Vaccinations in Pediatric Hematology and Oncology: Biologic Basis, Clinical Applications, and Perspectives
Abstract
:1. Introduction
2. Vaccinations in Children Receiving Chemotherapy
2.1. Rationale: The Burden of Immunosuppression and Immune Recovery
2.2. An Overview of Current Guidelines: Vaccinating Patients During Chemotherapy
2.2.1. Vaccination During Chemotherapy
2.2.2. Vaccination After Chemotherapy
3. Beyond Conventional Chemotherapies: Vaccinating Children Receiving Monoclonal Antibodies and CAR-T Cell Therapy
3.1. Vaccinating Children After Treatment with New Drugs
3.2. Vaccinating Children Receiving CAR-T Cell Therapy
Treatment | Mechanism of Action | Non-Live Vaccines | Live Vaccines |
---|---|---|---|
Blinantunomab [19] | Anti-CD19 | 6 months | 12 months |
Inotuzumab-ozogamicina [19] | Anti-CD22 | 6 months | 12 months |
Rituximab (and other anti-CD20 therapies) [19] | Anti-CD20 | 6 months | 12 months |
Alemtuzumab [19] | Anti-CD52 | 6 months | 12 months |
Daratumomab [19] | Anti-CD38 | 17 weeks | 17 weeks |
Gentuzumab-ozogamicina [19] | Anti-CD33 | 5 weeks | 12 weeks |
Eculizumab [19] | Anti-C5 | 8 weeks | 12 weeks |
Brentuximab-vedotin [19] | Anti-CD30 | 4 weeks | 12 weeks |
CAR-T cell therapy [28] | Different targets (i.e., CD19 in ALL) | 3 months (no ongoing immunosuppression, evidence of detectable IgA, at least 2 months from last IVIG) | 12 months (no ongoing immunosuppression, evidence of immune reconstitution, detectable serum IgA, at least 8 months from last IVIG) |
4. Vaccinations in Children Receiving Hematopoietic Stem Cell Transplantation (HSCT)
4.1. Kinetics of Immune Reconstitution: An Overview
4.2. Factors Influencing Immune Reconstitution
4.3. Efficacy and Safety of Vaccinations Following HSCT
4.4. An Overview of Current Guidelines
5. Vaccinations in the Asplenic Children
5.1. Asplenia and Hyposplenism: Clinical Implications
5.2. Vaccination Strategies in Patients with Asplenia
5.2.1. Pneumococcal Vaccines
5.2.2. Meningococcal Vaccines
5.2.3. Haemophilus Influenzae Type B Vaccines
6. Future Directions: Towards a Personalized Vaccine Strategy in Pediatric Hematology and Oncology
6.1. Role of the Immunological Assessment to Evaluate IR After Chemotherapy
6.2. From Time-Based to Immunology-Based Vaccination Schedule in HSCT Recipients
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIEOP | Italian Association for Pediatric Hematology Oncology |
ALC | Absolute lymphocyte count |
ALL | Acute lymphoblastic leukemia |
BCR | B-cell receptor |
BM | Bone marrow |
CB | Cord blood |
CDC | Centers for Disease Control and Prevention |
CAR-T | Chimeric antigen receptor-T cell |
cGvHD | Chronic graft-versus-host disease |
ECIL7 | 2017 European Conference on Infections in Leukaemia |
GvHD | Graft-versus-host disease |
HBV | Hepatitis B |
Hib | Haemophilus influenza type b |
HSCT | Hematopoietic stem cell transplantation |
IDSA | Infectious Diseases Society of America |
IEI | Inborn errors of immunity |
IR | Immune reconstitution |
ITP | Immune thrombocytopenic purpura |
IVIG | Intravenous immunoglobulin |
KRECs | K-receptor excision circles |
mAbs | Monoclonal antibodies |
NK | Natural killer |
OPSI | Overwhelming post-splenectomy infection |
PBSCT | Peripheral blood stem cell transplantation |
RTE | Recent thymic emigrants |
SCD | Sickle cell disease |
TCR | T-cell receptor |
TRECs | T-receptor excision circles |
References
- Neemann, K.A.; Sato, A.I. Vaccinations in children with hematologic malignancies and those receiving hematopoietic stem cell transplants or cellular therapies. Transpl. Infect. Dis. 2023, 25 (Suppl. 1), e14100. [Google Scholar] [CrossRef]
- Mackall, C.L. T-Cell immunodeficiency following cytotoxic antineoplastic therapy: A review. Stem Cells 2000, 18, 10–18. [Google Scholar] [CrossRef]
- Esposito, S.; Cecinati, V.; Brescia, L.; Principi, N. Vaccinations in children with cancer. Vaccine 2010, 28, 3278–3284. [Google Scholar] [CrossRef]
- Mustafa, M.M.; Buchanan, G.R.; Winick, N.J.; McCracken, G.H.; Tkaczewski, I.; Lipscomb, M.; Ansari, Q.; Agopian, M.S. Immune recovery in children with malignancy after cessation of chemotherapy. J. Pediatr. Hematol. 1998, 20, 451–457. [Google Scholar] [CrossRef]
- Ruggiero, A.; Battista, A.; Coccia, P.; Attinà, G.; Riccardi, R. How to manage vaccinations in children with cancer. Pediatr. Blood Cancer 2011, 57, 1104–1108. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.R.; Ortín, M.; Cohen, B.J.; Borrow, R.; Irving, D.; Sheldon, J.; Heath, P.T. Revaccination of children after completion of standard chemotherapy for acute leukemia. Clin. Infect. Dis. 2007, 44, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chou, A.J.; Lennox, A.; Kleiman, P.; Wexler, L.H.; Meyers, P.A.; Gorlick, R. Loss of antibody titers and effectiveness of revaccination in post-chemotherapy pediatric sarcoma patients. Pediatr. Blood Cancer 2007, 49, 656–660. [Google Scholar] [CrossRef]
- Brodtman, D.H.; Rosenthal, D.W.; Redner, A.; Lanzkowsky, P.; Bonagura, V.R. Immunodeficiency in children with acute lymphoblastic leukemia after completion of modern aggressive chemotherapeutic regimens. J. Pediatr. 2005, 146, 654–661. [Google Scholar] [CrossRef]
- Vaccine Recommendations and Guidelines of the ACIP. Altered Immunocompetence. General Best Practices for Immunization. Available online: https://www.cdc.gov/vaccines/hcp/imz-best-practices/altered-immunocompetence.html?CDC_AAref_Val=https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/immunocompetence.html (accessed on 31 March 2025).
- Rubin, L.G.; Levin, M.J.; Ljungman, P.; Davies, E.G.; Avery, R.; Tomblyn, M.; Bousvaros, A.; Dhanireddy, S.; Sung, L.; Keyserling, H.; et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014, 58, 309–318. [Google Scholar] [CrossRef]
- Luthy, K.E.; Tiedeman, M.E.; Beckstrand, R.L.; Mills, D.A. Safety of live-virus vaccines for children with immune deficiency. J. Am. Acad. Nurse Pr. 2006, 18, 494–503. [Google Scholar] [CrossRef]
- Cesaro, S.; Giacchino, M.; Fioredda, F.; Barone, A.; Battisti, L.; Bezzio, S.; Frenos, S.; De Santis, R.; Livadiotti, S.; Marinello, S.; et al. Guidelines on vaccinations in paediatric haematology and oncology patients. BioMed Res. Int. 2014, 2014, 707691. [Google Scholar] [CrossRef] [PubMed]
- Goossen, G.M.; Kremer, L.C.; van de Wetering, M.D. Influenza vaccination in children being treated with chemotherapy for cancer. Cochrane Database Syst. Rev. 2013, 2013, CD006484. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, A.; Suminoe, A.; Koga, Y.; Kinukawa, N.; Kusuhara, K.; Hara, T. Immune response after influenza vaccination in children with cancer. Pediatr. Blood Cancer 2005, 45, 831–837. [Google Scholar] [CrossRef]
- Yetgin, S.; Tavil, B.; Aytac, S.; Kuskonmaz, B.; Karna, G. Unexpected protection from infection by two booster hepatitis B virus vaccination in children with acute lymphoblastic leukemia. Leuk. Res. 2007, 31, 493–496. [Google Scholar] [CrossRef]
- Hovi, L.; Valle, M.; Siimes, M.A.; Jalanko, H.; Saarinen, U.M. Impaired response to hepatitis B vaccine in children receiving anticancer chemotherapy. Pediatr. Infect. Dis. J. 1995, 14, 931–934. [Google Scholar] [CrossRef]
- Treatment Protocol for Children and Adolescents With Acute Lymphoblastic Leukemia—AIEOP-BFM ALL 2017. ClinicalTrials.gov ID NCT03643276. Available online: https://clinicaltrials.gov/study/NCT03643276 (accessed on 31 March 2025).
- Brivio, E.; Baruchel, A.; Beishuizen, A.; Bourquin, J.-P.; Brown, P.A.; Cooper, T.; Gore, L.; Kolb, E.A.; Locatelli, F.; Maude, S.L.; et al. Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma. Eur. J. Cancer 2022, 164, 1–17. [Google Scholar] [CrossRef]
- Rivera-Izquierdo, M.; Valero-Ubierna, M.d.C.; Nieto-Gómez, P.; Martínez-Bellón, M.D.; Fernández-Martínez, N.F.; Barranco-Quintana, J.L. Vaccination in patients under monoclonal antibody treatment: An updated comprehensive review. Expert Rev. Vaccines 2020, 19, 727–744. [Google Scholar] [CrossRef]
- Narbutt, J.; Żuber, Z.; Lesiak, A.; Bień, N.; Szepietowski, J.C. Vaccinations in Selected Immune-Related Diseases Treated with Biological Drugs and JAK Inhibitors—Literature Review and Statement of Experts from Polish Dermatological Society. Vaccines 2024, 12, 82. [Google Scholar] [CrossRef]
- Doornekamp, L.; Goetgebuer, R.L.; Schmitz, K.S.; Goeijenbier, M.; van der Woude, C.J.; Fouchier, R.; van Gorp, E.C.; de Vries, A.C. High Immunogenicity to Influenza Vaccination in Crohn’s Disease Patients Treated with Ustekinumab. Vaccines 2020, 8, 455. [Google Scholar] [CrossRef]
- Venerito, V.; Stefanizzi, P.; Cantarini, L.; Lavista, M.; Galeone, M.G.; Di Lorenzo, A.; Iannone, F.; Tafuri, S.; Lopalco, G. Immunogenicity and Safety of Adjuvanted Recombinant Zoster Vaccine in Rheumatoid Arthritis Patients on Anti-Cellular Biologic Agents or JAK Inhibitors: A Prospective Observational Study. Int. J. Mol. Sci. 2023, 24, 6967. [Google Scholar] [CrossRef]
- Richi, P.; Martín, M.D.; Navío, M.T.; González-Hombrado, L.; Salido, M.; Llorente, J.; Thuissard-Vasallo, I.; Alcocer, P.; Saa-Requejo, C.M.; Jiménez-Diaz, A.; et al. Antibody responses to influenza vaccine in patients on biological therapy: Results of RIER cohort study. Med. Clin. 2019, 153, 380–386. [Google Scholar] [CrossRef]
- Wat, J.; Barmettler, S. Hypogammaglobulinemia After Chimeric Antigen Receptor (CAR) T-Cell Therapy: Characteristics, Management, and Future Directions. J. Allergy Clin. Immunol. Pr. 2021, 10, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Bupha-Intr, O.; Haeusler, G.; Chee, L.; Thursky, K.; Slavin, M.; Teh, B. CAR-T cell therapy and infection: A review. Expert Rev. Anti-Infect. Ther. 2020, 19, 749–758. [Google Scholar] [CrossRef]
- Brudno, J.N.; Kochenderfer, J.N. Current understanding and management of CAR T cell-associated toxicities. Nat. Rev. Clin. Oncol. 2024, 21, 501–521. [Google Scholar] [CrossRef]
- Los-Arcos, I.; Iacoboni, G.; Aguilar-Guisado, M.; Alsina-Manrique, L.; de Heredia, C.D.; Fortuny-Guasch, C.; García-Cadenas, I.; García-Vidal, C.; González-Vicent, M.; Hernani, R.; et al. Recommendations for screening, monitoring, prevention, and prophylaxis of infections in adult and pediatric patients receiving CAR T-cell therapy: A position paper. Infection 2020, 49, 215–231. [Google Scholar] [CrossRef]
- Reynolds, G.; Hall, V.G.; Teh, B.W. Vaccine schedule recommendations and updates for patients with hematologic malignancy post-hematopoietic cell transplant or CAR T-cell therapy. Transpl. Infect. Dis. 2023, 25 (Suppl. 1), e14109. [Google Scholar] [CrossRef]
- Hill, J.A.; Seo, S.K. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 2020, 136, 925–935. [Google Scholar] [CrossRef]
- Hayden, P.; Roddie, C.; Bader, P.; Basak, G.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 2022, 33, 259–275. [Google Scholar] [CrossRef]
- Mehta, R.S.; Rezvani, K. Immune reconstitution post allogeneic transplant and the impact of immune recovery on the risk of infection. Virulence 2016, 7, 901–916. [Google Scholar] [CrossRef]
- Ogonek, J.; Juric, M.K.; Ghimire, S.; Varanasi, P.R.; Holler, E.; Greinix, H.; Weissinger, E. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation. Front. Immunol. 2016, 7, 507. [Google Scholar] [CrossRef]
- Strocchio, L.; Locatelli, F. Hematopoietic Stem Cell Transplantation in Thalassemia. Hematol. Oncol. Clin. North Am. 2018, 32, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; McGuirk, J.P. Allogeneic Stem Cell Transplantation: A Historical and Scientific Overview. Cancer Res. 2016, 76, 6445–6451. [Google Scholar] [CrossRef] [PubMed]
- Castagnoli, R.; Delmonte, O.M.; Calzoni, E.; Notarangelo, L.D. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Diseases: Current Status and Future Perspectives. Front. Pediatr. 2019, 7, 295. [Google Scholar] [CrossRef]
- Conrad, A.; Alcazer, V.; Valour, F.; Ader, F.; Lyon HEMINF Study Group. Vaccination post-allogeneic hematopoietic stem cell transplantation: What is feasible? Expert Rev. Vaccines 2018, 17, 299–309. [Google Scholar] [CrossRef] [PubMed]
- de Koning, C.; Plantinga, M.; Besseling, P.; Boelens, J.J.; Nierkens, S. Immune Reconstitution after Allogeneic Hematopoietic Cell Transplantation in Children. Biol. Blood Marrow Transplant. 2016, 22, 195–206. [Google Scholar] [CrossRef]
- Bosch, M.; Khan, F.M.; Storek, J. Immune reconstitution after hematopoietic cell transplantation. Curr. Opin. Hematol. 2012, 19, 324–335. [Google Scholar] [CrossRef]
- Simons, L.; Cavazzana, M.; André, I. Concise Review: Boosting T-Cell Reconstitution Following Allogeneic Transplantation—Current Concepts and Future Perspectives. Stem Cells Transl. Med. 2019, 8, 650–657. [Google Scholar] [CrossRef]
- Velardi, E.; Tsai, J.J.; Brink, M.R.M.v.D. T cell regeneration after immunological injury. Nat. Rev. Immunol. 2021, 21, 277–291. [Google Scholar] [CrossRef]
- van der Maas, N.G.; Berghuis, D.; van der Burg, M.; Lankester, A.C. B Cell Reconstitution and Influencing Factors After Hematopoietic Stem Cell Transplantation in Children. Front. Immunol. 2019, 10, 782. [Google Scholar] [CrossRef]
- Avanzini, M.A.; Locatelli, F.; Dos Santos, C.; Maccario, R.; Lenta, E.; Oliveri, M.; Giebel, S.; De Stefano, P.; Rossi, F.; Giorgiani, G.; et al. B lymphocyte reconstitution after hematopoietic stem cell transplantation: Functional immaturity and slow recovery of memory CD27+ B cells. Exp. Hematol. 2005, 33, 480–486. [Google Scholar] [CrossRef]
- Abdel-Azim, H.; Elshoury, A.; Mahadeo, K.M.; Parkman, R.; Kapoor, N. Humoral Immune Reconstitution Kinetics after Allogeneic Hematopoietic Stem Cell Transplantation in Children: A Maturation Block of IgM Memory B Cells May Lead to Impaired Antibody Immune Reconstitution. Biol. Blood Marrow Transplant. 2017, 23, 1437–1446. [Google Scholar] [CrossRef]
- Sethi, M.K.; Thol, F.; Stadler, M.; Heuser, M.; Ganser, A.; Koenecke, C.; Pabst, O. VH1 Family Immunoglobulin Repertoire Sequencing after Allogeneic Hematopoietic Stem Cell Transplantation. PLoS ONE 2017, 12, e0168096. [Google Scholar] [CrossRef]
- de Koning, C.; Nierkens, S.; Boelens, J.J. Strategies before, during, and after hematopoietic cell transplantation to improve T-cell immune reconstitution. Blood 2016, 128, 2607–2615. [Google Scholar] [CrossRef]
- Chaudhry, M.S.; Velardi, E.; Malard, F.; Brink, M.R.M.v.D. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation: Time To T Up the Thymus. J. Immunol. 2017, 198, 40–46. [Google Scholar] [CrossRef]
- Bohmann, E.-M.; Fehn, U.; Holler, B.; Weber, D.; Holler, E.; Herr, W.; Hoffmann, P.; Edinger, M.; Wolff, D. Altered immune reconstitution of B and T cells precedes the onset of clinical symptoms of chronic graft-versus-host disease and is influenced by the type of onset. Ann. Hematol. 2017, 96, 299–310. [Google Scholar] [CrossRef]
- Gooptu, M.; Kim, H.; Chen, Y.-B.; Rybka, W.; Artz, A.; Boyer, M.; Johnston, L.; McGuirk, J.; Shea, T.C.; Jagasia, M.; et al. Effect of Antihuman T Lymphocyte Globulin on Immune Recovery after Myeloablative Allogeneic Stem Cell Transplantation with Matched Unrelated Donors: Analysis of Immune Reconstitution in a Double-Blind Randomized Controlled Trial. Biol. Blood Marrow Transplant. 2018, 24, 2216–2223. [Google Scholar] [CrossRef]
- Stocker, N.; Labopin, M.; Boussen, I.; Paccoud, O.; Bonnin, A.; Malard, F.; Amiel, C.; Gozlan, J.; Battipaglia, G.; Duléry, R.; et al. Pre-emptive rituximab treatment for Epstein–Barr virus reactivation after allogeneic hematopoietic stem cell transplantation is a worthwhile strategy in high-risk recipients: A comparative study for immune recovery and clinical outcomes. Bone Marrow Transplant. 2020, 55, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Heimall, J.; Logan, B.R.; Cowan, M.J.; Notarangelo, L.D.; Griffith, L.M.; Puck, J.M.; Kohn, D.B.; Pulsipher, M.A.; Parikh, S.; Martinez, C.; et al. Immune reconstitution and survival of 100 SCID patients post–hematopoietic cell transplant: A PIDTC natural history study. Blood 2017, 130, 2718–2727. [Google Scholar] [CrossRef]
- Elfeky, R.; Lazareva, A.; Qasim, W.; Veys, P. Immune reconstitution following hematopoietic stem cell transplantation using different stem cell sources. Expert Rev. Clin. Immunol. 2019, 15, 735–751. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.D.; Varma, A.; Hussain, M.J.; Nathan, S.; Brunstein, C. Clinical Relevance of Immunobiology in Umbilical Cord Blood Transplantation. J. Clin. Med. 2019, 8, 1968. [Google Scholar] [CrossRef] [PubMed]
- Rénard, C.; Barlogis, V.; Mialou, V.; Galambrun, C.; Bernoux, D.; Goutagny, M.P.; Glasman, L.; Loundou, A.D.; Poitevin-Later, F.; Dignat-George, F.; et al. Lymphocyte subset reconstitution after unrelated cord blood or bone marrow transplantation in children. Br. J. Haematol. 2011, 152, 322–330. [Google Scholar] [CrossRef]
- Nakatani, K.; Imai, K.; Shigeno, M.; Sato, H.; Tezuka, M.; Okawa, T.; Mitsuiki, N.; Isoda, T.; Tomizawa, D.; Takagi, M.; et al. Cord blood transplantation is associated with rapid B-cell neogenesis compared with BM transplantation. Bone Marrow Transplant. 2014, 49, 1155–1161. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Turki, A.T.; McDonough, S.M.; Stevenson, K.E.; Kim, H.T.; Kao, G.; Herrera, M.I.; Reynolds, C.G.; Alyea, E.P.; Ho, V.T.; et al. immune reconstitution after double umbilical cord blood stem cell transplantation: Comparison with unrelated peripheral blood stem cell transplantation. Biol. Blood Marrow Transplant. 2012, 18, 565–574. [Google Scholar] [CrossRef]
- Wiegering, V.; Eyrich, M.; Winkler, B.; Schlegel, P.G. Comparison of Immune Reconstitution After Allogeneic Versus Autologous Stem Cell Transplantation in 182 Pediatric Recipients. J. Pediatr. Hematol. 2019, 41, e302–e307. [Google Scholar] [CrossRef]
- Baumeister, S.H.C.; Rambaldi, B.; Shapiro, R.M.; Romee, R. Key Aspects of the Immunobiology of Haploidentical Hematopoietic Cell Transplantation. Front. Immunol. 2020, 11, 191. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Zhao, X.-Y.; Huang, X.-J. Immune reconstitution after haploidentical hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2014, 20, 440–449. [Google Scholar] [CrossRef]
- McCurdy, S.R.; Luznik, L. Immune reconstitution after T-cell replete HLA-haploidentical transplantation. Semin. Hematol. 2019, 56, 221–226. [Google Scholar] [CrossRef]
- Nakamae, H.; Fujii, K.; Nanno, S.; Okamura, H.; Nakane, T.; Koh, H.; Nakashima, Y.; Nakamae, M.; Hirose, A.; Teshima, T.; et al. A prospective observational study of immune reconstitution following transplantation with post-transplant reduced-dose cyclophosphamide from HLA -haploidentical donors. Transpl. Int. 2019, 32, 1322–1332. [Google Scholar] [CrossRef]
- Janssen, M.; Bruns, A.; Kuball, J.; Raijmakers, R.; van Baarle, D. Vaccine Responses in Adult Hematopoietic Stem Cell Transplant Recipients: A Comprehensive Review. Cancers 2021, 13, 6140. [Google Scholar] [CrossRef]
- Ambati, A.; Einarsdottir, S.; Magalhaes, I.; Poiret, T.; Bodenstein, R.; LeBlanc, K.; Brune, M.; Maeurer, M.; Ljungman, P. Immunogenicity of virosomal adjuvanted trivalent influenza vaccination in allogeneic stem cell transplant recipients. Transpl. Infect. Dis. 2015, 17, 371–379. [Google Scholar] [CrossRef]
- Engelhard, D.; Nagler, A.; Hardan, I.; Morag, A.; Aker, M.; Baciu, H.; Strauss, N.; Parag, G.; Naparstek, E.; Ravid, Z. Antibody response to a two-dose regimen of influenza vaccine in allogeneic T cell-depleted and autologous BMT recipients. Bone Marrow Transpl. 1993, 11, 1–5. [Google Scholar] [PubMed]
- Karras, N.A.; Weeres, M.; Sessions, W.; Xu, X.; DeFor, T.; Young, J.-A.H.; Stefanski, H.; Brunstein, C.; Cooley, S.; Miller, J.S.; et al. A Randomized trial of one versus two doses of influenza vaccine after allogeneic transplantation. Biol. Blood Marrow Transplant. 2013, 19, 109–116. [Google Scholar] [CrossRef]
- Dhédin, N.; Krivine, A.; Le Corre, N.; Mallet, A.; Lioure, B.; Bay, J.-O.; Rubio, M.-T.; Agape, P.; Thiébaut, A.; Le Goff, J.; et al. Comparable humoral response after two doses of adjuvanted influenza A/H1N1pdm2009 vaccine or natural infection in allogeneic stem cell transplant recipients. Vaccine 2014, 32, 585–591. [Google Scholar] [CrossRef]
- Issa, N.C.; Marty, F.M.; Gagne, L.S.; Koo, S.; Verrill, K.A.; Alyea, E.P.; Cutler, C.S.; Koreth, J.; Armand, P.; Ho, V.T.; et al. Seroprotective Titers against 2009 H1N1 influenza a virus after vaccination in allogeneic hematopoietic stem cell transplantation recipients. Biol. Blood Marrow Transplant. 2011, 17, 434–438. [Google Scholar] [CrossRef]
- Cordonnier, C.; Labopin, M.; Chesnel, V.; Ribaud, P.; De La Camara, R.; Martino, R.; Ullmann, A.J.; Parkkali, T.; Locasciulli, A.; Yakouben, K.; et al. Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Randomized study of early versus late immunization with pneumococcal conjugate vaccine after allogeneic stem cell transplantation. Clin. Infect. Dis. 2009, 48, 1392–1401. [Google Scholar] [CrossRef]
- Meisel, R.; Kuypers, L.; Dirksen, U.; Schubert, R.; Gruhn, B.; Strauss, G.; Beutel, K.; Groll, A.H.; Duffner, U.; Blutters-Sawatzki, R.; et al. Pneumococcal conjugate vaccine provides early protective antibody responses in children after related and unrelated allogeneic hematopoietic stem cell transplantation. Blood 2007, 109, 2322–2326. [Google Scholar] [CrossRef]
- Cordonnier, C.; Ljungman, P.; Juergens, C.; Maertens, J.; Selleslag, D.; Sundaraiyer, V.; Giardina, P.C.; Clarke, K.; Gruber, W.C.; Scott, D.A.; et al. Immunogenicity, safety, and tolerability of 13-valent pneumococcal conjugate vaccine followed by 23-valent pneumococcal polysaccharide vaccine in recipients of allogeneic hematopoietic stem cell transplant aged ≥2 years: An open-label study. Clin. Infect. Dis. 2015, 61, 313–323. [Google Scholar] [CrossRef]
- Chaichotjinda, K.; Anurathapan, U.; Boonsathorn, S.; Chaisavaneeyakorn, S.; Treepongkaruna, S.; Techasaensiri, C.; Apiwattanakul, N. Immune responses to hepatitis B vaccination after hematopoietic stem cell transplantation in pediatric and young adult patients. Clin. Transplant. 2020, 34, e14024. [Google Scholar] [CrossRef]
- Conrad, A.; Perry, M.; Langlois, M.-E.; Labussière-Wallet, H.; Barraco, F.; Ducastelle-Leprêtre, S.; Larcher, M.-V.; Balsat, M.; Boccard, M.; Chidiac, C.; et al. Efficacy and Safety of Revaccination against Tetanus, Diphtheria, Haemophilus influenzae Type b and Hepatitis B Virus in a Prospective Cohort of Adult Recipients of Allogeneic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 1729–1737. [Google Scholar] [CrossRef]
- Jaffe, D.; Papadopoulos, E.B.; Young, J.W.; O’Reilly, R.J.; Prockop, S.; Kernan, N.A.; Jakubowski, A.; Boulad, F.; Perales, M.-A.; Castro-Malaspina, H.; et al. Immunogenicity of recombinant hepatitis B vaccine (rHBV) in recipients of unrelated or related allogeneic hematopoietic cell (HC) transplants. Blood 2006, 108, 2470–2475. [Google Scholar] [CrossRef]
- Inaba, H.; Hartford, C.M.; Pei, D.; Posner, M.J.; Yang, J.; Hayden, R.T.; Srinivasan, A.; Triplett, B.M.; McCulllers, J.A.; Pui, C.; et al. Longitudinal analysis of antibody response to immunization in paediatric survivors after allogeneic haematopoietic stem cell transplantation. Br. J. Haematol. 2012, 156, 109–117. [Google Scholar] [CrossRef]
- Parkkali, T.; Ölander, R.-M.; Ruutu, T.; Vuontela, K.; Volin, L.; Eskola, J.; Ruutu, P. A randomized comparison between early and late vaccination with tetanus toxoid vaccine after allogeneic BMT. Bone Marrow Transplant. 1997, 19, 933–938. [Google Scholar] [CrossRef]
- Winkler, J.; Tittlbach, H.; Schneider, A.; Buchstaller, C.; Mayr, A.; Vasova, I.; Roesler, W.; Mach, M.; Mackensen, A.; Winkler, T.H. Measuring the cellular memory B cell response after vaccination in patients after allogeneic stem cell transplantation. Ann. Hematol. 2020, 99, 1895–1906. [Google Scholar] [CrossRef]
- Patel, S.R.; Ortín, M.; Cohen, B.J.; Borrow, R.; Irving, D.; Sheldon, J.; Heath, P.T. Revaccination with measles, tetanus, poliovirus, Haemophilus influenzae type B, meningococcus C, and pneumococcus vaccines in children after hematopoietic stem cell transplantation. Clin. Infect. Dis. 2007, 44, 625–634. [Google Scholar] [CrossRef]
- Ljungman, P.; Aschan, J.; Gustafsson, B.; Lewensohn-Fuchs, I.; Winiarski, J.; Ringdén, O. Long-term immunity to poliovirus after vaccination of allogeneic stem cell transplant recipients. Bone Marrow Transplant. 2004, 34, 1067–1069. [Google Scholar] [CrossRef]
- Parkkali, T.; Stenvik, M.; Ruutu, T.; Hovi, T.; Volin, L.; Ruutu, P. Randomized comparison of early and late vaccination with inactivated poliovirus vaccine after allogeneic BMT. Bone Marrow Transplant. 1997, 20, 663–668. [Google Scholar] [CrossRef]
- Shah, G.L.; Shune, L.; Purtill, D.; Devlin, S.; Lauer, E.; Lubin, M.; Bhatt, V.; McElrath, C.; Kernan, N.A.; Scaradavou, A.; et al. Robust Vaccine Responses in Adult and Pediatric Cord Blood Transplantation Recipients Treated for Hematologic Malignancies. Biol. Blood Marrow Transplant. 2015, 21, 2160–2166. [Google Scholar] [CrossRef]
- Olkinuora, H.; Käyhty, H.; Davidkin, I.; Roivainen, M.; Ölander, R.; Kantele, J.M.; Siitonen, S.; Vettenranta, K. Immunity after (re)vaccination of paediatric patients following haematopoietic stem cell transplantation. Acta Paediatr. 2012, 101, e373–e377. [Google Scholar] [CrossRef]
- Pao, M.; Papadopoulos, E.B.; Chou, J.; Glenn, H.; Castro-Malaspina, H.; Jakubowski, A.A.; Kernan, N.A.; Perales, M.A.; Prokop, S.; Scaradavou, A.; et al. Response to pneumococcal (PNCRM7) and haemophilus influenzae conjugate vaccines (HIB) in pediatric and adult recipients of an allogeneic hematopoietic cell transplantation (alloHCT). Biol. Blood Marrow Transplant. 2008, 14, 1022–1030, Erratum in Biol Blood Marrow Transplant. 2008, 14, 1319. [Google Scholar] [CrossRef]
- Vance, E.; George, S.; Guinan, E.; Wheeler, C.; Antin, J.; Ambrosino, D.; Molrine, D. Comparison of multiple immunization schedules for Haemophilus influenzae type b-conjugate and tetanus toxoid vaccines following bone marrow transplantation. Bone Marrow Transplant. 1998, 22, 735–741. [Google Scholar] [CrossRef]
- Mahler, M.B.; Taur, Y.; Jean, R.; Kernan, N.A.; Prockop, S.E.; Small, T.N. Safety and immunogenicity of the tetravalent Protein-conjugated meningococcal vaccine (MCV4) in recipients of related and unrelated allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2012, 18, 145–149. [Google Scholar] [CrossRef]
- Cheng, M.P.; Pandit, A.; Antin, J.H.; Walsh, S.R.; Huynh, D.; Ghobrial, I.M.; Baden, L.R.; Marty, F.M.; Issa, N.C. Safety and immunogenicity of conjugate quadrivalent meningococcal vaccination after hematopoietic cell transplantation. Blood Adv. 2018, 2, 1272–1276. [Google Scholar] [CrossRef]
- MacIntyre, C.R.; Shaw, P.; Mackie, F.E.; Boros, C.; Marshall, H.; Barnes, M.; Seale, H.; Kennedy, S.E.; Moa, A.; Hayen, A.; et al. Immunogenicity and persistence of immunity of a quadrivalent Human Papillomavirus (HPV) vaccine in immunocompromised children. Vaccine 2016, 34, 4343–4350. [Google Scholar] [CrossRef]
- Adati, E.M.; da Silva, P.M.; Sumita, L.M.; Rodrigues, M.d.O.; Zanetti, L.P.; dos Santos, A.C.F.; de Souza, M.P.; Colturato, V.R.; Machado, C.M. Poor response to hepatitis A vaccination in hematopoietic stem cell transplant recipients. Transpl. Infect. Dis. 2020, 22, e13258. [Google Scholar] [CrossRef]
- Kussmaul, S.C.; Horn, B.N.; Dvorak, C.C.; Abramovitz, L.; Cowan, M.J.; Weintrub, P.S. Safety of the live, attenuated varicella vaccine in pediatric recipients of hematopoietic SCTs. Bone Marrow Transplant. 2010, 45, 1602–1606. [Google Scholar] [CrossRef]
- Aoki, T.; Koh, K.; Kawano, Y.; Mori, M.; Arakawa, Y.; Kato, M.; Hanada, R. Safety of Live Attenuated High-Titer Varicella-Zoster Virus Vaccine in Pediatric Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Biol. Blood Marrow Transplant. 2016, 22, 771–775. [Google Scholar] [CrossRef]
- Askan, O.O.; Ozden, T.A.; Tezcan, G.K.; Keskindemirci, G.; Bakir, A.; Tugcu, D.; Pekun, F.; Yesilipek, A.; Gokcay, E.G. Vaccine Adherence and Postvaccination Serological Status of Pediatric Allogeneic Hematopoietic Stem Cell Transplant Recipients: A Single-center Experience. J. Pediatr. Hematol. Oncol. 2023, 45, e370–e377. [Google Scholar] [CrossRef]
- Winston, D.J.; Mullane, K.M.; A Cornely, O.; Boeckh, M.J.; Brown, J.W.; A Pergam, S.; Trociukas, I.; Žák, P.; Craig, M.D.; A Papanicolaou, G.; et al. Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: An international, multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2018, 391, 2116–2127. [Google Scholar] [CrossRef]
- Stadtmauer, E.A.; Sullivan, K.M.; Marty, F.M.; Dadwal, S.S.; Papanicolaou, G.A.; Shea, T.C.; Mossad, S.B.; Andreadis, C.; Young, J.-A.H.; Buadi, F.K.; et al. A phase 1/2 study of an adjuvanted varicella-zoster virus subunit vaccine in autologous hematopoietic cell transplant recipients. Blood 2014, 124, 2921–2929. [Google Scholar] [CrossRef]
- Machado, C.M.; Gonçalves, F.B.; Pannuti, C.S.; Dulley, F.L.; de Souza, V.A.U.F. Measles in bone marrow transplant recipients during an outbreak in São Paulo, Brazil. Blood 2002, 99, 83–87. [Google Scholar] [CrossRef]
- Meejun, T.; Srisurapanont, K.; Manothummetha, K.; Thongkam, A.; Mejun, N.; Chuleerarux, N.; Sanguankeo, A.; Phongkhun, K.; Leksuwankun, S.; Thanakitcharu, J.; et al. Attenuated immunogenicity of SARS-CoV-2 vaccines and risk factors in stem cell transplant recipients: A meta-analysis. Blood Adv. 2023, 7, 5624–5636. [Google Scholar] [CrossRef]
- Aliabadi, L.S.; Azari, M.; Taherian, M.R.; Barkhordar, M.; Abbas, S.A.M.; Azari, M.; Ahmadvand, M.; Salehi, Z.; Rouzbahani, S.; Vaezi, M. Immunologic responses to the third and fourth doses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in cell therapy recipients: A systematic review and meta-analysis. Virol. J. 2024, 21, 103. [Google Scholar] [CrossRef]
- Cordonnier, C.; Einarsdottir, S.; Cesaro, S.; Di Blasi, R.; Mikulska, M.; Rieger, C.; de Lavallade, H.; Gallo, G.; Lehrnbecher, T.; Engelhard, D.; et al. Vaccination of haemopoietic stem cell transplant recipients: Guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect. Dis. 2019, 19, e200–e212. [Google Scholar] [CrossRef]
- Ljungman, P.; Cordonnier, C.; Einsele, H.; Englund, J.; Machado, C.M.; Storek, J.; Small, T. Vaccination of hematopoietic cell transplant recipients. Bone Marrow Transplant. 2009, 44, 521–526. [Google Scholar] [CrossRef]
- Martire, B.; Azzari, C.; Badolato, R.; Canessa, C.; Cirillo, E.; Gallo, V.; Graziani, S.; Lorenzini, T.; Milito, C.; Panza, R.; et al. Vaccination in immunocompromised host: Recommendations of Italian Primary Immunodeficiency Network Centers (IPINET). Vaccine 2018, 36, 3541–3554. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Schmidt-Hieber, M.; Bertz, H.; Heinz, W.J.; Kiehl, M.; Krüger, W.; Mousset, S.; Neuburger, S.; Neumann, S.; Penack, O.; et al. Infectious diseases in allogeneic haematopoietic stem cell transplantation: Prevention and prophylaxis strategy guidelines 2016. Ann. Hematol. 2016, 95, 1435–1455. [Google Scholar] [CrossRef]
- Tomblyn, M.; Chiller, T.; Einsele, H.; Gress, R.; Sepkowitz, K.; Storek, J.; Wingard, J.R.; Young, J.-A.H.; Boeckh, M.A. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: A global perspective. Biol. Blood Marrow Transplant. 2009, 15, 1143–1238. [Google Scholar] [CrossRef]
- Mebius, R.E.; Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 2005, 5, 606–616. [Google Scholar] [CrossRef]
- Tangye, S.G.; Good, K.L. Human IgM+CD27+ B cells: Memory B cells or “memory” B cells? J. Immunol. 2007, 179, 13–19. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Carsetti, R.; Corazza, G.R. Post-splenectomy and hyposplenic states. Lancet 2011, 378, 86–97. [Google Scholar] [CrossRef]
- William, B.M.; Corazza, G.R. Hyposplenism: A comprehensive review. Part I: Basic concepts and causes. Hematology 2007, 12, 1–13. [Google Scholar] [CrossRef]
- Kirkineska, L.; Perifanis, V.; Vasiliadis, T. Functional hyposplenism. Hippokratia 2014, 18, 7–11. [Google Scholar] [PubMed]
- Bagrodia, N.; Button, A.M.; Spanheimer, P.M.; Belding-Schmitt, M.E.; Rosenstein, L.J.; Mezhir, J.J. Morbidity and mortality following elective splenectomy for benign and malignant hematologic conditions: Analysis of the American College of Surgeons National Surgical Quality Improvement Program data. JAMA Surg. 2014, 149, 1022–1029. [Google Scholar] [CrossRef]
- Davies, J.M.; Lewis, M.P.N.; Wimperis, J.; Rafi, I.; Ladhani, S.; Bolton-Maggs, P.H.; British Committee for Standards in Haematology. Review of guidelines for the prevention and treatment of infection in patients with an absent or dysfunctional spleen: Prepared on behalf of the British committee for standards in haematology by a working party of the haemato-oncology task force. Br. J. Haematol. 2011, 155, 308–317. [Google Scholar] [CrossRef]
- Rubin, L.G.; Schaffner, W. Clinical practice. Care of the asplenic patient. N. Engl. J. Med. 2014, 371, 349–356. [Google Scholar] [CrossRef]
- King, H.; Shumacker, H.B., Jr. Splenic studies. I. Susceptibility to infection after splenectomy performed in infancy. Ann. Surg. 1952, 136, 239–242. [Google Scholar] [CrossRef]
- Bonnet, S.; Guédon, A.; Ribeil, J.-A.; Suarez, F.; Tamburini, J.; Gaujoux, S. Indications and outcome of splenectomy in hematologic disease. J. Visc. Surg. 2017, 154, 421–429. [Google Scholar] [CrossRef]
- Rab, M.A.E.; Meerveld-Eggink, A.; van Velzen-Blad, H.; van Loon, D.; Rijkers, G.T.; de Weerdt, O. Persistent changes in circulating white blood cell populations after splenectomy. Int. J. Hematol. 2018, 107, 157–165. [Google Scholar] [CrossRef]
- Lipson, R.L.; Bayrd, E.D.; Watkins, C.H. The postsplenectomy blood picture. Am. J. Clin. Pathol. 1959, 32, 526–532. [Google Scholar] [CrossRef]
- Cameron, P.U.; Jones, P.; Gorniak, M.; Dunster, K.; Paul, E.; Lewin, S.; Woolley, I.; Spelman, D. Splenectomy associated changes in Igm memory B cells in an adult spleen registry cohort. PLoS ONE 2011, 6, e23164. [Google Scholar] [CrossRef]
- Tahir, F.; Ahmed, J.; Malik, F. Post-splenectomy Sepsis: A Review of the Literature. Cureus 2020, 12, e6898. [Google Scholar] [CrossRef]
- Sinwar, P.D. Overwhelming post splenectomy infection syndrome—Review study. Int. J. Surg. 2014, 12, 1314–1316. [Google Scholar] [CrossRef]
- Chong, J.; Jones, P.; Spelman, D.; Leder, K.; Cheng, A.C. Overwhelming post-splenectomy sepsis in patients with asplenia and hyposplenia: A retrospective cohort study. Epidemiol. Infect. 2017, 145, 397–400. [Google Scholar] [CrossRef]
- Weledji, E.P. Benefits and risks of splenectomy. Int. J. Surg. 2014, 12, 113–119. [Google Scholar] [CrossRef]
- Bisharat, N.; Omari, H.; Lavi, I.; Raz, R. Risk of infection and death among post-splenectomy patients. J. Infect. 2001, 43, 182–186. [Google Scholar] [CrossRef]
- Rappuoli, R.; De Gregorio, E.; Costantino, P. On the mechanisms of conjugate vaccines. Proc. Natl. Acad. Sci. USA 2019, 116, 14–16. [Google Scholar] [CrossRef]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Mitchell, R.; Kelly, D.F.; Pollard, A.J.; Trück, J. Polysaccharide-specific B cell responses to vaccination in humans. Hum. Vaccines Immunother. 2014, 10, 1661–1668. [Google Scholar] [CrossRef]
- Shatz, D.V.; Schinsky, M.F.; Pais, L.B.; Romero-Steiner, S.; Kirton, O.C.; Carlone, G.M. Immune responses of splenectomized trauma patients to the 23-valent pneumococcal polysaccharide vaccine at 1 versus 7 versus 14 days after splenectomy. J. Trauma Inj. Infect. Crit. Care 1998, 44, 760–766, discussion 765-6. [Google Scholar] [CrossRef]
- Konradsen, H.B.; Rasmussen, C.; Ejstrud, P.; Hansen, J.B. Antibody levels against Streptococcus pneumoniae and Haemophilus influenzae type b in a population of splenectomized individuals with varying vaccination status. Epidemiol. Infect. 1997, 119, 167–174. [Google Scholar] [CrossRef]
- Orthopoulos, G.V.; Theodoridou, M.C.; Ladis, V.A.; Tsousis, D.K.; Spoulou, V.I. The effect of 23-valent pneumococcal polysaccharide vaccine on immunological priming induced by 7-valent conjugate vaccine in asplenic subjects with β-thalassemia. Vaccine 2009, 27, 350–354. [Google Scholar] [CrossRef]
- Papadatou, I.; Orthopoulos, G.; Theodoridou, M.; Spoulou, V. Long-lasting hyporesponsivenss induced by the 23-valent pneumococcal polysaccharide vaccine (PPV23) in asplenic patients with β-thalassemia major. Vaccine 2015, 33, 3779–3783. [Google Scholar] [CrossRef]
- Australian Government Department of Health and Aged Care. Vaccination for People Who Are Immunocompromised. Australian Government. 2019. Available online: https://immunisationhandbook.health.gov.au/contents/vaccination-for-special-risk-groups/vaccination-for-people-who-are-immunocompromised (accessed on 31 March 2025).
- Caya, C.A.; Boikos, C.; Desai, S.; Quach, C. Dosing regimen of the 23-valent pneumococcal vaccination: A systematic review. Vaccine 2015, 33, 1302–1312. [Google Scholar] [CrossRef]
- Chapman, T.J.; Olarte, L.; Dbaibo, G.; Houston, A.M.; Tamms, G.; Lupinacci, R.; Feemster, K.; Buchwald, U.K.; Banniettis, N. PCV15, a pneumococcal conjugate vaccine, for the prevention of invasive pneumococcal disease in infants and children. Expert Rev. Vaccines 2024, 23, 137–147. [Google Scholar] [CrossRef]
- Meerveld-Eggink, A.; Weerdt, O.; Voer, R.M.; Berbers, G.A.M.; Velzen-Blad, H.; Vlaminckx, B.J.; Biesma, D.H.; Rijkers, G.T. Impaired antibody response to conjugated meningococcal serogroup C vaccine in asplenic patients. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 611–618. [Google Scholar] [CrossRef]
- MacNeil, J.R.; Rubin, L.; McNamara, L.; Briere, E.C.; Clark, T.A.; Cohn, A.C. Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, CDC. Use of MenACWY-CRM vaccine in children aged 2 through 23 months at increased risk for meningococcal disease: Recommendations of the Advisory Committee on Immunization Practices, 2013. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 527–530. [Google Scholar] [PubMed]
- Mbaeyi, S.A.; Bozio, C.H.; Duffy, J.; Rubin, L.G.; Hariri, S.; Stephens, D.S.; MacNeil, J.R. Meningococcal Vaccination: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020. MMWR. Recomm. Rep. 2020, 69, 1–41. [Google Scholar] [CrossRef]
- Gupta, A.K.; Vazquez, O.A. Overwhelming Post-Splenectomy Infection Syndrome: Variability in Timing with Similar Presentation. Cureus 2020, 12, e9914. [Google Scholar] [CrossRef]
- Hofmann, G.; Zierk, J.; Sobik, B.; Wotschofsky, Z.; Sembill, S.; Krumbholz, M.; Metzler, M.; Karow, A. Temporal evolution and differential patterns of cellular reconstitution after therapy for childhood cancers. Sci. Rep. 2023, 13, 4022. [Google Scholar] [CrossRef]
- Alanko, S.; Pelliniemi, T.-T.; Salmi, T.T. Recovery of blood b-lymphocytes and serum immunoglobulins after chemotherapy for childhood acute lymphoblastic leukemia. Cancer 1992, 69, 1481–1486. [Google Scholar] [CrossRef]
- Williams, A.P.; Bate, J.; Brooks, R.; Chisholm, J.; Clarke, S.C.; Dixon, E.; Faust, S.N.; Galanopoulou, A.; Heath, P.T.; Maishman, T.; et al. Immune reconstitution in children following chemotherapy for acute leukemia. eJHaem 2020, 1, 142–151. [Google Scholar] [CrossRef]
- Ibáñez, I.M.; Casas, A.A.; Martínez, O.C.; Aguado, J.E.; Mateos, M.M. Humoral immunity in pediatric patients with acute lymphoblastic leukaemia. Allergol. Immunopathol. 2003, 31, 303–310. [Google Scholar] [CrossRef]
- Pearson, B.; Pulley, M.; Diniz, M.; Baca, N.; Majlessipour, F. Loss of humeral immunity in childhood cancer survivors not having undergone hematopoietic stem cell transplantation. Cancer Rep. 2023, 6, e1907. [Google Scholar] [CrossRef]
- Mikulska, M.; Cesaro, S.; de Lavallade, H.; Di Blasi, R.; Einarsdottir, S.; Gallo, G.; Rieger, C.; Engelhard, D.; Lehrnbecher, T.; Ljungman, P.; et al. Vaccination of patients with haematological malignancies who did not have transplantations: Guidelines from the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect. Dis. 2019, 19, e188–e199, Erratum in Lancet Infect Dis. 2019, 19, e109. https://doi.org/10.1016/S1473-3099(19)30100-8. [Google Scholar] [CrossRef]
- Bate, J.; Borrow, R.; Chisholm, J.; Clarke, S.C.; Dixon, E.; Faust, S.N.; Galanopoulou, A.; Goldblatt, D.; Heath, P.T.; Maishman, T.; et al. Thirteen-Valent Pneumococcal Conjugate Vaccine in Children With Acute Lymphoblastic Leukemia: Protective Immunity Can Be Achieved on Completion of Treatment. Clin. Infect. Dis. 2020, 71, 1271–1280. [Google Scholar] [CrossRef]
- Haynes, A.S.; Curtis, D.J.; Campbell, K.; Giller, R.H.; Quinones, R.R.; Verneris, M.R.; Abzug, M.J. An Immune Recovery-Based Revaccination Protocol for Pediatric Hematopoietic Stem Cell Transplant Recipients: Revaccination Outcomes Following Pediatric HSCT. Transpl. Cell Ther. 2021, 27, 317–326. [Google Scholar] [CrossRef]
- van der Velden, A.; Claessen, A.; van Velzen-Blad, H.; de Groot, M.; Kramer, M.; Biesma, D.; Rijkers, G. Vaccination responses and lymphocyte subsets after autologous stem cell transplantation. Vaccine 2007, 25, 8512–8517. [Google Scholar] [CrossRef]
- Linnik, J.; Syedbasha, M.; Kaltenbach, H.-M.; Vogt, D.; Hollenstein, Y.; Kaufmann, L.; Cantoni, N.; Ruosch-Girsberger, S.; Müller, A.M.S.; Schanz, U.; et al. Association of Host Factors With Antibody Response to Seasonal Influenza Vaccination in Allogeneic Hematopoietic Stem Cell Transplant Patients. J. Infect. Dis. 2022, 225, 1482–1493. [Google Scholar] [CrossRef]
- Haines, C.J.; Giffon, T.D.; Lu, L.-S.; Lu, X.; Tessier-Lavigne, M.; Ross, D.T.; Lewis, D.B. Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J. Exp. Med. 2009, 206, 275–285. [Google Scholar] [CrossRef]
- Gaballa, A.; Sundin, M.; Stikvoort, A.; Abumaree, M.; Uzunel, M.; Sairafi, D.; Uhlin, M. T Cell Receptor Excision Circle (TREC) Monitoring after Allogeneic Stem Cell Transplantation; a Predictive Marker for Complications and Clinical Outcome. Int. J. Mol. Sci. 2016, 17, 1705. [Google Scholar] [CrossRef]
- Elghazawy, M.; Talkhan, H.; Ghareeb, H.; Samaha, D.; El-Zimaity, M.; Salem, L. T cell receptor excision circles (TRECs) and kappa-deleting recombination excision circles (KRECs) as markers of early T cell and B cell immune recovery after haematopoietic stem cell transplantation (HSCT). Egypt. J. Immunol. 2022, 29, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, N.L.; Elsorady, M. Clinical significance of T cell receptor excision circle (TREC) quantitation after allogenic HSCT. BLOOD Res. 2019, 54, 274–281. [Google Scholar] [CrossRef]
- Manor, U.; Lev, A.; Simon, A.J.; Hutt, D.; Toren, A.; Bielorai, B.; Goldberg, L.; Stauber, T.; Somech, R. Immune reconstitution after HSCT in SCID—A cohort of conditioned and unconditioned patients. Immunol. Res. 2019, 67, 166–175. [Google Scholar] [CrossRef]
- da Rocha, L.K.A.; de Barros, S.F.; Bandeira, F.; Bollini, A.; Testa, L.H.d.A.; Simione, A.J.; Souza, M.d.O.e.; Zanetti, L.P.; de Oliveira, L.C.S.; dos Santos, A.C.F.; et al. Thymopoiesis in Pre- and Post-Hematopoietic Stem Cell Transplantation. Front. Immunol. 2018, 9, 1889. [Google Scholar] [CrossRef]
- Mensen, A.; Jöhrens, K.; Anagnostopoulos, I.; Demski, S.; Oey, M.; Stroux, A.; Hemmati, P.; Westermann, J.; Blau, O.; Wittenbecher, F.; et al. Bone marrow T-cell infiltration during acute GVHD is associated with delayed B-cell recovery and function after HSCT. Blood 2014, 124, 963–972. [Google Scholar] [CrossRef]
- Qin, F.; Shi, L.; Li, Q.; Zhang, Z.; Liu, L.; Li, J.; Yang, G.; Lai, Y. Immune recovery after in vivo T-cell depletion myeloablative conditioning hematopoietic stem cell transplantation in severe beta-thalassemia children. Eur. J. Haematol. 2019, 103, 342–350. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L. Evaluation of TCR repertoire diversity in patients after hematopoietic stem cell transplantation. Stem Cell Investig. 2015, 2, 17. [Google Scholar] [CrossRef]
- Fu, Y.W.; Wu, D.P.; Cen, J.N.; Feng, Y.F.; Chang, W.R.; Zhu, Z.L.; Qiu, Q.C.; Zhu, P. Patterns of T-cell reconstitution by assessment of T-cell receptor excision circle and T-cell receptor clonal repertoire after allogeneic hematopoietic stem cell transplantation in leukemia patients? A study in Chinese patients. Eur. J. Haematol. 2007, 79, 138–145. [Google Scholar] [CrossRef]
Vaccine | During Chemotherapy | After Chemotherapy |
---|---|---|
Inactivated influenza | Recommended annually. | Recommended annually. |
Conjugated pneumococcal vaccine | Recommended at diagnosis of malignancy. | Possible administration 3 months after the completion of chemotherapy. |
COVID-19 | Recommended during pandemic. | Recommended as for the general population. |
HBV | Consider vaccination of seronegative patients before starting/during chemotherapy (in highly endemic areas). | Possible administration 3 months after the completion of chemotherapy. |
Other inactivated vaccines [9,10] | Non contraindicated during maintenance phase (consider non-valid doses unless a protective response is demonstrated). | Possible administration 3 months after the completion of chemotherapy. |
Varicella [5,10] | Contraindicated. | From 3 to 12 months after the completion of chemotherapy (at least 6 months if anti-B-cell therapies have been used). |
MMR [5,10] | Contraindicated In case of measles epidemic, it is possible to administer measles vaccine in patients with adequate CD4+ levels (>500/μL if >12 months) [12]. | From 3 to 12 months after the completion of chemotherapy (at least 6 months if anti-B-cell therapies have been used) |
Timing After HSCT and Schedule | Response Rate | |
---|---|---|
Influenza [31,32,33,34,35,36,65] | <6 months >6 months | 10–40% 10–84% |
Conjugated Pneumococcal [61,67,68,69] | 3–9 months | 64–98% |
Tetanus [61,71,73,74,75] | 6–12 months (three doses) | 85–100% |
Pertussis [61,73,79,95] | 12–17 months | 25–54% |
Dyptheria [71,75,80] | 3–18 months | 70–100% |
Haemophilus influenzae B [75,76,81,82] | 3–12 months | 80–100% |
Polio [71,73,75,76,77,78] | 6 months (three doses) | 80–100% |
HBV [70,71,72] | Median: 23 months (three doses) | 64–82% |
Meningococcus ACWY [83,84,95] | 12–18 months | 76–100% |
Meningococcus B | No available data | |
HPV [85] | study on a wide range of immunocompromised children | 88–100% |
HAV [86] | 11 months (median) | 33% |
SARS-CoV-2 mRNA vaccines [93,94] | Variable | 38–81% |
Varicella [61,87,88,89] | 24 months (median) | 58–80% |
Inactivated varicella zoster [90,91] | 5–50 days (first dose) | 64–76% |
Measles [73,76,89,92,95] | 24 months | 65–100% |
Mumps [73,76,89,92,95] | 24 months | 50–87% |
Rubella [73,76,89,92,95] | 24 months | 75–100% |
ACIP 2023 [9,10,96] | ECIL7 2019 [95] | |
---|---|---|
Inactivated influenza vaccine | Recommended from 6 months from HSCT (consider after 4 months in case of epidemic). Consider a second dose in children receiving the first vaccination < 9 years. Consider starting vaccination 4 months after HSCT (in this case, a second dose should be considered). | Recommended from 6 months from HSCT (consider after 3 months in case of outbreak). Consider a second dose after 4 weeks in children < 8 years, severe GvHD, lymphopenia. |
Pneumococcus | From 3 to 6 months after HSCT; recommended four doses of PCV-20 (the first three should be separated by 4 weeks; 6 months for the third and fourth). Alternative: three doses of PCV15, followed by a dose of 23 V at 12 months from the third dose. In patients with GvHD, administer a fourth dose of PCV15 instead of PPSV-23. | From 3 months after HSCT, recommended three doses of 13 V with 1 month interval. If severe GvHD: fourth dose of 13 V at least 6 months from the third dose. 12 months after HSCT: a dose of 23 V is recommended (at least 8 weeks after the last 13 V) in patients receiving allogenic HSCT who do not have chronic GvHD. |
HBV | From 6 months from HSCT: three doses. If postvaccination anti-HBs concentration of ≥10 mIU/mL not achieved: consider a second three-dose series [10]. | For HBV negative patients: 6–12 months after HSCT, three doses 0, 1, and 6 months apart. Children should receive a standard pediatric dose (10 μg) of vaccine and adolescents should receive 20 μg dose. |
Tetanus | Three doses from 6 to 12 months (see indications for pertussis-containing vaccines). | From 6 months from HSCT: three doses distanced at least 1–2 months. |
Polio P IPV | 6–12 months from HSCT: three doses of IPV. | IPV: three doses from 6 to 12 months after HSCT. |
Pertussis | Indications for pertussis-containing vaccines: From 6 months from HSCT: three doses of DTaP for children aged <7 years. For patients ≥7 years, three options:
| From 6 months from HSCT: three doses distanced by at least 1–2 months (use vaccine with higher dose of pertussis toxoid). |
Dyptheria | Three doses from 6 to 12 months (see indications for pertussis-containing vaccines). | From 6 months from HSCT: three doses distanced at least 1–2 months. |
Haemophilus | From 6 months after HSCT: three doses of anti-HIB (at least 1 month of interval). | From 3 months from HSCT: three doses distanced at least 1–2 months. Alternative: administration of three doses of a combined tetanus-dyptheria-pertussis-Hib vaccine from 6 months after HSCT. |
Meningococcus | MenC: 6–12 months after HSCT, two doses of tetravalent vaccine for person aged 11–18 years. For those starting vaccinations at 11–15 years, administer a booster dose at 16–18 years [10]. | MenC: From 6 months, two doses of monovalent or tetravalent vaccine. MenB: From 6 months, two doses. |
HPV | From 6 to 12 months after HSCT, three doses in women aged 11–26 years (consider also in males) [10]. | From 6 months after HSCT, following national recommendations. |
IDSA 2013 | ECIL7 2019 | |
---|---|---|
MMR | Two doses administered at least 24 months after HSCT, in seronegative patients without active GvHD, recent (<8–11 months) IVIG administration, or ongoing immunosuppression. | At least 24 months after HSCT, in patients without active GvHD, disease relapse, or ongoing immunosuppression and who are seronegative for antibodies against measles or (for women) rubella. In children, consider two doses 4 weeks apart. In case of measles epidemic, consider the administration 12 months after HSCT. |
Varicella | Two doses administered at least 24 months after HSCT, in seronegative patients without active GvHD, recent (<8–11 months) IVIG administration, or ongoing immunosuppression and who are seronegative for varicella IgG antibodies. | At least 24 months after HSCT, in patients without active GvHD, disease relapse, or ongoing immunosuppression and who are seronegative for varicella IgG antibodies. In children, consider two doses 4 weeks apart. |
Rotavirus | Not recommended | Not recommended |
BCG | Not recommended | Not recommended |
Yellow fever | Decision depending on individual risk assessment | At least 24 months after HSCT, in patients without active GvHD, disease relapse, or ongoing immunosuppression. Consider only if patients cannot avoid traveling to endemic areas. |
Vaccine | Before Elective Splenectomy | After Splenectomy and Other Causes of Asplenia/Hyposplenia |
---|---|---|
Conjugated pneumococcal | One dose at least 2 weeks before splenectomy if not previously vaccinated. | Age < 2 years: four doses of PCV13 (8 weeks apart) according to recommendations for the general population. Age 2–5 years: one additional dose of PCV-13 if previously vaccinated with three doses of conjugate vaccine; two doses of PCV-13 if not previously vaccinated. Age > 6: At least one dose of PCV-13. |
Polysaccharide pneumococcal | One dose 8 weeks after PCV13. At least 2 weeks before splenectomy. | One dose of PPSV23 8 weeks after the last PCV13. Second dose of PPSV23 after 5 years. |
Meningococcal C vaccines | Two-dose series of MenACWY, with the second dose given after 12 months of age (at least 8–12 weeks from first dose). The schedule should be completed at least 2 weeks before splenectomy. Booster dose every 5 years (if the most recent dose was administered before the age of 7, consider a first booster after 3 years, with following doses every 5 years). | Two-dose series of MenACWY, with the second dose given after 12 months of age (at least 8–12 weeks from first dose). Booster dose every 5 years (if the most recent dose was administered before the age of 7, consider a first booster after 3 years, with following doses every 5 years). |
Meningococcal B vaccines | Vaccination according to recommendations for the general population. The schedule should be completed at least 2 weeks before splenectomy. | Vaccination according to recommendations for the general population. Start at lest 2 weeks after splenectomy. |
Haemophilus influenzae B | Only in previously non vaccinated patients: one dose of HiB conjugate vaccine at least 2 weeks before splenectomy. | Follow recommendations for the general population. In previously non vaccinated patients who undergo splenectomy: one dose of HiB conjugate at least 2 weeks after splenectomy. |
Influenza vaccine | Recommended annual vaccination. | Recommended annual vaccination. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martire, B.; Beni, A.; Mastrototaro, M.F.; Santilli, V.; Ottaviano, G.; Montin, D.; Rizzo, C.; Sgrulletti, M.; Miraglia del Giudice, M.; Costagliola, G.; et al. Vaccinations in Pediatric Hematology and Oncology: Biologic Basis, Clinical Applications, and Perspectives. Vaccines 2025, 13, 397. https://doi.org/10.3390/vaccines13040397
Martire B, Beni A, Mastrototaro MF, Santilli V, Ottaviano G, Montin D, Rizzo C, Sgrulletti M, Miraglia del Giudice M, Costagliola G, et al. Vaccinations in Pediatric Hematology and Oncology: Biologic Basis, Clinical Applications, and Perspectives. Vaccines. 2025; 13(4):397. https://doi.org/10.3390/vaccines13040397
Chicago/Turabian StyleMartire, Baldassarre, Alessandra Beni, Maria Felicia Mastrototaro, Veronica Santilli, Giorgio Ottaviano, Davide Montin, Caterina Rizzo, Mayla Sgrulletti, Michele Miraglia del Giudice, Giorgio Costagliola, and et al. 2025. "Vaccinations in Pediatric Hematology and Oncology: Biologic Basis, Clinical Applications, and Perspectives" Vaccines 13, no. 4: 397. https://doi.org/10.3390/vaccines13040397
APA StyleMartire, B., Beni, A., Mastrototaro, M. F., Santilli, V., Ottaviano, G., Montin, D., Rizzo, C., Sgrulletti, M., Miraglia del Giudice, M., Costagliola, G., & Moschese, V., on behalf of the Italian Society of Pediatric Allergology and Immunology (SIAIP) Vaccine Committee. (2025). Vaccinations in Pediatric Hematology and Oncology: Biologic Basis, Clinical Applications, and Perspectives. Vaccines, 13(4), 397. https://doi.org/10.3390/vaccines13040397