The Gut Microbiome and Vaccination: A Comprehensive Review of Current Evidence and Future Perspectives
Abstract
1. Introduction
2. Mechanistic Frameworks: How the Gut Microbiome Shapes Vaccine Immunity
2.1. Microbial Sensing by Pattern-Recognition Receptors
2.1.1. TLR5 and Bacterial Flagellin as Endogenous Adjuvants
2.1.2. Other TLRs and Innate Sensors
2.1.3. Innate Lymphoid Cells and Epithelial Interfaces
2.2. Microbial Metabolites and Immunometabolism
2.2.1. Short-Chain Fatty Acids (SCFAs)
2.2.2. Bile Acids and Microbial Transformation
2.2.3. Tryptophan Metabolism and Indole Derivatives
2.2.4. Vitamins, Polyamines, and Other Metabolites
2.3. The Gut–Lung and Gut–Systemic Axes
2.3.1. The Gut–Lung Axis in Respiratory Vaccines
2.3.2. Systemic Cross-Talk and Hematopoietic Conditioning
2.4. Integrating Innate and Metabolic Pathways
3. Human Evidence Across Life Stages and Vaccine Platforms
3.1. Adults: Antibiotic Perturbation and Influenza Vaccines
3.2. Early Life: Neonatal Antibiotics, Bifidobacterium, and Routine Vaccines
3.3. Oral Vaccines and the “LMIC Efficacy Gap”
3.4. Beyond Infants and Adults: Adolescents and Special Groups
3.5. Critical Discussion and Emerging Concepts
4. What Features of the Microbiome Matter?
4.1. Taxonomic Signatures
4.1.1. Bifidobacterium as a Recurring Positive Correlate
4.1.2. Other Beneficial Taxa
4.1.3. Detrimental Associations: Proteobacteria and Pathobionts
4.2. Microbial Diversity and Stability
4.3. Functional Capacity and Metagenomic Signatures
4.4. Metabolomic Profiles as Biomarkers
- Bile acids: Specific conjugated bile acids have been associated with impaired influenza vaccine responses, whereas balanced bile acid pools support Tfh differentiation [17].
- Indoles and tryptophan derivatives: Positive correlates of mucosal IgA responses and barrier function [9].
- Polyamines (spermidine, putrescine): Linked to enhanced autophagy and improved memory T-cell formation in preclinical models [8].
4.5. Multi-Omics Integration
4.6. Developmental and Geographic Considerations
5. Clinical Modulation Strategies
5.1. Dietary Interventions and Prebiotics
5.1.1. Fiber Supplementation
5.1.2. Prebiotics and Human Milk Oligosaccharides (HMOs)
5.2. Probiotics and Synbiotics
5.2.1. Evidence from Randomized Trials
5.2.2. The Case for Bifidobacterium
5.2.3. Safety and Regulatory Considerations
5.3. Postbiotics and Microbial Metabolites
5.3.1. SCFA Analogs and Delivery Systems
5.3.2. Indole Derivatives and AhR Ligands
5.3.3. Polyamines and Memory T Cell Support
5.4. Microbiome-Inspired Adjuvants
5.4.1. Flagellin and TLR5 Agonists
5.4.2. Other PRR Ligands
5.5. Fecal Microbiota Transplantation (FMT) and Next-Generation Approaches
6. Special Populations
6.1. Neonates and Infants
6.1.1. Early-Life Vulnerability
6.1.2. Breastfeeding and Human Milk Oligosaccharides
6.1.3. Preterm Infants
6.2. Older Adults and Immunosenescence
6.3. Immunocompromised Populations
6.3.1. People Living with HIV (PLWH)
6.3.2. Transplant Recipients and Patients on Immunosuppressive Therapy
6.4. Pregnant Individuals and Maternal–Infant Dyads
6.5. Low- and Middle-Income Countries (LMICs)
7. Practical Guidance & Future Directions
7.1. Integrating Microbiome Endpoints into Vaccine Trials
7.1.1. Baseline Characterization
7.1.2. Pre-Existing Immunity
7.1.3. Longitudinal Sampling
7.1.4. Multi-Omics Integration
7.2. Translational Priorities
7.2.1. Targeted Interventions in Neonates and Infants
7.2.2. Optimizing Oral Vaccines in LMICs
7.2.3. Older Adults and Immunosenescence
7.2.4. Immunocompromised Populations
7.3. Research Gaps and Methodological Challenges
7.3.1. Causality and Confounding
7.3.2. Standardization of Methods
7.3.3. Geographic and Demographic Diversity
7.3.4. Beyond Bacteria: Virome and Mycobiome
7.4. Ethical and Regulatory Considerations
7.4.1. Antibiotic Stewardship
7.4.2. Regulatory Frameworks for Probiotics and Postbiotics
7.4.3. Equity and Access
7.5. Future Horizons
- Predictive biomarkers: Development of microbiome–metabolite signatures that identify likely poor responders, enabling targeted interventions. Short-term (1–3 years) goals include harmonizing sample collection and sequencing standards across vaccine trials. Multicenter collaborations such as HIPC or the European Vaccine Initiative could integrate microbiome and metabolomic data to build predictive models validated in at least two independent populations.
- Personalized vaccinology: Tailoring vaccine formulations, adjuvants, or adjuncts based on an individual’s microbiome profile. Pilot interventional studies could test microbiome-informed vaccination schedules (e.g., probiotic preconditioning before influenza or rotavirus vaccination) within 3–5 years. Potential partners include national immunization programs, microbiome research networks, and precision-medicine consortia.
- Next-generation adjuvants: Rational design of commensal-derived molecules (e.g., flagellin derivatives, indole ligands) to boost immunogenicity safely. A 5–10-year research horizon should prioritize translational pipelines connecting microbial genomics, synthetic biology, and adjuvant chemistry. Collaborations between academic immunology labs, biotech startups, and public-private initiatives (e.g., CEPI, BARDA) could accelerate first-in-human trials.
- Integration with new vaccine platforms: Understanding how the microbiome influences responses to mRNA, nanoparticle, and mucosal vaccines, which may be more sensitive to metabolic and barrier contexts. Ongoing COVID-19 and RSV vaccine studies provide immediate opportunities for microbiome sub-analyses; large-scale consortia such as NIH’s PREVENT-19 or Horizon Europe programs could embed microbiome modules into platform-vaccine trials within the next 2–4 years.
- Systems vaccinology: Embedding microbiome analyses into the systems-vaccinology paradigm to generate holistic models of vaccine response. Future efforts (5–8 years) should integrate multi-omic layers—metagenomics, transcriptomics, metabolomics, and immunophenotyping—into unified computational frameworks. Collaborative modeling centers (e.g., Allen Institute for Immunology, Global Virome Project) could serve as hubs for cross-disciplinary data integration and predictive modeling.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abbreviation | Meaning | 
| SCFA | Short-Chain Fatty Acid | 
| TLR | Toll-Like Receptor | 
| PRR | Pattern-Recognition Receptor | 
| Tfh | T Follicular Helper | 
| LMIC | Low- and Middle-Income Country | 
| HIC | High-Income Country | 
| FMT | Fecal Microbiota Transplantation | 
| HMO | Human Milk Oligosaccharide | 
| IBD | Inflammatory Bowel Disease | 
| RCT | Randomized Controlled Trial | 
References
- World Health Organization. Immunization Coverage. Available online: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage (accessed on 30 September 2025).
- Glass, R.I.; Parashar, U.; Patel, M.; Gentsch, J.; Jiang, B. Rotavirus vaccines: Successes and challenges. J. Infect. 2014, 68, S9–S18. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.P.; Ramani, S.; Lopman, B.A.; Church, J.A.; Iturriza-Gomara, M.; Prendergast, A.J.; Grassly, N.C. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol. 2018, 1, 97–118. [Google Scholar] [CrossRef] [PubMed]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. Personalized vaccinology: A review. Vaccine 2018, 36, 5350–5357. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Factors that influence the immune response to vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Oh, J.Z.; Ravindran, R.; Chassaing, B.; Carvalho, F.A.; Maddur, M.S.; Bower, M.; Hakimpour, P.; Gill, K.P.; Nakaya, H.I.; Yarovinsky, F.; et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 2014, 41, 478–492. [Google Scholar] [CrossRef]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
- Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.; Zheng, N.-Y.; et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2019, 178, 1313–1328.e13. [Google Scholar] [CrossRef]
- Jordan, A.; Carding, S.R.; Hall, L.J. The early-life gut microbiome and vaccine efficacy. Lancet Microbe. 2022, 3, e787–e794. [Google Scholar] [CrossRef]
- Lynn, D.J.; Benson, S.C.; Lynn, M.A.; Pulendran, B. Modulation of immune responses to vaccination by the microbiota: Implications and potential mechanisms. Nat. Rev. Immunol. 2022, 22, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Ryan, F.J.; Clarke, M.; Lynn, M.A.; Benson, S.C.; McAlister, S.; Giles, L.C.; Choo, J.M.; Rossouw, C.; Ng, Y.Y.; Semchenko, E.A.; et al. Bifidobacteria support optimal infant vaccine responses. Nature 2025, 641, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Harris, V.; Ali, A.; Fuentes, S.; Korpela, K.; Kazi, M.; Tate, J.; Parashar, U.; Wiersinga, W.J.; Giaquinto, C.; de Weerth, C.; et al. Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan. Gut Microbes. 2018, 9, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Handley, A.; Donato, C.M.; Lyons, E.A.; Pavlic, D.; Ong, D.S.; Bonnici, R.; Bogdanovic-Sakran, N.; Parker, E.P.K.; Bronowski, C. Early-life gut microbiome associates with vaccine response in neonatal rotavirus vaccine RV3-BB trial. Nat. Commun. 2025, 16, 3432. [Google Scholar] [CrossRef] [PubMed]
- Hetta, H.F.; Sirag, N.; Elfadil, H.; Salama, A.; Aljadrawi, S.F.; Alfaifi, A.J.; Alwabisi, A.N.; AbuAlhasan, B.M.; Alanazi, L.S.; Aljohani, Y.A.; et al. Artificial sweeteners: A double-edged sword for gut microbiome. Diseases 2025, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.; Arunachalam, P.S.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Coppola, G.; Rio, P.; Caldarelli, M.; Borriello, R.; Gambassi, G.; Gasbarrini, A.; Cianci, R. Factors influencing microbiota in modulating vaccine response. Vaccines 2023, 11, 1609. [Google Scholar] [CrossRef]
- Rhee, J.H.; Khim, K.; Puth, S.; Choi, Y.; Lee, S.E. Deimmunization of Flagellin Adjuvant for Clinical Application. Curr. Opin. Virol. 2023, 60, 101330. [Google Scholar] [CrossRef]
- Iweala, O.I.; Smith, D.W.; Matharu, K.S.; Sada-Ovalle, I.; Nguyen, D.D.; Dekruyff, R.H.; Umetsu, D.T.; Behar, S.M.; Nagler, C.R. Vaccine-induced antibody isotypes are skewed by impaired CD4 T cell and invariant NKT cell effector responses in MyD88-deficient mice. J. Immunol. 2009, 183, 2252–2260. [Google Scholar] [CrossRef]
- Liu, X.-F.; Shao, J.-H.; Liao, Y.-T.; Wang, L.-N.; Jia, Y.; Dong, P.-J.; Liu, Z.-Z.; He, D.-D.; Li, C.; Zhang, X. Regulation of Short-Chain Fatty Acids in the Immune System. Front. Immunol. 2023, 14, 1186892. [Google Scholar] [CrossRef]
- Sanchez, H.N.; Moroney, J.B.; Gan, H.; Shen, T.; Im, J.L.; Li, T.; Taylor, J.R.; Zan, H.; Casali, P. B Cell-Intrinsic Epigenetic Modulation of Antibody Responses by Short-Chain Fatty Acids. Nat. Commun. 2020, 11, 4430. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Wang, C.; Hou, Y.; He, W.; Wang, L.; Xiong, J.; Ren, Z.; Wang, H.; Sui, B.; et al. Short-Chain Fatty Acids Alleviate Vancomycin-Caused Humoral Immunity Attenuation in Rabies-Vaccinated Mice by Promoting the Generation of Plasma Cells via Akt-mTOR Pathway. J. Virol. 2023, 97, e0065623. [Google Scholar] [CrossRef] [PubMed]
- Alsaleh, G.; Panse, I.; Swadling, L.; Zhang, H.; Richter, F.; Meyer, A.; Lord, J.; Barnes, E.; Klenerman, P.; Green, C.; et al. Autophagy in T Cells from Aged Donors Is Maintained by Spermidine and Correlates with Vaccine Responses. eLife 2020, 9, e57950. [Google Scholar] [CrossRef]
- Seong, H.; Yoon, J.G.; Nham, E.; Choi, Y.J.; Noh, J.Y.; Cheong, H.J.; Kim, W.J.; Kim, E.H.; Kim, C.; Han, Y.-H.; et al. The Gut Microbiota Modifies Antibody Durability and Booster Responses Following COVID-19 Vaccination. J. Transl. Med. 2024, 22, 827. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, X.; Li, H.; Borger, D.K.; Wei, Q.; Yang, E.; Xu, C.; Pinho, S.; Frenette, P.S. The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell. 2022, 29, 232–247.e7. [Google Scholar] [CrossRef]
- Ramadan, Y.N.; Alqifari, S.F.; Alshehri, K.; Alhowiti, A.; Mirghani, H.; Alrasheed, T.; Aljohani, F.; Alghamdi, A.; Hetta, H.F. Microbiome Gut–Brain Axis: Impact on Brain Development and Mental Health. Mol. Neurobiol. 2025, 62, 10813–10833. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, J.; Fu, Y.; Ye, H.; Liu, X.; Li, G.; Yang, X.; Yang, J. Influence of Gut Microbiota on Mucosal IgA Antibody Response to the Polio Vaccine. NPJ Vaccines 2020, 5, 47. [Google Scholar] [CrossRef]
- Cunningham-Oakes, E.; Bronowski, C.; Chinyama, E.; Jere, K.C.; Sindhu, K.N.C.; Kang, G.; Iturriza-Gómara, M.; Darby, A.C.; Parker, E.P.K. Increased Bacterial Taxonomic and Functional Diversity Is Associated with Impaired Rotavirus Vaccine Immunogenicity in Infants from India and Malawi. BMC Microbiol. 2023, 23, 354. [Google Scholar] [CrossRef]
- Carr, L.E.; Virmani, M.D.; Rosa, F.; Munblit, D.; Matazel, K.S.; Elolimy, A.A.; Yeruva, L. Role of Human Milk Bioactives on Infants’ Gut and Immune Health. Front. Immunol. 2021, 12, 604080. [Google Scholar] [CrossRef]
- Cait, A.; Mooney, A.; Poyntz, H.; Shortt, N.; Jones, A.; Gestin, A.; Gell, K.; Grooby, A.; O’Sullivan, D.; Tang, J.S. Potential Association Between Dietary Fibre and Humoral Response to the Seasonal Influenza Vaccine. Front Immunol. 2021, 12, 765528. [Google Scholar] [CrossRef]
- Bradley, E.; Haran, J. The human gut microbiome and aging. Gut Microbes. 2024, 16, 2359677. [Google Scholar] [CrossRef]
- Harris, V.C.; Armah, G.; Fuentes, S.; Korpela, K.E.; Parashar, U.; Victor, J.C.; Tate, J.; de Weerth, C.; Giaquinto, C.; Wiersinga, W.J. Significant Correlation between the Infant Gut Microbiome and Rotavirus Vaccine Response in rural Ghana. J. Infect. Dis. 2017, 215, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.S.; Gupta, S.S.; Bhattacharya, T.; Yadav, D.; Barik, A.; Chowdhury, A.; Das, B.; Mande, S.S.; Nair, G.B. Gut microbiomes of Indian children of varying nutritional status. PLoS ONE. 2014, 9, e95547. [Google Scholar] [CrossRef] [PubMed]
- Chac, D.; Bhuiyan, T.R.; Saha, A.; Alam, M.M.; Salma, U.; Jahan, N.; Chowdhury, F.; Khan, A.I.; Ryan, E.T. Gut Microbiota and Development of Vibrio cholerae-Specific Long-Term Memory B Cells in Adults after Whole-Cell Killed Oral Cholera Vaccine. Infect Immun. 2021, 89, e00217–e00221. [Google Scholar] [CrossRef]
- Zhang, L.-N.; Tan, J.-T.; Ng, H.-Y.; Liao, Y.-S.; Zhang, R.-Q.; Chan, K.-H.; Hung, I.F.-N.; Lam, T.T.-Y.; Cheung, K.-S. Baseline Gut Microbiota Was Associated with Long-Term Immune Response at One Year Following Three Doses of BNT162b2. Vaccines 2024, 12, 916. [Google Scholar] [CrossRef]
- Ray, S.; Narayanan, A.; Vesterbacka, J.; Blennow, O.; Chen, P.; Gao, Y.; Gabarrini, G.; Ljunggren, H.-G.; Buggert, M.; Manoharan, L.; et al. Impact of the gut microbiome on immunological responses to COVID-19 vaccination in healthy controls and people living with HIV. NPJ Biofilms Microbiomes 2023, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Hetta, H.F.; Ramadan, Y.N.; Alharbi, A.A.; Alsharef, S.; Alkindy, T.T.; Alkhamali, A.; Albalawi, A.S.; El Amin, H. Gut Microbiome as a Target of Intervention in Inflammatory Bowel Disease Pathogenesis and Therapy. Immuno 2024, 4, 400–425. [Google Scholar] [CrossRef]
- Al-Fakhrany, O.M.; Elekhnawy, E. Next-Generation Probiotics: The Upcoming Biotherapeutics. Mol. Biol. Rep. 2024, 51, 505. [Google Scholar] [CrossRef]
- Kim, A.H.; Armah, G.; Dennis, F.; Wang, L.; Rodgers, R.; Droit, L.; Baldridge, M.T.; Handley, S.A.; Harris, V.C. Enteric virome negatively affects seroconversion following oral rotavirus vaccination in a longitudinally sampled cohort of Ghanaian infants. Cell Host Microbe. 2022, 30, 110–123.e5. [Google Scholar] [CrossRef]
- Tunc, H.A.; Childs, C.E.; Swann, J.R.; Calder, P.C. The effect of oral probiotics on response to vaccination in older adults: A systematic review of randomised controlled trials. Age Ageing. 2024, 53, ii70–ii79. [Google Scholar] [CrossRef]
- Kullar, R.; Goldstein, E.J.C.; Johnson, S.; McFarland, L.V. Lactobacillus Bacteremia and Probiotics: A Review. Microorganisms 2023, 11, 896. [Google Scholar] [CrossRef]
- Cao, S.; Budina, E.; Raczy, M.M.; Solanki, A.; Nguyen, M.; Beckman, T.N.; Reda, J.W.; Hultgren, K.; Ang, P.S.; Slezak, A.J.; et al. A serine-conjugated butyrate prodrug with high oral bioavailability suppresses autoimmune arthritis and neuroinflammation in mice. Nat. Biomed. Eng. 2024, 8, 611–627. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, M.; Bibalan, M.H.; Rohani, M.; Esghaei, M.; Douraghi, M.; Talebi, M.; Pourshafie, M.R. Bifidobacterium obtained from mother’s milk and their infant stool; A comparative genotyping and antibacterial analysis. Microb. Pathog. 2017, 111, 94–98. [Google Scholar] [CrossRef] [PubMed]
| Study Population | Vaccine Type | Key Microbial Correlates | Observed Outcome | References | 
|---|---|---|---|---|
| Healthy adults (USA) | Inactivated influenza | Bacteroides depletion, reduced SCFAs after antibiotics | Diminished antibody response in those with low baseline titers | [9] | 
| Infants (Bangladesh) | Oral polio | High Bifidobacterium and Lactobacillus abundance | Enhanced IgA and seroconversion | [27] | 
| Neonates (Multicenter) | Pneumococcal, Hib, tetanus | Early-life antibiotics → reduced Bifidobacterium | Persistently lower antibody titers; restored by Bifidobacterium colonization | [12] | 
| Infants (Malawi) | Rotavirus (oral) | Low diversity, high enteropathogen burden | Decreased vaccine take and seroconversion | [28] | 
| Adults (China) | SARS-CoV-2 (mRNA) | Abundance of Bifidobacterium adolescentis; SCFA production | Higher neutralizing antibody titers | [24] | 
| Older adults (UK) | Pneumococcal and influenza | Reduced diversity, enrichment of pathobionts | Poorer immunogenicity | [29] | 
| Vaccine Type | Population/Model | Key Microbiome Features | Proposed Mechanism | Direction of Effect | References | 
|---|---|---|---|---|---|
| Influenza (inactivated) | Adults (antibiotic-treated) | ↓ Diversity; loss of flagellated taxa | TLR5/flagellin–NF-κB signaling | ↓ Antibody titers | [9] | 
| Influenza (elderly) | Older adults | ↑ Pathobionts; ↓ SCFA producers | Reduced Tfh function/immunosenescence | ↓ Response | [23] | 
| BCG/Polio/Pneumococcal | Infants | ↑ Bifidobacterium dominance | SCFA & acetate → enhanced Th1/Th17 + IgA | ↑ Response | [12] | 
| Rotavirus (oral) | Infants (LMIC) | ↑ B. longum/E. faecalis | Mucosal IgA enhancement | ↑ Seroconversion | [13,29] | 
| HBV | Adults | Distinct bile-acid profile | FXR/TGR5 signaling → Tfh differentiation | Variable | [17] | 
| COVID-19 | Adults | Gut dysbiosis; ↓ Faecalibacterium | Systemic cytokine modulation | ↓ Response | [24,35] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gioula, G.; Exindari, M. The Gut Microbiome and Vaccination: A Comprehensive Review of Current Evidence and Future Perspectives. Vaccines 2025, 13, 1116. https://doi.org/10.3390/vaccines13111116
Gioula G, Exindari M. The Gut Microbiome and Vaccination: A Comprehensive Review of Current Evidence and Future Perspectives. Vaccines. 2025; 13(11):1116. https://doi.org/10.3390/vaccines13111116
Chicago/Turabian StyleGioula, Georgia, and Maria Exindari. 2025. "The Gut Microbiome and Vaccination: A Comprehensive Review of Current Evidence and Future Perspectives" Vaccines 13, no. 11: 1116. https://doi.org/10.3390/vaccines13111116
APA StyleGioula, G., & Exindari, M. (2025). The Gut Microbiome and Vaccination: A Comprehensive Review of Current Evidence and Future Perspectives. Vaccines, 13(11), 1116. https://doi.org/10.3390/vaccines13111116
 
        



 
       