White | 94 (86%) | 45 (80%) | 59 (97%) | 42 (88%) | 28 (90%) | 25 (96%) | 181 (90%) | 112 (86%) | 60 (90%) | |
Black | 6 (6%) | 2 (4%) | - | 2 (4%) | 2 (7%) | - | 8 (4%) | 4 (3%) | - | |
Hispanic or Latino | 7 (6%) | 4 (7%) | 2 (3%) | 3 (6%) | 1 (3%) | - | 10 (5%) | 7 (5%) | 2 (3%) | |
Asian | 2 (2%) | 3 (5%) | - | 1 (2%) | - | 1 (4%) | 2 (1%) | 5 (4%) | 5 (7%) | |
American Indian or Alaska Native | - | 1 (2%) | - | - | - | - | - | 1 (1%) | - | |
Mixed (Black, White, Hispanic, or Latino) | - | 1 (2%) | - | - | - | - | - | 1 (1%) | - | |
Average duration (days) between mRNA COVID-19 vaccine dose and influenza vaccine (day range) | 20.3 (1–88) | - | 27.6 (1–81) | - | 28 (2–87) | - | 24.6 (1–88) | - | - | |
Average days post-flu vaccination for sera testing (day range) | 29.2 (21–42) | 29.6 (24–42) | 28 (21–40) | 28.6 (24–41) | 28.9 (23–37) | 28.7 (21–35) | 28.8 (21–42) | 29.1 (21–42) | - | |
Average days post-COVID-19 vaccination for sera testing (day range) | 35.9 (7–87) | - | 48.3 (3–88) | - | 21.5 (4–78) | - | 37.5 (3–88) | - | 46.3 (7–90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berber, E.; Pantouli, F.; Hanley, H.B.; Ross, T.M. COVID-19 Vaccination Enhances the Immunogenicity of Seasonal Influenza Vaccination in the Elderly. Vaccines 2025, 13, 531. https://doi.org/10.3390/vaccines13050531
Berber E, Pantouli F, Hanley HB, Ross TM. COVID-19 Vaccination Enhances the Immunogenicity of Seasonal Influenza Vaccination in the Elderly. Vaccines. 2025; 13(5):531. https://doi.org/10.3390/vaccines13050531
Chicago/Turabian StyleBerber, Engin, Fani Pantouli, Hannah B. Hanley, and Ted M. Ross. 2025. "COVID-19 Vaccination Enhances the Immunogenicity of Seasonal Influenza Vaccination in the Elderly" Vaccines 13, no. 5: 531. https://doi.org/10.3390/vaccines13050531
APA StyleBerber, E., Pantouli, F., Hanley, H. B., & Ross, T. M. (2025). COVID-19 Vaccination Enhances the Immunogenicity of Seasonal Influenza Vaccination in the Elderly. Vaccines, 13(5), 531. https://doi.org/10.3390/vaccines13050531