Effect of Anti-Programmed Cell Death-1 Antibody on Middle Ear Mucosal Immune Response to Intranasal Administration of Haemophilus influenzae Outer Membrane Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Immunogen and Adjuvant
2.3. Intranasal Immunization Mouse Model
2.4. PD-L1 Antibody Delivery Model
2.5. Detection of OMP-Specific Antibodies by Enzyme-Linked Immunosorbent Assay
2.6. Flow Cytometry Analysis
2.7. Enzyme-Linked Immunospot Assay
2.8. Bacterial Challenge and Sampling
2.9. Statistical Analysis
3. Results
3.1. Changes in OMP-Specific Antibody Titers and Effects of Anti-PD-L1 Antibody Administration
3.2. Flow Cytometry Analysis
3.2.1. Effect of Anti-PD-L1 Antibody Administration on the CD3+ T-Cell Fraction
3.2.2. Analysis of CD4+ T-Cell Dynamics After Administration of Anti-PD-L1 Antibody
3.2.3. Analysis of B-Cell Dynamics Following Anti-PD-L1 Antibody Administration
3.2.4. Analysis of the Dynamics of CD3+CD4+CD185+ T Cells After the Administration of the Anti-PD-L1 Antibody
3.3. Measurement of Antibody-Producing Cells by ELISPOT Asssay with Administration of Anti-PD-L1 Antibody
3.4. Bacterial Clearance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Feghaly, R.E.; Nedved, A.; Katz, S.E.; Frost, H.M. New insights into the treatment of acute otitis media. Expert Rev. Anti Infect. Ther. 2023, 21, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Morris, M.; Pichichero, M.E. Epidemiology of acute otitis media in the postpneumococcal conjugate vaccine era. Pediatrics 2017, 140, 20170181. [Google Scholar] [CrossRef] [PubMed]
- Berman, S. Otitis Media in Children. N. Engl. J. Med. 1995, 332, 1560–1565. [Google Scholar] [CrossRef] [PubMed]
- Brook, I.; Gober, A.E. Microbiologic characteristics of persistent otitis media. Arch. Otolaryngol. Head Neck Surg. 1998, 124, 1350–1352. [Google Scholar] [CrossRef]
- Commisso, R.; Romero-Orellano, F.; Montanaro, P.B.; Romero-Moroni, F.; Romero-Diaz, R. Acute otitis media: Bacteriology and bacterial resistance in 205 pediatric patients. Int. J. Pediatr. Otorhinolaryngol. 2000, 56, 23–31. [Google Scholar] [CrossRef]
- Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo1, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992, 11, 3887–3895. [Google Scholar] [CrossRef]
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef]
- Iwai, Y.; Terawaki, S.; Ikegawa, M.; Okazaki, T.; Honjo, T. PD-1 inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med. 2003, 198, 39–50. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef]
- Malas, S.; Harrasser, M.; Lacy, K.E.; Karagiannis, S.N. Antibody therapies for melanoma: New and emerging, opportunities to activate immunity (review). Oncol. Rep. 2014, 32, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Läubli, H.; Balmelli, C.; Kaufmann, L.; Stanczak, M.; Syedbasha, M.; Vogt, D.; Hertig, A.; Müller, B.; Gautschi, O.; Stenner, F.; et al. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events. J. Immunother. Cancer 2018, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Kodama, S.; Moriyama, M.; Kawano, T.; Suzuki, M. The role of toll-like receptor 4 in eliciting acquired immune responses against nontypeable haemophilus influenzae following intranasal immunization with outer membrane protein. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.F.; Nelson, M.B.; Dudas, K.C.; Mylotte, J.M.; Apicella, M.A. Identification of a specific epitope of haemophilus influenzae on a 16,600-dalton outer membrane protein. J. Infect. Dis. 1985, 152, 1300–1307. [Google Scholar] [CrossRef]
- Iwasaki, T.; Hirano, T.; Kodama, S.; Kadowaki, Y.; Moriyama, M.; Kawano, T.; Suzuki, M. Monophosphoryl Lipid A enhances nontypeable haemophilus influenzae-specific mucosal and systemic immune responses by intranasal immunization. Int. J. Pediatr. Otorhinolaryngol. 2017, 97, 5–12. [Google Scholar] [CrossRef]
- Kurono, Y.; Suzuki, M.; Mogi, G.; Yamamoto, M.; Fujihashi, K.; McGhee, J.R.; Kiyono, H. Effects of intranasal immunization on protective immunity against otitis media. Int. J. Pediatr. Otorhinolaryngol. 1999, 49, S227–S229. [Google Scholar] [CrossRef]
- Channappanavar, R.; Twardy, B.S.; Suvas, S. Blocking of PDL-1 interaction enhances primary and secondary CD8 T cell response to herpes simplex virus-1 infection. PLoS ONE 2012, 7, e39757. [Google Scholar] [CrossRef]
- Jiao, X.; Hirano, T.; Hou, Y.; Gu, X.-X. Specific immune responses and enhancement of murine pulmonary clearance of Moraxella catarrhalis by Intranasal immunization with a detoxified lipooligosaccharide conjugate vaccine. Infect. Immun. 2002, 70, 5982–5989. [Google Scholar] [CrossRef]
- Barber, D.L.; Wherry, E.J.; Masopust, D.; Zhu, B.; Allison, J.P.; Sharpe, A.H.; Freeman, G.J.; Ahmed, R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006, 439, 682–687. [Google Scholar] [CrossRef]
- Kamphorst, A.O.; Ahmed, R. Manipulating the PD-1 pathway to improve immunity. Curr. Opin. Immunol. 2013, 25, 381–388. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, J.; Chen, Z.; Chen, S.; Wang, L. Immunological mechanisms behind anti--PD-1/PD-L1 immune checkpoint blockade: Intratumoral reinvigoration or systemic induction? Biomedicines 2024, 12, 764. [Google Scholar] [CrossRef]
- Velu, V.; Titanji, K.; Zhu, B.; Husain, S.; Pladevega, A.; Lai, L.; Vanderford, T.H.; Chennareddi, L.; Silvestri, G.; Freeman, G.J.; et al. Enhancing Siv-specific immunity in vivo by PD-1 blockade. Nature 2009, 458, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Minato, N.; Nakano, T.; Honjo, T. Immunological studies on PD-1 deficient mice: Implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 1998, 10, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Xie, S.; Gao, J.; Jiang, T.; Zhu, E.; Yang, X.; Jin, Z.; Long, H.; Zhang, A.; Yang, F.; et al. NK cell transfer overcomes resistance to PD-(L)1 therapy in aged mice. Exp. Hematol. Oncol. 2024, 13, 48. [Google Scholar] [CrossRef]
- O’Hara, J.M.; Redhu, N.S.; Cheung, E.; Robertson, N.G.; Patik, I.; Sayed, S.E.; Thompson, C.M.; Herd, M.; Lucas, K.B.; Conaway, E.; et al. Generation of protective pneumococcal-specific nasal resident memory CD4+ T cells via parenteral immunization. Mucosal Immunol. 2020, 13, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, G.; Romano, M.; Nova-Lamperti, E.; Sunderland, M.W.; Nerviani, A.; Scottà, C.; Bombardieri, M.; Quezada, S.A.; Sacks, S.H.; Noelle, R.J.; et al. PD-L1 signaling on human memory CD4+ T cells induces a regulatory phenotype. PLoS Biol. 2021, 19, e3001199. [Google Scholar] [CrossRef]
- Crotty, S. T follicular helper cell biology: A decade of discovery and diseases. Immunity 2019, 50, 1132–1148. [Google Scholar] [CrossRef]
- Liang, C.; Spoerl, S.; Xiao, Y.; Habenicht, K.M.; Haeusl, S.S.; Sandner, I.; Winkler, J.; Strieder, N.; Eder, R.; Stanewsky, H.; et al. Oligoclonal CD4+CXCR5+ T cells with a cytotoxic phenotype appear in tonsils and blood. Commun. Biol. 2024, 7, 879. [Google Scholar] [CrossRef]
- Khan, A.R.; Hams, E.; Floudas, A.; Sparwasser, T.; Weaver, C.T.; Fallon, P.G. PD-L1hi B cells are critical regulators of humoral immunity. Nat. Commun. 2015, 6, 5997. [Google Scholar] [CrossRef]
- Oh, J.E.; Song, E.; Moriyama, M.; Wong, P.; Zhang, S.; Jiang, R.; Strohmeier, S.; Kleinstein, S.H.; Krammer, F.; Iwasaki, A. Intranasal priming induces local lung-resident b cell populations that secrete protective mucosal antiviral IgA. Sci. Immunol. 2021, 6, eabj5129. [Google Scholar] [CrossRef]
Mean Total Number of MNCs (×106) | Control | OMP(+) | PD-L1 |
---|---|---|---|
MEM | 0.36 ± 0.29 | 0.27 ± 0.10 | 0.41 ± 0.20 |
CLN | 0.80 ± 0.42 | 1.24 ± 0.21 | 1.75 ± 0.73 |
SPL | 1.52 ± 0.82 | 2.21 ± 1.22 | 1.11 ± 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshinaga, K.; Hirano, T.; Umemoto, S.; Kadowaki, Y.; Matsunaga, T.; Suzuki, M. Effect of Anti-Programmed Cell Death-1 Antibody on Middle Ear Mucosal Immune Response to Intranasal Administration of Haemophilus influenzae Outer Membrane Protein. Vaccines 2025, 13, 313. https://doi.org/10.3390/vaccines13030313
Yoshinaga K, Hirano T, Umemoto S, Kadowaki Y, Matsunaga T, Suzuki M. Effect of Anti-Programmed Cell Death-1 Antibody on Middle Ear Mucosal Immune Response to Intranasal Administration of Haemophilus influenzae Outer Membrane Protein. Vaccines. 2025; 13(3):313. https://doi.org/10.3390/vaccines13030313
Chicago/Turabian StyleYoshinaga, Kazuhiro, Takashi Hirano, Shingo Umemoto, Yoshinori Kadowaki, Takayuki Matsunaga, and Masashi Suzuki. 2025. "Effect of Anti-Programmed Cell Death-1 Antibody on Middle Ear Mucosal Immune Response to Intranasal Administration of Haemophilus influenzae Outer Membrane Protein" Vaccines 13, no. 3: 313. https://doi.org/10.3390/vaccines13030313
APA StyleYoshinaga, K., Hirano, T., Umemoto, S., Kadowaki, Y., Matsunaga, T., & Suzuki, M. (2025). Effect of Anti-Programmed Cell Death-1 Antibody on Middle Ear Mucosal Immune Response to Intranasal Administration of Haemophilus influenzae Outer Membrane Protein. Vaccines, 13(3), 313. https://doi.org/10.3390/vaccines13030313