RSV Vaccines: Targeting Prefusion F and G Proteins from Structural Design to Clinical Application
Abstract
1. Introduction
2. Current Status of RSV Vaccine Research
3. Structure and Function of F and G Proteins
3.1. G Protein
3.2. F Protein
4. RSV Vaccine Strategies: Subunit and VLP Approaches
4.1. Subunit Vaccines
4.1.1. Abrysvo (RSVPreF)
4.1.2. Arexvy (RSVPreF3)
4.1.3. DS-Cav1
4.1.4. DT-PreF
4.1.5. ADV110
4.2. Particle-Based Vaccines
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bénet, T.; Sánchez Picot, V.; Messaoudi, M.; Chou, M.; Eap, T.; Wang, J.; Shen, K.; Pape, J.-W.; Rouzier, V.; Awasthi, S.; et al. Microorganisms Associated with Pneumonia in Children <5 Years of Age in Developing and Emerging Countries: The GABRIEL Pneumonia Multicenter, Prospective, Case-Control Study. Clin. Infect. Dis. 2017, 65, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Children Younger than 5 Years in 2019: A Systematic Analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef] [PubMed]
- Pneumonia Etiology Research for Child Health (PERCH) Study Group. Causes of Severe Pneumonia Requiring Hospital Admission in Children without HIV Infection from Africa and Asia: The PERCH Multi-Country Case-Control Study. Lancet 2019, 394, 757–779. [Google Scholar] [CrossRef] [PubMed]
- Soni, A.; Kabra, S.K.; Lodha, R. Respiratory Syncytial Virus Infection: An Update. Indian J. Pediatr. 2023, 90, 1245–1253. [Google Scholar] [CrossRef]
- Respiratory Syncytial Virus (RSV)|NIAID: National Institute of Allergy and Infectious Diseases. Available online: https://www.niaid.nih.gov/diseases-conditions/respiratory-syncytial-virus-rsv (accessed on 7 November 2024).
- Kaler, J.; Hussain, A.; Patel, K.; Hernandez, T.; Ray, S. Respiratory Syncytial Virus: A Comprehensive Review of Transmission, Pathophysiology, and Manifestation. Cureus 2023, 15, e36342. [Google Scholar] [CrossRef]
- Jha, A.; Jarvis, H.; Fraser, C.; Openshaw, P.J. Respiratory Syncytial Virus. In SARS, MERS and Other Viral Lung Infections; Hui, D.S., Rossi, G.A., Johnston, S.L., Eds.; Wellcome Trust–Funded Monographs and Book Chapters; European Respiratory Society: Sheffield, UK, 2016; ISBN 978-1-84984-070-5. [Google Scholar]
- Collins, P.L.; Fearns, R.; Graham, B.S. Respiratory Syncytial Virus: Virology, Reverse Genetics, and Pathogenesis of Disease. Curr. Top. Microbiol. Immunol. 2013, 372, 3–38. [Google Scholar] [CrossRef]
- Graham, B.S.; Modjarrad, K.; McLellan, J.S. Novel Antigens for RSV Vaccines. Curr. Opin. Immunol. 2015, 35, 30–38. [Google Scholar] [CrossRef]
- Blanco, J.C.G.; Boukhvalova, M.S.; Morrison, T.G.; Vogel, S.N. A Multifaceted Approach to RSV Vaccination. Hum. Vaccines Immunother. 2018, 14, 1734–1745. [Google Scholar] [CrossRef]
- Tripp, R.A.; Jones, L.P.; Haynes, L.M.; Zheng, H.; Murphy, P.M.; Anderson, L.J. CX3C Chemokine Mimicry by Respiratory Syncytial Virus G Glycoprotein. Nat. Immunol. 2001, 2, 732–738. [Google Scholar] [CrossRef]
- Johnson, K.M.; Bloom, H.H.; Mufson, M.A.; Chanock, R.M. Natural Reinfection of Adults by Respiratory Syncytial Virus. Possible Relation to Mild Upper Respiratory Disease. N. Engl. J. Med. 1962, 267, 68–72. [Google Scholar] [CrossRef]
- Chen, F.; Park, H.-R.; Ji, H.J.; Kwon, Y.; Kim, M.-K.; Song, J.Y.; Ahn, K.B.; Seo, H.S. Gamma Irradiation-Inactivated Respiratory Syncytial Virus Vaccine Provides Protection but Exacerbates Pulmonary Inflammation by Switching from Prefusion to Postfusion F Protein. Microbiol. Spectr. 2023, 11, e0135823. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. Respiratory Syncytial Virus Disease in Infants despite Prior Administration of Antigenic Inactivated Vaccine. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef]
- Thomas, S.; Smatti, M.K.; Ouhtit, A.; Cyprian, F.S.; Almaslamani, M.A.; Thani, A.A.; Yassine, H.M. Antibody-Dependent Enhancement (ADE) and the Role of Complement System in Disease Pathogenesis. Mol. Immunol. 2022, 152, 172–182. [Google Scholar] [CrossRef]
- Delgado, M.F.; Coviello, S.; Monsalvo, A.C.; Melendi, G.A.; Hernandez, J.Z.; Batalle, J.P.; Diaz, L.; Trento, A.; Chang, H.-Y.; Mitzner, W.; et al. Lack of Antibody Affinity Maturation Due to Poor Toll-like Receptor Stimulation Leads to Enhanced Respiratory Syncytial Virus Disease. Nat. Med. 2009, 15, 34–41. [Google Scholar] [CrossRef]
- Munoz, F.M.; Cramer, J.P.; Dekker, C.L.; Dudley, M.Z.; Graham, B.S.; Gurwith, M.; Law, B.; Perlman, S.; Polack, F.P.; Spergel, J.M.; et al. Vaccine-Associated Enhanced Disease: Case Definition and Guidelines for Data Collection, Analysis, and Presentation of Immunization Safety Data. Vaccine 2021, 39, 3053–3066. [Google Scholar] [CrossRef]
- Castilow, E.M.; Meyerholz, D.K.; Varga, S.M. IL-13 Is Required for Eosinophil Entry into the Lung during Respiratory Syncytial Virus Vaccine-Enhanced Disease. J. Immunol. 2008, 180, 2376–2384. [Google Scholar] [CrossRef]
- Connors, M.; Kulkarni, A.B.; Firestone, C.Y.; Holmes, K.L.; Morse, H.C.; Sotnikov, A.V.; Murphy, B.R. Pulmonary Histopathology Induced by Respiratory Syncytial Virus (RSV) Challenge of Formalin-Inactivated RSV-Immunized BALB/c Mice Is Abrogated by Depletion of CD4+ T Cells. J. Virol. 1992, 66, 7444–7451. [Google Scholar] [CrossRef]
- Killikelly, A.M.; Kanekiyo, M.; Graham, B.S. Pre-Fusion F Is Absent on the Surface of Formalin-Inactivated Respiratory Syncytial Virus. Sci. Rep. 2016, 6, 34108. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.R.; Lichtenstein, D.; Ball, L.A.; Wertz, G.W. The Membrane-Associated and Secreted Forms of the Respiratory Syncytial Virus Attachment Glycoprotein G Are Synthesized from Alternative Initiation Codons. J. Virol. 1994, 68, 4538–4546. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, H.C.; Tripp, R.A. RSV Replication, Transmission, and Disease Are Influenced by the RSV G Protein. Viruses 2022, 14, 2396. [Google Scholar] [CrossRef]
- Spriggs, M.K.; Olmsted, R.A.; Venkatesan, S.; Coligan, J.E.; Collins, P.L. Fusion Glycoprotein of Human Parainfluenza Virus Type 3: Nucleotide Sequence of the Gene, Direct Identification of the Cleavage-Activation Site, and Comparison with Other Paramyxoviruses. Virology 1986, 152, 241–251. [Google Scholar] [CrossRef]
- Rezende, W.; Neal, H.E.; Dutch, R.E.; Piedra, P.A. The RSV F P27 Peptide: Current Knowledge, Important Questions. Front. Microbiol. 2023, 14, 1219846. [Google Scholar] [CrossRef]
- González-Reyes, L.; Ruiz-Argüello, M.B.; García-Barreno, B.; Calder, L.; López, J.A.; Albar, J.P.; Skehel, J.J.; Wiley, D.C.; Melero, J.A. Cleavage of the Human Respiratory Syncytial Virus Fusion Protein at Two Distinct Sites Is Required for Activation of Membrane Fusion. Proc. Natl. Acad. Sci. USA 2001, 98, 9859–9864. [Google Scholar] [CrossRef]
- Yin, H.-S.; Wen, X.; Paterson, R.G.; Lamb, R.A.; Jardetzky, T.S. Structure of the Parainfluenza Virus 5 F Protein in Its Metastable, Prefusion Conformation. Nature 2006, 439, 38–44. [Google Scholar] [CrossRef]
- Ruckwardt, T.J.; Morabito, K.M.; Graham, B.S. Immunological Lessons from Respiratory Syncytial Virus Vaccine Development. Immunity 2019, 51, 429–442. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Chen, M.; Leung, S.; Graepel, K.W.; Du, X.; Yang, Y.; Zhou, T.; Baxa, U.; Yasuda, E.; Beaumont, T.; et al. Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody. Science 2013, 340, 1113–1117. [Google Scholar] [CrossRef]
- Murphy, B.R.; Alling, D.W.; Snyder, M.H.; Walsh, E.E.; Prince, G.A.; Chanock, R.M.; Hemming, V.G.; Rodriguez, W.J.; Kim, H.W.; Graham, B.S. Effect of Age and Preexisting Antibody on Serum Antibody Response of Infants and Children to the F and G Glycoproteins during Respiratory Syncytial Virus Infection. J. Clin. Microbiol. 1986, 24, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Gilman, M.S.A.; Castellanos, C.A.; Chen, M.; Ngwuta, J.O.; Goodwin, E.; Moin, S.M.; Mas, V.; Melero, J.A.; Wright, P.F.; Graham, B.S.; et al. Rapid Profiling of RSV Antibody Repertoires from the Memory B Cells of Naturally Infected Adult Donors. Sci. Immunol. 2016, 1, eaaj1879. [Google Scholar] [CrossRef] [PubMed]
- Topalidou, X.; Kalergis, A.M.; Papazisis, G. Respiratory Syncytial Virus Vaccines: A Review of the Candidates and the Approved Vaccines. Pathogens 2023, 12, 1259. [Google Scholar] [CrossRef]
- Britton, A.; Roper, L.E.; Kotton, C.N.; Hutton, D.W.; Fleming-Dutra, K.E.; Godfrey, M.; Ortega-Sanchez, I.R.; Broder, K.R.; Talbot, H.K.; Long, S.S.; et al. Use of Respiratory Syncytial Virus Vaccines in Adults Aged ≥60 Years: Updated Recommendations of the Advisory Committee on Immunization Practices—United States, 2024. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 696–702. [Google Scholar] [CrossRef]
- Healthcare Providers: RSV Vaccination for Adults 60 Years of Age and Over|CDC. Available online: https://www.cdc.gov/vaccines/vpd/rsv/hcp/older-adults.html (accessed on 4 February 2025).
- Vaccines and Related Biological Products Advisory Committee February 28-March 1, 2023 Meeting Announcement—02/28/2023|FDA. Available online: https://www.fda.gov/advisory-committees/advisory-committee-calendar/vaccines-and-related-biological-products-advisory-committee-february-28-march-1-2023-meeting (accessed on 17 February 2025).
- Kampmann, B.; Madhi, S.A.; Munjal, I.; Simões, E.A.F.; Pahud, B.A.; Llapur, C.; Baker, J.; Marc, G.P.; Radley, D.; Shittu, E.; et al. Bivalent Prefusion F Vaccine in Pregnancy to Prevent RSV Illness in Infants. N. Engl. J. Med. 2023, 388, 1451–1464. [Google Scholar] [CrossRef]
- CDC Grading of Recommendations, Assessment, Development, and Evaluation (GRADE): Pfizer Maternal RSV Vaccine. Available online: https://www.cdc.gov/acip/grade/pfizer-RSVpreF-pregnant-people.html (accessed on 19 January 2025).
- Falsey, A.R.; Walsh, E.E.; Scott, D.A.; Gurtman, A.; Zareba, A.; Jansen, K.U.; Gruber, W.C.; Dormitzer, P.R.; Swanson, K.A.; Jiang, Q.; et al. Phase 1/2 Randomized Study of the Immunogenicity, Safety, and Tolerability of a Respiratory Syncytial Virus Prefusion F Vaccine in Adults With Concomitant Inactivated Influenza Vaccine. J. Infect. Dis. 2022, 225, 2056–2066. [Google Scholar] [CrossRef]
- Fleming-Dutra, K.E.; Jones, J.M.; Roper, L.E.; Prill, M.M.; Ortega-Sanchez, I.R.; Moulia, D.L.; Wallace, M.; Godfrey, M.; Broder, K.R.; Tepper, N.K.; et al. Use of the Pfizer Respiratory Syncytial Virus Vaccine During Pregnancy for the Prevention of Respiratory Syncytial Virus-Associated Lower Respiratory Tract Disease in Infants: Recommendations of the Advisory Committee on Immunization Practices—United States, 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1115–1122. [Google Scholar] [CrossRef]
- Swathi, M. Arexvy: A Comprehensive Review of the Respiratory Syncytial Virus Vaccine for Revolutionary Protection. Viral Immunol. 2024, 37, 12–15. [Google Scholar] [CrossRef]
- Venkatesan, P. First RSV Vaccine Approvals. Lancet Microbe 2023, 4, e577. [Google Scholar] [CrossRef] [PubMed]
- Papi, A.; Ison, M.G.; Langley, J.M.; Lee, D.-G.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; Campora, L.; Dezutter, N.; et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Ison, M.G.; Papi, A.; Athan, E.; Feldman, R.G.; Langley, J.M.; Lee, D.-G.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; et al. Efficacy and Safety of Respiratory Syncytial Virus (RSV) Prefusion F Protein Vaccine (RSVPreF3 OA) in Older Adults Over 2 RSV Seasons. Clin. Infect. Dis. 2024, 78, 1732–1744. [Google Scholar] [CrossRef] [PubMed]
- Sacconnay, L.; De Smedt, J.; Rocha-Perugini, V.; Ong, E.; Mascolo, R.; Atas, A.; Vanden Abeele, C.; de Heusch, M.; De Schrevel, N.; David, M.-P.; et al. The RSVPreF3-AS01 Vaccine Elicits Broad Neutralization of Contemporary and Antigenically Distant Respiratory Syncytial Virus Strains. Sci. Transl. Med. 2023, 15, eadg6050. [Google Scholar] [CrossRef] [PubMed]
- US FDA Approves GSK’s Arexvy, the World’s First Respiratory Syncytial Virus (RSV) Vaccine for Older Adults|GSK. Available online: https://www.gsk.com/en-gb/media/press-releases/us-fda-approves-gsk-s-arexvy-the-world-s-first-respiratory-syncytial-virus-rsv-vaccine-for-older-adults/ (accessed on 18 February 2025).
- May 3, 2023 Summary Basis for Regulatory Action—AREXVY. Available online: https://www.fda.gov/media/168519/download (accessed on 20 February 2025).
- Leroux-Roels, I.; Davis, M.G.; Steenackers, K.; Essink, B.; Vandermeulen, C.; Fogarty, C.; Andrews, C.P.; Kerwin, E.; David, M.-P.; Fissette, L.; et al. Safety and Immunogenicity of a Respiratory Syncytial Virus Prefusion F (RSVPreF3) Candidate Vaccine in Older Adults: Phase 1/2 Randomized Clinical Trial. J. Infect. Dis. 2023, 227, 761–772. [Google Scholar] [CrossRef]
- Mukhamedova, M.; Wrapp, D.; Shen, C.-H.; Gilman, M.S.A.; Ruckwardt, T.J.; Schramm, C.A.; Ault, L.; Chang, L.; Derrien-Colemyn, A.; Lucas, S.A.M.; et al. Vaccination with Prefusion-Stabilized Respiratory Syncytial Virus Fusion Protein Induces Genetically and Antigenically Diverse Antibody Responses. Immunity 2021, 54, 769–780.e6. [Google Scholar] [CrossRef]
- Efimov, V.P.; Nepluev, I.V.; Sobolev, B.N.; Zurabishvili, T.G.; Schulthess, T.; Lustig, A.; Engel, J.; Haener, M.; Aebi, U.; Venyaminov, S.Y.; et al. Fibritin Encoded by Bacteriophage T4 Gene Wac Has a Parallel Triple-Stranded Alpha-Helical Coiled-Coil Structure. J. Mol. Biol. 1994, 242, 470–486. [Google Scholar] [CrossRef]
- Miroshnikov, K.A.; Marusich, E.I.; Cerritelli, M.E.; Cheng, N.; Hyde, C.C.; Steven, A.C.; Mesyanzhinov, V.V. Engineering Trimeric Fibrous Proteins Based on Bacteriophage T4 Adhesins. Protein Eng. 1998, 11, 329–332. [Google Scholar] [CrossRef]
- Kwakkenbos, M.J.; Diehl, S.A.; Yasuda, E.; Bakker, A.Q.; van Geelen, C.M.M.; Lukens, M.V.; van Bleek, G.M.; Widjojoatmodjo, M.N.; Bogers, W.M.J.M.; Mei, H.; et al. Generation of Stable Monoclonal Antibody-Producing B Cell Receptor-Positive Human Memory B Cells by Genetic Programming. Nat. Med. 2010, 16, 123–128. [Google Scholar] [CrossRef]
- Ruckwardt, T.J.; Morabito, K.M.; Phung, E.; Crank, M.C.; Costner, P.J.; Holman, L.A.; Chang, L.A.; Hickman, S.P.; Berkowitz, N.M.; Gordon, I.J.; et al. Safety, Tolerability, and Immunogenicity of the Respiratory Syncytial Virus Prefusion F Subunit Vaccine DS-Cav1: A Phase 1, Randomised, Open-Label, Dose-Escalation Clinical Trial. Lancet Respir. Med. 2021, 9, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; et al. Global Burden of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Young Children: A Systematic Review and Meta-Analysis. Lancet 2010, 375, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.Y.; Steinhoff, M.C.; Magaret, A.; Zaman, K.; Roy, E.; Langdon, G.; Formica, M.A.; Walsh, E.E.; Englund, J.A. Respiratory Syncytial Virus Transplacental Antibody Transfer and Kinetics in Mother-Infant Pairs in Bangladesh. J. Infect. Dis. 2014, 210, 1582–1589. [Google Scholar] [CrossRef]
- Madhi, S.A.; Polack, F.P.; Piedra, P.A.; Munoz, F.M.; Trenholme, A.A.; Simões, E.A.F.; Swamy, G.K.; Agrawal, S.; Ahmed, K.; August, A.; et al. Respiratory Syncytial Virus Vaccination during Pregnancy and Effects in Infants. N. Engl. J. Med. 2020, 383, 426–439. [Google Scholar] [CrossRef] [PubMed]
- Ochola, R.; Sande, C.; Fegan, G.; Scott, P.D.; Medley, G.F.; Cane, P.A.; Nokes, D.J. The Level and Duration of RSV-Specific Maternal IgG in Infants in Kilifi Kenya. PLoS ONE 2009, 4, e8088. [Google Scholar] [CrossRef]
- Ruckwardt, T.J.; Morabito, K.M.; Graham, B.S. Determinants of Early Life Immune Responses to RSV Infection. Curr. Opin. Virol. 2016, 16, 151–157. [Google Scholar] [CrossRef]
- Lambert, L.; Sagfors, A.M.; Openshaw, P.J.M.; Culley, F.J. Immunity to RSV in Early-Life. Front. Immunol. 2014, 5, 466. [Google Scholar] [CrossRef]
- Gidwani, S.V.; Brahmbhatt, D.; Zomback, A.; Bassie, M.; Martinez, J.; Zhuang, J.; Schulze, J.; McLellan, J.S.; Mariani, R.; Alff, P.; et al. Engineered Dityrosine-Bonding of the RSV Prefusion F Protein Imparts Stability and Potency Advantages. Nat. Commun. 2024, 15, 2202. [Google Scholar] [CrossRef]
- Cayatte, C.; Snell Bennett, A.; Rajani, G.M.; Hostetler, L.; Maynard, S.K.; Lazzaro, M.; McTamney, P.; Ren, K.; O’Day, T.; McCarthy, M.P.; et al. Inferior Immunogenicity and Efficacy of Respiratory Syncytial Virus Fusion Protein-Based Subunit Vaccine Candidates in Aged versus Young Mice. PLoS ONE 2017, 12, e0188708. [Google Scholar] [CrossRef] [PubMed]
- Malencik, D.A.; Sprouse, J.F.; Swanson, C.A.; Anderson, S.R. Dityrosine: Preparation, Isolation, and Analysis. Anal. Biochem. 1996, 242, 202–213. [Google Scholar] [CrossRef]
- Malencik, D.A.; Anderson, S.R. Dityrosine Formation in Calmodulin: Cross-Linking and Polymerization Catalyzed by Arthromyces Peroxidase. Biochemistry 1996, 35, 4375–4386. [Google Scholar] [CrossRef]
- Banooni, P.; Gonik, B.; Epalza, C.; Reyes, O.; Madhi, S.A.; Gomez-Go, G.D.; Zaman, K.; Llapur, C.J.; López-Medina, E.; Stanley, T.; et al. Efficacy, Immunogenicity, and Safety of an Investigational Maternal Respiratory Syncytial Virus Prefusion F Protein–Based Vaccine. Clin. Infect. Dis. 2025, ciaf033. [Google Scholar] [CrossRef]
- Cheng, X.; Zhao, G.; Dong, A.; He, Z.; Wang, J.; Jiang, B.; Wang, B.; Wang, M.; Huai, X.; Zhang, S.; et al. A First-in-Human Trial to Evaluate the Safety and Immunogenicity of a G Protein-Based Recombinant Respiratory Syncytial Virus Vaccine in Healthy Adults 18-45 Years of Age. Vaccines 2023, 11, 999. [Google Scholar] [CrossRef]
- Powell, T.J.; Jacobs, A.; Tang, J.; Cardenas, E.; Palath, N.; Daniels, J.; Boyd, J.G.; Bergeron, H.C.; Jorquera, P.A.; Tripp, R.A. Microparticle RSV Vaccines Presenting the G Protein CX3C Chemokine Motif in the Context of TLR Signaling Induce Protective Th1 Immune Responses and Prevent Pulmonary Eosinophilia Post-Challenge. Vaccines 2022, 10, 2078. [Google Scholar] [CrossRef]
- Guntupalli, K.; Dean, N.; Morris, P.E.; Bandi, V.; Margolis, B.; Rivers, E.; Levy, M.; Lodato, R.F.; Ismail, P.M.; Reese, A.; et al. A Phase 2 Randomized, Double-Blind, Placebo-Controlled Study of the Safety and Efficacy of Talactoferrin in Patients with Severe Sepsis. Crit. Care Med. 2013, 41, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Boyoglu-Barnum, S.; Chirkova, T.; Anderson, L.J. Biology of Infection and Disease Pathogenesis to Guide RSV Vaccine Development. Front. Immunol. 2019, 10, 1675. [Google Scholar] [CrossRef]
- Bai, B.; Hu, Q.; Hu, H.; Zhou, P.; Shi, Z.; Meng, J.; Lu, B.; Huang, Y.; Mao, P.; Wang, H. Virus-like Particles of SARS-like Coronavirus Formed by Membrane Proteins from Different Origins Demonstrate Stimulating Activity in Human Dendritic Cells. PLoS ONE 2008, 3, e2685. [Google Scholar] [CrossRef] [PubMed]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like Particles: Preparation, Immunogenicity and Their Roles as Nanovaccines and Drug Nanocarriers. J. Nanobiotechnol. 2021, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-T.; Ko, E.-J.; Lee, Y.; Kim, K.-H.; Kim, M.-C.; Lee, Y.-N.; Kang, S.-M. Intranasal Vaccination with M2e5x Virus-like Particles Induces Humoral and Cellular Immune Responses Conferring Cross-Protection against Heterosubtypic Influenza Viruses. PLoS ONE 2018, 13, e0190868. [Google Scholar] [CrossRef] [PubMed]
- Ha, B.; Yang, J.E.; Chen, X.; Jadhao, S.J.; Wright, E.R.; Anderson, L.J. Two RSV Platforms for G, F, or G+F Proteins VLPs. Viruses 2020, 12, 906. [Google Scholar] [CrossRef]
- Roldão, A.; Mellado, M.C.M.; Castilho, L.R.; Carrondo, M.J.T.; Alves, P.M. Virus-like Particles in Vaccine Development. Expert Rev. Vaccines 2010, 9, 1149–1176. [Google Scholar] [CrossRef]
- Quan, F.-S.; Basak, S.; Chu, K.-B.; Kim, S.S.; Kang, S.-M. Progress in the Development of Virus-like Particle Vaccines against Respiratory Viruses. Expert Rev. Vaccines 2020, 19, 11–24. [Google Scholar] [CrossRef]
- Icosavax Launches to Advance Designer Vaccines—Institute for Protein Design. Available online: https://www.ipd.uw.edu/2019/10/icosavax-launches-to-advance-designer-vaccines/ (accessed on 29 October 2025).
- Icosavax Reports Positive 12-Month Durability Data for VLP Vaccine Candidate IVX-121 Against RSV and Initial Evidence for Revaccination Potential—BioSpace. Available online: https://www.biospace.com/icosavax-reports-positive-12-month-durability-data-for-vlp-vaccine-candidate-ivx-121-against-rsv-and-initial-evidence-for-revaccination-potential (accessed on 4 March 2025).
- Icosavax, Inc. Icosavax Announces Positive Topline Interim Phase 1 Results for Bivalent VLP Vaccine Candidate IVX-A12 Against RSV and hMPV in Older Adults. Available online: https://www.globenewswire.com/news-release/2023/05/22/2673842/0/en/Icosavax-Announces-Positive-Topline-Interim-Phase-1-Results-for-Bivalent-VLP-Vaccine-Candidate-IVX-A12-Against-RSV-and-hMPV-in-Older-Adults.html (accessed on 4 March 2025).
- EX-99.2. Available online: https://www.sec.gov/Archives/edgar/data/1786255/000119312523293389/d654575dex992.htm (accessed on 4 March 2025).
- Bartsch, Y.C.; Cizmeci, D.; Kang, J.; Zohar, T.; Periasamy, S.; Mehta, N.; Tolboom, J.; Van der Fits, L.; Sadoff, J.; Comeaux, C.; et al. Antibody Effector Functions Are Associated with Protection from Respiratory Syncytial Virus. Cell 2022, 185, 4873–4886.e10. [Google Scholar] [CrossRef]
- Zhang, T.; Aipire, A.; Li, Y.; Guo, C.; Li, J. Antigen Cross-Presentation in Dendric Cells: From Bench to Bedside. Biomed. Pharmacother. 2023, 168, 115758. [Google Scholar] [CrossRef] [PubMed]



| Name | Vaccine Characteristics | Clinical Progress | Target Population | Research Progress | Advantages and Disadvantages |
|---|---|---|---|---|---|
| Abrysvo | 1. Target protein: RSV PreF 2. Bivalent vaccine, targeting RSV-A and RSV-B subtypes | Available | 1. Pregnant women 2. People aged 60 years and older | 1. Phase III clinical trial (MATISSE study) showed 81.8% to 69.4% protection against RSV-associated LRTI in infants 2. The ConquerRSV Study has shown a 75% to 82% protection against RSV-related hospitalizations in older adults | Advantages: 1. High safety and efficacy 2. Early protection for babies through maternal immunization Suitable for pregnant women and the elderly Disadvantages: Possibilities of increasing the risk of preterm birth and hypertensive disorders of pregnancy |
| Arexvy | 1. Target protein: RSVPreF3 (pre-fused F protein) 2. Combined with AS01E adjuvants (MPL and QS-21) | Available on the market | 1. People aged 60 and above 2. People aged 50 to 59 years at high risk | 1. The Phase III clinical trial (AReSVi-006) showed a protective efficacy of 82.6–94.1% against RSV-related lower respiratory tract infection 2. Effectiveness was 67.2–78.8% in both RSV seasons | Advantages: 1. Efficient protection of the elderly population 2. It is suitable for a wide range of people 3. AS01E adjuvant enhances immune response Disadvantages: 1. There may be a risk of GBS. 2. Strict storage conditions |
| DS-Cav1 | 1. Target protein: RSV PreF 2. PreF conformation is stabilized by DS and Cav1. | Phase I clinical trial | 1. Pregnant women 2. The elderly | 1. Phase I clinical trials have shown that it is safe and well tolerated in healthy adults 2. It has long-lasting neutralizing viral activity and may protect multiple RSV epidemic seasons | Advantages: 1. Good tolerability and immunogenicity 2. Potentially protective effect on newborns Disadvantages: 1. Maternal hyperactivity antibodies may have an effect on infant lung development 2. There are insufficient studies in older populations |
| DT-PreF | 1. Target protein: RSV PreF 2. Stabilization of PreF conformation by dityrosine bonds 3. High temperature stability | It has not yet entered clinical trials | 1. The elderly 2. People with weakened immune systems | 1. Animal experiments have shown a strong protective effect 2. High doses overcome immunosenescence without the need for adjuvants or repeated dosing | Advantages: 1. Stronger low-temperature stability 2. Efficient neutralizing antibody titers 3. Immunosenescence can be overcome by increasing the dose Disadvantages: It has not entered clinical trials |
| ADV110 | 1. Target protein: RSV G protein CCD 2. Combined with AE011 adjuvant 3. Induce Treg cells to inhibit excessive T cell responses | Completed Phase I and Phase II clinical trials | 1. Adults aged 60–80 years | 1. Phase II clinical trials showed significant increases in anti-RSV antibody levels 2. It did not induce an excessive T cell response, reducing the risk of VED. | Advantages: 1. High safety and immunogenicity 2. Reduces excessive T cell response and reduces the risk of VED Disadvantages: Treg induction mechanisms may inhibit the antiviral immune response |
| IVX-A12 | 1. Target protein: PreF of RSV and hMPV 2. Bivalent vaccine based on VLP technology | Phase II clinical trial | 1. Seniors aged 60–75 years | 1. Phase II clinical trials showed a robust immune response and a favorable safety profile 2. Phase III trial is about to begin | Advantages: 1. Multivalent design enhances immune response 2. Good safety and application prospects Disadvantages: Phase III trials have not yet been completed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Zhang, C.; Qi, Y.; Liu, Z.; Yang, D.; Zhao, N.; Ke, Z.; Lu, X.; Li, Y. RSV Vaccines: Targeting Prefusion F and G Proteins from Structural Design to Clinical Application. Vaccines 2025, 13, 1133. https://doi.org/10.3390/vaccines13111133
Yu D, Zhang C, Qi Y, Liu Z, Yang D, Zhao N, Ke Z, Lu X, Li Y. RSV Vaccines: Targeting Prefusion F and G Proteins from Structural Design to Clinical Application. Vaccines. 2025; 13(11):1133. https://doi.org/10.3390/vaccines13111133
Chicago/Turabian StyleYu, Dongrunhan, Chengwei Zhang, Yunyi Qi, Ziyi Liu, Di Yang, Nan Zhao, Zunhui Ke, Xiaoxia Lu, and Yan Li. 2025. "RSV Vaccines: Targeting Prefusion F and G Proteins from Structural Design to Clinical Application" Vaccines 13, no. 11: 1133. https://doi.org/10.3390/vaccines13111133
APA StyleYu, D., Zhang, C., Qi, Y., Liu, Z., Yang, D., Zhao, N., Ke, Z., Lu, X., & Li, Y. (2025). RSV Vaccines: Targeting Prefusion F and G Proteins from Structural Design to Clinical Application. Vaccines, 13(11), 1133. https://doi.org/10.3390/vaccines13111133

