Comparison of Yeast and CHO Cell-Derived Hepatitis B Vaccines and Influencing Factors in Vaccine-Naïve Adults in China: Insights for Personalized Immunization Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Vaccines and Vaccination
2.4. Serological Tests
2.5. Statistical Analyses
3. Results
3.1. Demographics Analysis
3.2. Immunogenicity
3.3. Immune Response by Demographic Factors
3.3.1. Immune Responses in Different Age Subgroups
3.3.2. Sex-Based Differences in Immune Response in Adults
3.3.3. Immune Responses in Relation to BMI
3.3.4. Immune Responses of Participants with Smoking History
3.3.5. Immune Response of Participants with Drinking History
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Hepatitis B. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 25 December 2024).
- Mahmood, F.; Xu, R.; Awan, M.U.N.; Song, Y.; Han, Q.; Xia, X.; Wei, J.; Xu, J.; Peng, J.; Zhang, J. HBV Vaccines: Advances and Development. Vaccines 2023, 11, 1862. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef] [PubMed]
- Manfrão-Netto, J.H.C.; Gomes, A.M.V.; Parachin, N.S. Advances in Using Hansenula polymorpha as Chassis for Recombinant Protein Production. Front. Bioeng. Biotechnol. 2019, 7, 94. [Google Scholar] [CrossRef]
- Diminsky, D.; Schirmbeck, R.; Reimann, J.; Barenholz, Y. Comparison between hepatitis B surface antigen (HBsAg) particles derived from mammalian cells (CHO) and yeast cells (Hansenula polymorpha): Composition, structure and immunogenicity. Vaccine 1997, 15, 637–647. [Google Scholar] [CrossRef]
- Zhou, W.; Bi, J.; Janson, J.C.; Li, Y.; Huang, Y.; Zhang, Y.; Su, Z. Molecular characterization of recombinant Hepatitis B surface antigen from Chinese hamster ovary and Hansenula polymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 838, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Vesikari, T.; Langley, J.M.; Segall, N.; Ward, B.J.; Cooper, C.; Poliquin, G.; Smith, B.; Gantt, S.; McElhaney, J.E.; Dionne, M.; et al. Immunogenicity and safety of a tri-antigenic versus a mono-antigenic hepatitis B vaccine in adults (PROTECT): A randomised, double-blind, phase 3 trial. Lancet Infect. Dis. 2021, 21, 1271–1281. [Google Scholar] [CrossRef]
- Yang, S.; Tian, G.; Cui, Y.; Ding, C.; Deng, M.; Yu, C.; Xu, K.; Ren, J.; Yao, J.; Li, Y.; et al. Factors influencing immunologic response to hepatitis B vaccine in adults. Sci. Rep. 2016, 6, 27251. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity and Overweight; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 25 December 2024).
- Jack, A.D.; Hall, A.J.; Maine, N.; Mendy, M.; Whittle, H.C. What level of hepatitis B antibody is protective? J. Infect. Dis. 1999, 179, 489–492. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Gao, Y.H.; Wang, P.; Wei, L.; Xie, C.P.; Yang, Z.X.; Lan, J.; Fang, Z.L.; Zeng, Y.; Yan, L.; et al. Comparison of immunogenicity between hepatitis B vaccines with different dosages and schedules among healthy young adults in China: A 2-year follow-up study. Hum. Vacc. Immunother. 2018, 14, 1475–1482. [Google Scholar] [CrossRef]
- Wu, Z.K.; Bao, H.D.; Yao, J.; Chen, Y.D.; Lu, S.S.; Li, J.; Jiang, Z.G.; Ren, J.J.; Xu, K.J.; Ruan, B.; et al. Suitable hepatitis B vaccine for adult immunization in China: A systematic review and meta-analysis. Hum. Vacc. Immunother. 2019, 15, 220–227. [Google Scholar] [CrossRef]
- Stramer, S.L.; Wend, U.; Candotti, D.; Foster, G.A.; Hollinger, F.B.; Dodd, R.Y.; Allain, J.P.; Gerlich, W. Nucleic Acid Testing to Detect HBV Infection in Blood Donors. N. Engl. J. Med. 2011, 364, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Jeng, W.J.; Papatheodoridis, G.V.; Lok, A.S.F. Hepatitis B. Lancet 2023, 401, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Bruce, M.G.; Bruden, D.; Hurlburt, D.; Morris, J.; Bressler, S.; Thompson, G.; Lecy, D.; Rudolph, K.; Bulkow, L.; Hennessy, T.; et al. Protection and antibody levels 35 years after primary series with hepatitis B vaccine and response to a booster dose. Hepatology 2022, 76, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Cocchio, S.; Baldo, V.; Volpin, A.; Fonzo, M.; Floreani, A.; Furlan, P.; Mason, P.; Trevisan, A.; Scapellato, M.L. Persistence of Anti-Hbs after up to 30 Years in Health Care Workers Vaccinated against Hepatitis B Virus. Vaccines 2021, 9, 323. [Google Scholar] [CrossRef]
- Edelman, R.; Deming, M.E.; Toapanta, F.R.; Heuser, M.D.; Chrisley, L.; Barnes, R.S.; Wasserman, S.S.; Blackwelder, W.C.; Handwerger, B.S.; Pasetti, M.; et al. The SENIEUR protocol and the efficacy of hepatitis B vaccination in healthy elderly persons by age, gender, and vaccine route. Immun. Ageing 2020, 17, 9. [Google Scholar] [CrossRef]
- Goronzy, J.J.; Weyand, C.M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 2019, 19, 573–583. [Google Scholar] [CrossRef]
- Huang, Y.T.; Zheng, H.J.; Zhu, Y.W.; Hong, Y.; Zha, J.; Lin, Z.J.; Li, Z.F.; Wang, C.Y.; Fang, Z.H.; Yu, X.X.; et al. Loss of CD28 expression associates with severe T-cell exhaustion in acute myeloid leukemia. Front. Immunol. 2023, 14, 1139517. [Google Scholar] [CrossRef]
- Trevisan, A.; Giuliani, A.; Scapellato, M.L.; Anticoli, S.; Carsetti, R.; Zaffina, S.; Brugaletta, R.; Vonesch, N.; Tomao, P.; Ruggieri, A. Sex Disparity in Response to Hepatitis B Vaccine Related to the Age of Vaccination. Int. J. Environ. Res. Public Health 2020, 17, 327. [Google Scholar] [CrossRef]
- Fathi, A.; Addo, M.M.; Dahlke, C. Sex Differences in Immunity: Implications for the Development of Novel Vaccines Against Emerging Pathogens. Front. Immunol. 2021, 11, 601170. [Google Scholar] [CrossRef]
- Kanda, N.; Tamaki, K. Estrogen enhances immunoglobulin production by human PBMCs. J. Allergy Clin. Immun. 1999, 103, 282–288. [Google Scholar] [CrossRef]
- Kanda, N.; Tsuchida, T.; Tamaki, K. Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells. Clin. Exp. Immunol. 1996, 106, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Marriott, I.; Fish, E.N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, Y.W.; Chen, X.; Fu, X.M.; Li, W.; Liu, H.M.; Dong, Y.F.; Liu, C.Y.; Zhang, X.; Shen, L.; et al. Contribution of sex-based immunological differences to the enhanced immune response in female mice following vaccination with hepatitis B vaccine. Mol. Med. Rep. 2019, 20, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Jeong, S.J. Association between Body Mass Index and Hepatitis B antibody seropositivity in children. Korean J. Pediatr. 2019, 62, 416–421. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Pan, L.L.; Hao, Z.Y.; Jin, F.; Zhang, Y.H.; Li, M.J.; Zhang, X.J.; Han, B.H.; Zhou, H.S.; Ma, T.L.; et al. Immune response to different types of hepatitis B vaccine booster doses 2–32 years after the primary immunization schedule and its influencing factors. Int. J. Infect. Dis. 2020, 93, 62–67. [Google Scholar] [CrossRef]
- Joshi, S.S.; Davis, R.P.; Ma, M.M.; Tam, E.; Cooper, C.L.; Ramji, A.; Kelly, E.M.; Jayakumar, S.; Swain, M.G.; Jenne, C.N.; et al. Reduced immune responses to hepatitis B primary vaccination in obese individuals with nonalcoholic fatty liver disease (NAFLD). npj Vaccines 2021, 6, 9. [Google Scholar] [CrossRef]
- Frasca, D.; Diaz, A.; Romero, M.; Mendez, N.V.; Landin, A.M.; Ryan, J.G.; Blomberg, B.B. Young and elderly patients with type 2 diabetes have optimal B cell responses to the seasonal influenza vaccine. Vaccine 2013, 31, 3603–3610. [Google Scholar] [CrossRef]
- Liu, F.; Guo, Z.R.; Dong, C. Influences of obesity on the immunogenicity of Hepatitis B vaccine. Hum. Vacc. Immunother. 2017, 13, 1014–1017. [Google Scholar] [CrossRef]
- Young, K.M.; Gray, C.M.; Bekker, L.G. Is Obesity a Risk Factor for Vaccine Non-Responsiveness? PLoS ONE 2013, 8, e82779. [Google Scholar] [CrossRef]
- Fan, W.; Chen, X.F.; Shen, C.; Guo, Z.R.; Dong, C. Hepatitis B vaccine response in obesity: A meta-analysis. Vaccine 2016, 34, 4835–4841. [Google Scholar] [CrossRef]
- Fonzo, M.; Amoruso, I.; Serpentino, M.; Miccolis, L.; Baldovin, T.; Bertoncello, C.; Trevisan, A. Effect of smoking on long-term immunity after hepatitis B vaccine in infancy. A 20-year cohort study. Eur. J. Public Health 2023, 33, ckad160-1425. [Google Scholar] [CrossRef]
- Qiu, F.; Liang, C.L.; Liu, H.; Zeng, Y.Q.; Hou, S.; Huang, S.; Lai, X.; Dai, Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017, 8, 268–284. [Google Scholar] [CrossRef] [PubMed]
- Morojele, N.K.; Shenoi, S.V.; Shuper, P.A.; Braithwaite, R.S.; Rehm, J. Alcohol Use and the Risk of Communicable Diseases. Nutrients 2021, 13, 3317. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Cortes, K.; Villageliu, D.N.; Samuelson, D.R. Innate lymphocytes: Role in alcohol-induced immune dysfunction. Front. Immunol. 2022, 13, 934617. [Google Scholar] [CrossRef]
- Xu, H.Q.; Wang, C.G.; Zhou, Q.; Gao, Y.H. Effects of alcohol consumption on viral hepatitis B and C. World J. Clin. Cases 2021, 9, 10052–10063. [Google Scholar] [CrossRef]
- Rastogi, I.; Jeon, D.; Moseman, J.E.; Muralidhar, A.; Potluri, H.K.; McNeel, D.G. Role of B cells as antigen presenting cells. Front. Immunol. 2022, 13, 954936. [Google Scholar] [CrossRef]
YDV * | CHO # | p-Value | |
---|---|---|---|
Subjects, N | 289 | 293 | |
Age, mean (SD) | 40.3 (7.1) | 39.7 (7.3) | 0.3598 |
<45 years, N (%) | 218 (75.4) | 219 (74.7) | 0.8477 |
≥45 years, N (%) | 71 (24.6) | 74 (25.3) | |
Sex, N (%) | |||
Male | 126 (43.6) | 125 (43.0) | 0.8848 |
Female | 163 (56.4) | 167 (57.0) | |
BMI, mean (SD) | 23.8 (3.1) | 24.0 (2.9) | 0.4236 |
History of smoking, N (%) | 76 (26.3) | 78 (26.6) | 0.9295 |
History of drinking, N (%) | 80 (27.7) | 74 (25.3) | 0.5072 |
SPR @ (%) | GMC % (mIU/mL) (95%CI) | |||||
---|---|---|---|---|---|---|
YDV * | CHO # | p-Value | YDV | CHO | p-Value | |
Age | ||||||
<45 | 98.17 | 100.00 | 0.0611 | 695.06 (567.93–851.50) | 1962.55 (1610.02–2397.06) | <0.0001 |
≥45 | 94.37 | 95.95 | 0.7151 | 383.75 (238.89–615.85) | 931.69 (555.57–1562.43) | 0.0129 |
p-Value | 0.1049 | 0.0156 | 0.0088 | 0.0013 | ||
Sex | ||||||
Male | 96.03 | 98.41 | 0.4465 | 441.86 (321.50–606.68) | 1167.90 (833.81–1637.62) | <0.0001 |
Female | 98.16 | 99.40 | 0.3667 | 762.04 (602.45–963.91) | 2090.17 (1649.13–2649.17) | <0.0001 |
p-Value | 0.3020 | 0.5791 | 0.0057 | 0.0044 | ||
BMI & | ||||||
Underweight or normal | 100.00 | 98.33 | 0.2408 | 880.95 (671.83–1155.17) | 1574.98 (1147.11–2162.46) | 0.0061 |
Overweight | 95.83 | 100.00 | 0.2452 | 525.84 (356.74–776.66) | 1601.99 (1013.33–2532.60) | <0.0001 |
Obesity | 94.62 | 99.05 | 0.1010 | 399.81 (278.11–574.21) | 1704.45 (1243.89–2337.88) | <0.0001 |
p-Value | 0.0155 | 0.7935 | 0.0017 | 0.6019 | ||
Smoking | ||||||
Yes | 97.37 | 98.72 | 0.6176 | 390.33 (262.18–580.56) | 1248.88 (845.56–1842.72) | <0.0001 |
No | 97.18 | 99.07 | 0.1741 | 700.64 (563.41–872.18) | 1791.84 (1418.00–2261.99) | <0.0001 |
p-Value | 0.9326 | 0.7915 | 0.0084 | 0.1161 | ||
Drinking | ||||||
Yes | 95.00 | 98.65 | 0.3687 | 423.27 (281.74–635.24) | 1608.41 (1061.04–2440.60) | <0.0001 |
No | 98.09 | 99.09 | 0.4399 | 686.77 (553.36–853.21) | 1632.72 (1298.55–2054.94) | <0.0001 |
p-Value | 0.2232 | 0.7462 | 0.0268 | 0.9493 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Q.; Wang, H.; Zhang, W. Comparison of Yeast and CHO Cell-Derived Hepatitis B Vaccines and Influencing Factors in Vaccine-Naïve Adults in China: Insights for Personalized Immunization Strategies. Vaccines 2025, 13, 295. https://doi.org/10.3390/vaccines13030295
Qiu Q, Wang H, Zhang W. Comparison of Yeast and CHO Cell-Derived Hepatitis B Vaccines and Influencing Factors in Vaccine-Naïve Adults in China: Insights for Personalized Immunization Strategies. Vaccines. 2025; 13(3):295. https://doi.org/10.3390/vaccines13030295
Chicago/Turabian StyleQiu, Qian, Huai Wang, and Wei Zhang. 2025. "Comparison of Yeast and CHO Cell-Derived Hepatitis B Vaccines and Influencing Factors in Vaccine-Naïve Adults in China: Insights for Personalized Immunization Strategies" Vaccines 13, no. 3: 295. https://doi.org/10.3390/vaccines13030295
APA StyleQiu, Q., Wang, H., & Zhang, W. (2025). Comparison of Yeast and CHO Cell-Derived Hepatitis B Vaccines and Influencing Factors in Vaccine-Naïve Adults in China: Insights for Personalized Immunization Strategies. Vaccines, 13(3), 295. https://doi.org/10.3390/vaccines13030295