Active and Passive Immunization of Pan-Fungal Vaccine NXT-2 Reduces Morbidity and Mortality in an Immunosuppressed Murine Model of Candida auris Systemic Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Expression and Purification of C. auris KEX1 (CAu.KEX1) and NXT-2
2.2. Western Blot Analysis
2.3. Animals
2.4. Immunization and Evaluation of Immunogenicity of NXT-2 in CD-1 Mice
2.5. Immunosuppression, C. auris Challenge, and Monitoring
2.6. Generation of NXT-2 Polyclonal Antibodies (pAbs) for Passive Transfer
2.7. Passive Transfer of NXT-2 Antibodies and C. auris Challenge
2.8. Euthanasia
2.9. Biofilm Inhibition and Opsonophagocytic Killing (OPK) Assays
2.10. Statistical Analyses
3. Results
3.1. Immunogenicity of C. auris KEX1 (CAu.KEX1) During Infection and Cross-Reactivity with NXT-2 Antibodies
3.2. NXT-2 Immunization Protects Mice Against Systemic C. auris Infection in Immunosuppressed Mice
3.3. Passive Transfer of NXT-2 pAbs Confers Protection Against Systemic C. auris Infection in an Immunosuppressed Murine Model
3.4. NXT-2 Sera Inhibit Biofilm Formation and Promote the Opsonophagocytic Killing (OPK) of Multiple C. auris Clades
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Rayens, E.; Norris, K.A. Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018. Open Forum Infect. Dis. 2022, 9, ofab593. [Google Scholar] [CrossRef]
- Rayens, E.; Norris, K.A.; Cordero, J.F. Mortality Trends in Risk Conditions and Invasive Mycotic Disease in the United States, 1999–2018. Clin. Infect. Dis. 2022, 74, 309–318. [Google Scholar] [CrossRef]
- Fang, W.; Wu, J.; Cheng, M.; Zhu, X.; Du, M.; Chen, C.; Liao, W.; Zhi, K.; Pan, W. Diagnosis of invasive fungal infections: Challenges and recent developments. J. Biomed. Sci. 2023, 30, 42. [Google Scholar] [CrossRef]
- Casadevall, A. Global warming could drive the emergence of new fungal pathogens. Nat. Microbiol. 2023, 8, 2217–2219. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, S.M.; Chakrabarti, A.; Paul, R.A.; Sood, P.; Kaur, H.; Capoor, M.R.; Kindo, A.J.; Marak, R.S.K.; Arora, A.; Sardana, R.; et al. Candida auris candidaemia in Indian ICUs: Analysis of risk factors. J. Antimicrob. Chemother. 2017, 72, 1794–1801. [Google Scholar] [CrossRef]
- Tian, S.; Rong, C.; Nian, H.; Li, F.; Chu, Y.; Cheng, S.; Shang, H. First cases and risk factors of super yeast Candida auris infection or colonization from Shenyang, China. Emerg. Microbes Infect. 2018, 7, 128. [Google Scholar] [CrossRef]
- Liu, F.; Hu, Z.D.; Zhao, X.M.; Zhao, W.N.; Feng, Z.X.; Yurkov, A.; Alwasel, S.; Boekhout, T.; Bensch, K.; Hui, F.L.; et al. Phylogenomic analysis of the Candida auris-Candida haemuli clade and related taxa in the Metschnikowiaceae, and proposal of thirteen new genera, fifty-five new combinations and nine new species. Persoonia 2024, 52, 22–43. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Abbasi, A.F.; Prakash, S.; Mangat, J.; Hosein, Z.; Haider, N.; Chan, J. Candida auris: An Overview of the Emerging Drug-Resistant Fungal Infection. Infect. Chemother. 2022, 54, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hurabielle, C.; Drummond, R.A.; Bouladoux, N.; Desai, J.V.; Sim, C.K.; Belkaid, Y.; Lionakis, M.S.; Segre, J.A. Murine model of colonization with fungal pathogen Candida auris to explore skin tropism, host risk factors and therapeutic strategies. Cell Host Microbe 2021, 29, 210–221.e6. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kaur, M.; Chakrabarti, A.; Shankarnarayan, S.A.; Rudramurthy, S.M. Biofilm formation by Candida auris isolated from colonising sites and candidemia cases. Mycoses 2019, 62, 706–709. [Google Scholar] [CrossRef]
- Horton, M.V.; Johnson, C.J.; Zarnowski, R.; Andes, B.D.; Schoen, T.J.; Kernien, J.F.; Lowman, D.; Kruppa, M.D.; Ma, Z.; Williams, D.L.; et al. Candida auris Cell Wall Mannosylation Contributes to Neutrophil Evasion through Pathways Divergent from Candida albicans and Candida glabrata. mSphere 2021, 6, e0040621. [Google Scholar] [CrossRef]
- Shukla, M.; Chandley, P.; Rohatgi, S. The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines 2021, 9, 1159. [Google Scholar] [CrossRef]
- Ademe, M.; Girma, F. Candida auris: From Multidrug Resistance to Pan-Resistant Strains. Infect. Drug Resist. 2020, 13, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Chaabane, F.; Graf, A.; Jequier, L.; Coste, A.T. Review on Antifungal Resistance Mechanisms in the Emerging Pathogen Candida auris. Front. Microbiol. 2019, 10, 2788. [Google Scholar] [CrossRef]
- Castanheira, M.; Messer, S.A.; Rhomberg, P.R.; Pfaller, M.A. Antifungal susceptibility patterns of a global collection of fungal isolates: Results of the SENTRY Antifungal Surveillance Program (2013). Diagn. Microbiol. Infect. Dis. 2016, 85, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020, 16, e1008921. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Moet, G.J.; Messer, S.A.; Jones, R.N.; Castanheira, M. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: Report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J. Clin. Microbiol. 2011, 49, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Uppuluri, P.; Mamouei, Z.; Alqarihi, A.; Elhassan, H.; French, S.; Lockhart, S.R.; Chiller, T.; Edwards, J.E., Jr.; Ibrahim, A.S. The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLoS Pathog. 2019, 15, e1007460. [Google Scholar] [CrossRef]
- Akhtar, N.; Joshi, A.; Kaushik, V.; Kumar, M.; Mannan, M.A. In-silico design of a multivalent epitope-based vaccine against Candida auris. Microb. Pathog. 2021, 155, 104879. [Google Scholar] [CrossRef]
- Gupta, S.K.; Osmanoglu, O.; Minocha, R.; Bandi, S.R.; Bencurova, E.; Srivastava, M.; Dandekar, T. Genome-wide scan for potential CD4+ T-cell vaccine candidates in Candida auris by exploiting reverse vaccinology and evolutionary information. Front. Med. (Lausanne) 2022, 9, 1008527. [Google Scholar] [CrossRef]
- Feng, Z.; Lu, H.; Jiang, Y. Promising immunotherapeutic targets for treating candidiasis. Front. Cell Infect. Microbiol. 2024, 14, 1339501. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, A.; Alnuqaydan, A.M.; Albutti, A.; Alharbi, B.F.; Owais, M. Targeting Azole-Resistant Candida albicans: Tetrapeptide Tuftsin-Modified Liposomal Vaccine Induces Superior Immune Protection. Vaccines 2025, 13, 630. [Google Scholar] [CrossRef]
- Shibasaki, S.; Karasaki, M.; Tafuku, S.; Aoki, W.; Sewaki, T.; Ueda, M. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans. Sci. Pharm. 2014, 82, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Costa-Barbosa, A.; Pacheco, M.I.; Gomes, A.C.; Collins, T.; Vilanova, M.; Pais, C.; Correia, A.; Sampaio, P. Pre-clinical evaluation of a divalent liposomal vaccine to control invasive candidiasis. NPJ Vaccines 2025, 10, 124. [Google Scholar] [CrossRef]
- Diez, A.; Arrieta-Aguirre, I.; Carrano, G.; Bregon-Villahoz, M.; Moragues, M.D.; Fernandez-de-Larrinoa, I. A synthetic peptide vaccine induces protective immune responses against Candida albicans infection in immunocompromised mice. Vaccine 2025, 53, 127102. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.R.; Dutta, A.; Peroumal, D.; Kumari, P.; Utakalaja, B.G.; Patel, S.K.; Acharya, N. Immunogenicity and efficacy of CNA25 as a potential whole-cell vaccine against systemic candidiasis. EMBO Mol. Med. 2024, 16, 1254–1283. [Google Scholar] [CrossRef]
- Alqarihi, A.; Singh, S.; Edwards, J.E., Jr.; Ibrahim, A.S.; Uppuluri, P. NDV-3A vaccination prevents C. albicans colonization of jugular vein catheters in mice. Sci. Rep. 2019, 9, 6194. [Google Scholar] [CrossRef]
- Rayens, E.; Rabacal, W.; Willems, H.M.E.; Kirton, G.M.; Barber, J.P.; Mousa, J.J.; Celia-Sanchez, B.N.; Momany, M.; Norris, K.A. Immunogenicity and protective efficacy of a pan-fungal vaccine in preclinical models of aspergillosis, candidiasis, and pneumocystosis. PNAS Nexus 2022, 1, pgac248. [Google Scholar] [CrossRef]
- Pappas, P.G.; Alexander, B.D.; Andes, D.R.; Hadley, S.; Kauffman, C.A.; Freifeld, A.; Anaissie, E.J.; Brumble, L.M.; Herwaldt, L.; Ito, J.; et al. Invasive Fungal Infections among Organ Transplant Recipients: Results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin. Infect. Dis. 2010, 50, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Pilmis, B.; Puel, A.; Lortholary, O.; Lanternier, F. New clinical phenotypes of fungal infections in special hosts. Clin. Microbiol. Infect. 2016, 22, 681–687. [Google Scholar] [CrossRef]
- Kling, H.M.; Norris, K.A. Vaccine-Induced Immunogenicity and Protection Against Pneumocystis Pneumonia in a Nonhuman Primate Model of HIV and Pneumocystis Coinfection. J. Infect. Dis. 2016, 213, 1586–1595. [Google Scholar] [CrossRef]
- Rayens, E.; Rabacal, W.; Kang, S.E.; Celia, B.N.; Momany, M.; Norris, K.A. Vaccine-Induced Protection in Two Murine Models of Invasive Pulmonary Aspergillosis. Front. Immunol. 2021, 12, 670578. [Google Scholar] [CrossRef]
- Rayens, E.; Rayens, M.K.; Norris, K.A. Demographic and Socioeconomic Factors Associated with Fungal Infection Risk, United States, 2019. Emerg. Infect. Dis. 2022, 28, 1955–1969. [Google Scholar] [CrossRef]
- Fisher, M.C.; Denning, D.W. The WHO fungal priority pathogens list as a game-changer. Nat. Rev. Microbiol. 2023, 21, 211–212. [Google Scholar] [CrossRef]
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://gaffi.org/wp-content/uploads/WHO-FPPL-2022.pdf (accessed on 4 August 2024).
- Kling, H.M.; Shipley, T.W.; Patil, S.P.; Kristoff, J.; Bryan, M.; Montelaro, R.C.; Morris, A.; Norris, K.A. Relationship of Pneumocystis jiroveci humoral immunity to prevention of colonization and chronic obstructive pulmonary disease in a primate model of HIV infection. Infect. Immun. 2010, 78, 4320–4330. [Google Scholar] [CrossRef]
- Rayens, E.; Noble, B.; Vicencio, A.; Goldman, D.L.; Bunyavanich, S.; Norris, K.A. Relationship of Pneumocystis antibody responses to paediatric asthma severity. BMJ Open Respir. Res. 2021, 8, e000842. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, A.F.; Salazar, B.E.; Rodriguez, C.A.; Zapata, A.X.; Agudelo, M.; Vesga, O. Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: Characterization and applicability to diverse experimental models of infectious diseases. BMC Infect. Dis. 2006, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Sherry, L.; Ramage, G.; Kean, R.; Borman, A.; Johnson, E.M.; Richardson, M.D.; Rautemaa-Richardson, R. Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant Candida auris. Emerg. Infect. Dis. 2017, 23, 328–331. [Google Scholar] [CrossRef]
- Brandt, P.; Mirhakkak Mohammad, H.; Wagner, L.; Driesch, D.; Möslinger, A.; Fänder, P.; Schäuble, S.; Panagiotou, G.; Vylkova, S. High-Throughput Profiling of Candida auris Isolates Reveals Clade-Specific Metabolic Differences. Microbiol. Spectr. 2023, 11, e00498-23. [Google Scholar] [CrossRef] [PubMed]
- Szekely, A.; Borman Andrew, M.; Johnson Elizabeth, M. Candida auris Isolates of the Southern Asian and South African Lineages Exhibit Different Phenotypic and Antifungal Susceptibility Profiles In Vitro. J. Clin. Microbiol. 2019, 57, e02055-18. [Google Scholar] [CrossRef]
- Forgacs, L.; Borman, A.M.; Prepost, E.; Toth, Z.; Kardos, G.; Kovacs, R.; Szekely, A.; Nagy, F.; Kovacs, I.; Majoros, L. Comparison of in vivo pathogenicity of four Candida auris clades in a neutropenic bloodstream infection murine model. Emerg. Microbes Infect. 2020, 9, 1160–1169. [Google Scholar] [CrossRef]
- Chow, N.A.; Gade, L.; Tsay, S.V.; Forsberg, K.; Greenko, J.A.; Southwick, K.L.; Barrett, P.M.; Kerins, J.L.; Lockhart, S.R.; Chiller, T.M.; et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: A molecular epidemiological survey. Lancet Infect. Dis. 2018, 18, 1377–1384. [Google Scholar] [CrossRef]
- Massic, L.; Gorzalski, A.; Siao, D.D.; Dykema, P.; Hua, C.; Schneider, E.; Van Hooser, S.; Pandori, M.; Hess, D. Detection of five instances of dual-clade infections of Candida auris with opposite mating types in southern Nevada, USA. Lancet Infect. Dis. 2023, 23, e328–e329. [Google Scholar] [CrossRef]
- Bing, J.; Du, H.; Guo, P.; Hu, T.; Xiao, M.; Lu, S.; Nobile, C.J.; Chu, H.; Huang, G. Candida auris-associated hospitalizations and outbreaks, China, 2018–2023. Emerg. Microbes Infect. 2024, 13, 2302843. [Google Scholar] [CrossRef]
- Maphanga, T.G.; Naicker, S.D.; Kwenda, S.; Muñoz, J.F.; van Schalkwyk, E.; Wadula, J.; Nana, T.; Ismail, A.; Coetzee, J.; Govind, C.; et al. In Vitro Antifungal Resistance of Candida auris Isolates from Bloodstream Infections, South Africa. Antimicrob. Agents Chemother. 2021, 65, e0051721. [Google Scholar] [CrossRef] [PubMed]
- Wychrij, D.A.; Chapman, T.I.; Rayens, E.; Rabacal, W.; Willems, H.M.E.; Oworae, K.O.; Peters, B.M.; Norris, K.A. Protective efficacy of the pan-fungal vaccine NXT-2 against vulvovaginal candidiasis in a murine model. npj Vaccines 2025, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Sheppard, A.E.; Madder, H.; Moir, I.; Moroney, R.; Quan, T.P.; Griffiths, D.; George, S.; Butcher, L.; Morgan, M.; et al. A Candida auris Outbreak and Its Control in an Intensive Care Setting. N. Engl. J. Med. 2018, 379, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Choi, M.H.; Lee, K.H.; Kim, D.; Jeong, S.H.; Song, Y.G.; Han, S.H. Intrahospital transmission and infection control of Candida auris originating from a severely infected COVID-19 patient transferred abroad. J. Hosp. Infect. 2024, 143, 140–149. [Google Scholar] [CrossRef]
- Lyman, M.; Forsberg, K.; Sexton, D.J.; Chow, N.A.; Lockhart, S.R.; Jackson, B.R.; Chiller, T. Worsening Spread of Candida auris in the United States, 2019 to 2021. Ann. Intern. Med. 2023, 176, 489–495. [Google Scholar] [CrossRef]
- Geremia, N.; Brugnaro, P.; Solinas, M.; Scarparo, C.; Panese, S. Candida auris as an Emergent Public Health Problem: A Current Update on European Outbreaks and Cases. Healthcare 2023, 11, 425. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Forsberg, K.; Gold, J.A.W.; Baggs, J.; Lyman, M. Candida auris–Associated Hospitalizations, United States, 2017–2022. Emerg. Infect. Dis. 2023, 29, 1485–1487. [Google Scholar] [CrossRef] [PubMed]
- Yune, P.S.; Coe, J.; Rao, M.; Lin, M.Y. Candida auris in skilled nursing facilities. Ther. Adv. Infect. Dis. 2023, 10, 20499361231189958. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oworae, K.O.; Rayens, E.; Chapman, T.I.; Wychrij, D.A.; Buzzelli, L.; Rabacal, W.; Norris, K.A. Active and Passive Immunization of Pan-Fungal Vaccine NXT-2 Reduces Morbidity and Mortality in an Immunosuppressed Murine Model of Candida auris Systemic Infection. Vaccines 2025, 13, 1033. https://doi.org/10.3390/vaccines13101033
Oworae KO, Rayens E, Chapman TI, Wychrij DA, Buzzelli L, Rabacal W, Norris KA. Active and Passive Immunization of Pan-Fungal Vaccine NXT-2 Reduces Morbidity and Mortality in an Immunosuppressed Murine Model of Candida auris Systemic Infection. Vaccines. 2025; 13(10):1033. https://doi.org/10.3390/vaccines13101033
Chicago/Turabian StyleOworae, Kwadwo O., Emily Rayens, Taylor I. Chapman, Daniel A. Wychrij, Lizabeth Buzzelli, Whitney Rabacal, and Karen A. Norris. 2025. "Active and Passive Immunization of Pan-Fungal Vaccine NXT-2 Reduces Morbidity and Mortality in an Immunosuppressed Murine Model of Candida auris Systemic Infection" Vaccines 13, no. 10: 1033. https://doi.org/10.3390/vaccines13101033
APA StyleOworae, K. O., Rayens, E., Chapman, T. I., Wychrij, D. A., Buzzelli, L., Rabacal, W., & Norris, K. A. (2025). Active and Passive Immunization of Pan-Fungal Vaccine NXT-2 Reduces Morbidity and Mortality in an Immunosuppressed Murine Model of Candida auris Systemic Infection. Vaccines, 13(10), 1033. https://doi.org/10.3390/vaccines13101033