Advances in Pasteurella multocida Vaccine Development: From Conventional to Next-Generation Strategies
Abstract
1. Introduction
2. Immunogenic Components of Pasteurella multocida
Virulence Factors | Corresponding Virulence Genes | References |
---|---|---|
Adehesins and fimbriae | PtfA, pfhA, fimA, tadD, hsf-1, hsf2 | [2,16,20,22,28,33,34,35] |
Toxins/dermonecrotic | toxA | |
Iron acquisition | ExbB, exbD, tonB, hgbA, tbpA, hgbB, fur | |
Sialidases/neuraminidase | nanH, nanB | |
Hyaluronidase | pmHAS | |
Protections/outer membrane proteins | ompH, oma87, ompA, plpB, plpB, psl | |
Superoxide dismutase | sodA, sodC |
Capsular Serotype and Virulence Genes
3. Immunizations and Types of Vaccine and Vaccine Candidates
3.1. Immunization Types
3.1.1. Passive Immunization
3.1.2. Active Immunization
3.2. Vaccine Types
3.2.1. Whole-Cell Vaccine
3.2.2. Killed Vaccines
3.2.3. Live Attenuated Vaccine
3.2.4. Recombinant Subunit Vaccine
3.2.5. DNA Vaccine
Target Host/Animal Species | Type of Vaccine | Target Serotype and Strain to Protect | Antigenic Composition | Administration Route | Immunological Effect | Drawbacks | Animal Immunized and Status | References |
---|---|---|---|---|---|---|---|---|
Bovine | Live attenuated | B:2 | Wild-type strain 85020 contains a deleted aroA gene (JRMT12) | Intramuscular (IM) | Higher IgG and IgM | Dose-dependent | 108 CFU was safe and effective on calves | [100] |
Bovine | Live attenuated | A | PmCQ2Δ4555–4580 wild-type strain PmCQ2, with six obvious genes missing | IM | 100% protection against A and B, 40% against F, good cross-protection against B, and slightly protects against F | Trial with mice | [75] | |
Cattle and buffalo HS | Killed | B6 | B6 | Subcutaneous (SC) | Specific but 100% protection | 4 to 6 months immunity | Cattle and buffalo in use | [69] |
Cattle and buffalo | Live | B2 | B3,4 | SC | 9 to 12 months of protection | Route of administration and serotype mismatch | Cattle and buffalo in use | [69] |
Cattle | Formalin-killed | B2 | B2 | SC | 6 to 8 months of protection | Anaphylactic shock in some animals | Cattle in use | [77] |
Best with cattle/buffalo | Live | B2 | B3,4 | Intranasal | High AB titer; E:2, F:3,4 and A:3,4 | - | Cattle and buffalo in use | [68] |
Cattle | Live | P. multocida A:3 | A:3 | IM | Reduced clinical lesions | Cattle | [101] | |
Bovine | Recombinant | P. multocida A:3 | Recombinant proteins PlpE and PlpEC-OmpH | Intraperitoneal | 100% protection; increased IgG and serum IFN-gamma | - | Mice trial | [90] |
Bovine and buffalo | Subunit | B2 | Native OMP | Subcutaneous | 100% protection | - | Mice | [102] |
Cattle | Subunit | B and E | PmSLP-3 | SC/IM | Highest level of mucosal PmSLP-3 specific IgG; cross-protection with serogroup E | No cross-protection against BRD strains | Cattle and mice | [86] |
Cattle with BRD/fowl cholera | Recombinant subunit | A (P. multocida P488 challenge) | OMVs (OmpA, OmpH, and P6) | Intranasal | High AB titer and mucosal immune responses, cross-protection with M, and hemolytic | Mice trial | [4] | |
Cattle HS/BRD | Bivalent subunit | B2 and A3 | PmSLP-1 (BRD-PmSLP) and PmSLP-3 (HS-PmSLP) | SC/IM | High serum IgG and a good vaccine with good cross-protection | Cattle | [87] | |
Cattle | Subunit | B:2 | B:2 OMPs plus anti-idiotype AB | SC | 100% protection in rabbits, better protection than whole bacterin | - | Rabbit trial | [103] |
Bovine | Recombinant subunit | A, B, F | OMPs of A, B, and F | SC | Effective against A and B | Still needs verification in cattle | Mice | [104] |
Cattle HS | Recombinant | B:2 | rOmpH adjuvanted with CpG-ODN | Intranasal | High serum IgG and secretory IgA levels | Calves | [105] | |
Cattle and buffalo | DNA | B | B2: Clone pVAX1- ABA392 | IM | Increased serum IgG and no organ lesions | Rat trial | [99] | |
To all but cattle strain as a challenge | DNA | Mainly A | The ompH conserved gene of ten strains | IM | High AB titer with good cross-protection | Mice trial | [96] | |
Cattle and buffalo | DNA | B:2 | tbpA gene of B:2 | - | Increases humoral and cell-mediated immune response | - | Mice trial | [106] |
Goat | Inactivated recombinant | B:2 | B:2 fimbrial protein | Intranasal | High IgG and IgA | Goat trial | [107] | |
Sheep | Inactivated multivalent | A and D4 | D4 and type A (8473 strain) | SC | Good cross-protection against some A strains | The short duration of immunity (6 months) | Sheep | [67] |
Sheep | Inactivated/killed | A (challenge strain PMSHI-9) | A+ iron inactivation with iron and bDNA adjuvant type A | SC | Higher Ab titer and cellular (IL-4, IFN-γ, and TNF-α); good humoral and cellular immunity and safety | - | Sheep | [78] |
Sheep and goat | Formalin-killed | A | A | SC | 6 to 8 months of protection | - | Sheep and goats in use | [77] |
Target Host/Animal Species | Type of Vaccine | Target Serotype and Strain to Protect | Antigenic Composition | Administration Route | Immunological Effect | Drawbacks | Animal Immunized and Status | References |
---|---|---|---|---|---|---|---|---|
Duck | Live attenuated | A LPS1/PMZ2 | PMZ2 gene with the deleted gatA gene and part of the hptE gene | Oral and intranasal | High level of serum IgG with strong bactericidal effect and a significant increase in IgA response | Cross-protection has not evaluated fully | Duck trial with good effect | [74] |
Chicken | DNA | A1 challenge study | ptfA gene with added chitosan particle | IM | High AB concentration | Only a 68% protection level | Chicken trial | [98] |
Chicken | DNA | P. multocida CVCC474 strain challenge | ompA and ompH | IM | High AB and equivalent protection against the attenuated live vaccine | The delivery system is not appropriate | Chicken trial | [97] |
Turkey | Recombinant peptide | P. multocida x73 (A:1) challenge | A:3 FHAB2 peptides (filament) | Intradermal | Reduce mortality and organ pathology with cross-protection | Turkey trial | [108] | |
Duck | Recombinant subunit | A:1 | A:1 (PMWSG-4) recombinant VacJ, PlpE, and ompH | SC | 100% protection; reduces tissue damage and colonization | - | Duck | [91] |
Chicken | Inactivated | A1 | Inactivated A1 + B2 DNA adjuvant | SC | Cost reduction with safe and innate stimulation | - | Chicken | [81] |
Chicken | Recombinant PlpE | A1 | Recombinant PlpE of (A:1) | SC | 80–100% survival rate with cross-protection (A:3,4) | - | Mice trial | [89] |
Chicken | Live | A and B | A virulent (A1) | SC | 95 to 97.5% protection level | - | Chicken | [83] |
Chicken | Inactivated with formalin and FeCl3 | A | A:1 adjuvant with bDNA | SC | 100% long-term protection and good humoral and cellular immunity in mice | - | Mice trial | [82] |
Chicken | Recombinant protein | A1 | A:3 recombinant adhesive protein (rCp39) | SC | Cross-protection and 60 to 100% protection | Chicken | [92] | |
Chicken | DNA | A | A pOmpH and pOmpA | IM | Higher AB titer than the live attenuated vaccine | The vaccine delivery system is not appropriate | Chicken | [95] |
Duck | Recombinant | A:1 | rHVT (herpes virus) OmpH | IM | Ensures good safety and protection | Duration may be short | Duck | [109] |
Chicken | Recombinant | A:1 | A (rOmpH) | IM | 100% protection from fowl cholera | Chicken | [110] |
Target Host/Animal Species | Type of Vaccine | Target Serotype and Strain to Protect | Antigenic Composition of Vaccine | Administration Route | Immunological Effect | Drawbacks | Animal Immunized and Status | References |
---|---|---|---|---|---|---|---|---|
Swine | DNA | Wild-type P. multocida strain 4533 | toxA | IM | Secrete IFN-ᵞ, increased AB titer | Toxin-specific only | Swine | [111] |
Rabbit | Killed | A and F | pfhA, sodC, soda, exbB, oma87, fur, fim4, nanB, nanH, and fimA | -- | Reduced the severity of the disease | Still does not protect against some strains of A and D | Rabbit | [112] |
Swine | Killed | A and D | A:L3 D:L6 | SC | High serum IgG | No cross-protection against others | Mice trial | [80] |
Pig | Recombinant subunit | PMT (toxA) | Recombinant toxA (Tox1, Tox2, and Tox7) | IM | Protective humoral and cellular immunity | - | Pig | [63] |
Rabbit | Subunit | A3 | A:3 OMP (IROMP) adjuvanted with cholera toxin (CT) | Intranasal | Mucosal and systemic AB increased; reduced bacterial count | Only reduced bacterial count | Rabbit | [113] |
Swine | Recombinant subunit and whole-cell bacterin | A and D | D (toxA) and D and A | IM | Controlled prevalence and severity of the disease | Piglet | [65] | |
Swine | Recombinant subunit | D | toxA (PMT2, 3) | SC | Good humoral and cellular immune responses with passive transfer | Swine | [64] | |
Swine | Recombinant | A and D | Full-length rOmpH | SC | High Ab | Mice | [114] | |
Swine | Recombinant subunit | A | Serogroup D (rTorA, rPrx, and/or rPGAM) | Intraperitoneal | High antibodies and IFN-γ, IL-4, and IL-10 in mice with good cross-protection | Mice trial | [93] | |
Swine | Recombinant bivalent subunit | A | PMT NC adjuvanted with rSly or CpG | IM | Enhanced humoraand cellular immune responses | Piglet | [115] |
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Boyce, J.D.; Harper, M.; Wilkie, I.; Adler, B. Pasteurella. In Pathogenesis of Bacterial Infections in Animals, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 325–346. [Google Scholar]
- Ewers, C.; Lübke-Becker, A.; Bethe, A.; Kießling, S.; Filter, M.; Wieler, L.H. Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status. Vet. Microbiol. 2006, 114, 304–317. [Google Scholar] [CrossRef]
- Wilkie, I.W.; Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida: Diseases and pathogenesis. Curr. Top. Microbiol. Immunol. 2012, 361, 1–22. [Google Scholar] [CrossRef]
- Roier, S.; Fenninger, J.C.; Leitner, D.R.; Rechberger, G.N.; Reidl, J.; Schild, S. Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles. Int. J. Med. Microbiol. 2013, 303, 247–256. [Google Scholar] [CrossRef]
- Radostitis, O.M.; Gay, C.C.; Constable, P.D.; Hinchcliff, K.W. A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats, and Horses, 10th ed.; W.B. Saunders Co.: Philadelphia, PA, USA, 2009. [Google Scholar]
- World Organisation for Animal Health (OIE). Pasteurella spp. Aetiology Epidemiology Diagnosis Prevention and Control Potential Impacts of Disease Agent Beyond Clinical Illness References. 2020. Available online: https://www.woah.org/app/uploads/2021/05/pasteurella-spp-infection-with.pdf (accessed on 16 January 2025).
- Capitini, C.M.; Herrero, I.A.; Patel, R.; Ishitani, M.B.; Boyce, T.G. Wound infection with Neisseriaweaveri and a novel subspecies of Pasteurella multocida in a child who sustained a tiger bite. Clin. Infect. Dis. 2002, 34, E74–E76. [Google Scholar] [CrossRef] [PubMed]
- Townsend, K.M.; Boyce, J.D.; Chung, J.Y.; Frost, A.J.; Adler, B. Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. J. Clin. Microbiol. 2001, 39, 924–929. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health (OIE). Terrestrial Manual: Haemorrhagic Septicaemia (Pasteurella multocida Serotypes 6:B and 6:E). Chapter 3.4.10. 2021. Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.04.10_HAEMORRHAGIC_SEPTICAEMIA.pdf (accessed on 4 February 2025).
- Sarangi, L.N.; Thoma, P.; Gupta, S.K.; Kumar, S.; Viswas, K.N.; Singh, V.P. Molecular epidemiology of Pasteurella multocida circulating in India by multilocus sequence typing. Transbound. Emerg. Dis. 2014, 63, e286–e292. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wang, X.; Zhou, R.; Chen, H.; Wilson, B.A.; Wu, B. Pasteurella multocida: Genotypes and genomics. Microbiol. Mol. Biol. Rev. 2019, 83, e00014-19. [Google Scholar] [CrossRef]
- Shayegh, J.; Atashpaz, S.; Hejazi, M.S. Virulence genes profile and typing of ovine Pasteurella multocida. Asian J. Anim. Vet. Adv. 2008, 3, 206–213. [Google Scholar] [CrossRef]
- Boyce, J.D.; Chung, J.Y.; Adler, B. Pasteurella multocida capsule: Composition, function and genetics. J. Biotechnol. 2000, 83, 153–160. [Google Scholar] [CrossRef]
- Richardson, N.I.; Ravenscroft, N.; Kuttel, M.M. Conformational comparisons of Pasteurella multocida types B and E and structurally related capsular polysaccharides. Glycobiology 2023, 33, 745–754. [Google Scholar] [CrossRef]
- Wilson, B.A.; Ho, M. Pasteurella multocida: From zoonosis to cellular microbiology. Clin. Microbiol. Rev. 2013, 26, 631–655. [Google Scholar] [CrossRef]
- Dabo, S.M.; Taylor, J.D.; Confer, A.W. Pasteurella multocida and bovine respiratory disease. Anim. Health Res. Rev. 2008, 8, 129–150. [Google Scholar] [CrossRef] [PubMed]
- Lowenstine, L.J.; Osborn, K.G. Respiratory system diseases of nonhuman primates. Nonhum. Primates Biomed. Res. 2012, 2, 413–481. [Google Scholar] [CrossRef]
- Kehrenberg, C.; Schulze-Tanzil, G.; Martel, J.L.; Chaslus-Dancla, E.; Schwarz, S. Antimicrobial resistance in Pasteurella and Mannheimia: Epidemiology and genetic basis. Vet. Res. 2001, 32, 323–339. [Google Scholar] [CrossRef]
- Mwanga, I.; Mzula, A.; Mwega, E.; Chota, A.C.; Wambura, P.N. Virulence attributes and antimicrobial profile of Pasteurella multocida isolated from pneumonic goats in Northern Tanzania. Sci. Afr. 2024, 26, e02490. [Google Scholar] [CrossRef]
- Khamesipour, F.; Momtaz, H.; Azhdary Mamoreh, M. Occurrence of virulence factors and antimicrobial resistance in Pasteurella multocida strains isolated from slaughter cattle in Iran. Front. Microbiol. 2014, 5, 536. [Google Scholar] [CrossRef]
- Katsuda, K.; Hoshinoo, K.; Ueno, Y.; Kohmoto, M.; Mikami, O. Virulence genes and antimicrobial susceptibility in Pasteurella multocida isolates from calves. Vet. Microbiol. 2013, 167, 737–774. [Google Scholar] [CrossRef]
- Furian, T.Q.; Borges, K.A.; Laviniki, V.; Rocha, S.L.D.S.; Almeida, C.N.D.; Nascimento, V.P.D.; Salle, C.T.P.; Moraes, H.L.D.S. Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine. Braz. J. Microbiol. 2016, 47, 210–216. [Google Scholar] [CrossRef]
- Cucco, L.; Massacci, F.R.; Sebastiani, C.; Mangili, P.; Bano, L.; Cocchi, M.; Luppi, A.; Ortenzi, R.; Pezzotti, G.; Magistrali, C.F. Molecular characterization and antimicrobial susceptibility of Pasteurella multocida strains isolated from hosts affected by various diseases in Italy. Vet. Ital. 2017, 53, 21–27. [Google Scholar] [CrossRef]
- Ahmad, T.A.; Rammah, S.S.; Sheweita, S.A.; Haroun, M.; El-Sayed, H. Development of immunization trials against Pasteurella multocida. Vaccine 2014, 32, 909–917. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Tan, J.S.; Yusoff, A.H.; Sulaiman, A.Z.; Awang, M.A.; Lazim, A.M.; Lim, S.J.; Oslan, S.N.; Saad, M.Z.; Ariff, A.B. Pasteurellosis vaccine commercialization: Physiochemical factors for optimum production. Processes 2022, 10, 1248. [Google Scholar] [CrossRef]
- Mostaan, S.; Ghasemzadeh, A.; Sardari, S.; Shokrgozar, M.A.; Brujeni, G.N.; Abolhassani, M.; Ehsani, P.; Karam, M.R.A. Pasteurella multocida vaccine candidates: A systematic review. Avicenna J. Med. Biotechnol. 2020, 12, 140. [Google Scholar]
- Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiol. Lett. 2006, 265, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Adler, B.; Bulach, D.; Chung, J.; Doughty, S.; Hunt, M.; Rajakumar, K.; Serrano, M.; Van Zanden, A.; Zhang, Y.; Ruffolo, C. Candidate vaccine antigens and genes in Pasteurella multocida. J. Biotechnol. 1999, 73, 83–90. [Google Scholar] [CrossRef]
- Bosch, M.; Garrido, M.E.; De Rozas, A.M.P.; Badiola, I.; Barbé, J.; Llagostera, M. Pasteurella multocida contains multiple immunogenic haemin and haemoglobin-binding proteins. Vet. Microbiol. 2004, 99, 103–112. [Google Scholar] [CrossRef]
- Hatfaludi, T.; Al-Hasani, K.; Boyce, J.D.; Adler, B. Outer membrane proteins of Pasteurella multocida. Vet. Microbiol. 2010, 144, 1–17. [Google Scholar] [CrossRef]
- Guan, L.; Zhang, L.; Xue, Y.; Yang, J.; Zhao, Z. Molecular pathogenesis of the hyaluronic acid capsule of Pasteurella multocida. Microb. Pathog. 2020, 149, 104380. [Google Scholar] [CrossRef]
- Harper, M.; Boyce, J.D.; Adler, B. The key surface components of Pasteurella multocida: Capsule and lipopolysaccharide. Curr. Top. Microbiol. Immunol. 2012, 361, 39–51. [Google Scholar] [CrossRef]
- Fernández-Rojas, M.A.; Vaca, S.; Reyes-López, M.; de la Garza, M.; Aguilar-Romero, F.; Zenteno, E.; Soriano-Vargas, E.; Negrete-Abascal, E. Outer membrane vesicles of Pasteurella multocida contain virulence factors. Microbiol. Open 2014, 3, 711–717. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, Z.; Hu, J.; Wu, B.; Cai, X.; He, Q.; Chen, H. Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China. J. Clin. Microbiol. 2009, 47, 951–958. [Google Scholar] [CrossRef]
- Smith, E.; Miller, E.; Aguayo, J.M.; Figueroa, C.F.; Nezworski, J.; Studniski, M.; Wileman, B.; Johnson, T. Genomic diversity and molecular epidemiology of Pasteurella multocida. PLoS ONE 2021, 16, e0249138. [Google Scholar] [CrossRef]
- Aski, H.S.; Tabatabaei, M. Occurrence of virulence-associated genes in Pasteurella multocida isolates obtained from different hosts. Microb. Pathog. 2016, 96, 52–57. [Google Scholar] [CrossRef]
- Arumugam, N.D.; Ajam, N.; Blackall, P.J.; Asiah, N.M.; Ramlan, M.; Maria, J.; Yuslan, S.; Thong, K.L. Capsular serotyping of Pasteurella multocida from various animal hosts comparison of phenotypic and genotypic methods. Trop. Biomed. 2011, 28, 55–63. [Google Scholar] [PubMed]
- Davies, R.L.; MacCorquodale, R.; Reilly, S. Characterization of bovine strains of Pasteurella multocida and comparison with isolates of avian, ovine, and porcine origin. Vet. Microbiol. 2004, 99, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Shayegh, J.; Sharaf, J.; Mikaili, P.; Namvar, H. Pheno- and genotyping of Pasteurella multocida isolated from goat in Iran. Afr. J. Biotechnol. 2009, 8, 3707–3710. [Google Scholar]
- Verma, S.; Sharma, M.; Katoch, S.; Verma, L.; Kumar, S.; Dogra, V.; Chahota, R.; Dhar, P.; Singh, G. Profiling of virulence associated genes of Pasteurella multocida isolated from cattle. Vet. Res. Commun. 2013, 37, 83–89. [Google Scholar] [CrossRef]
- Liu HuiSheng, L.H.; Zhao ZhanQin, Z.Z.; Xi XiaoJian, X.X.; Xue Qiao, X.Q.; Long Ta, L.T.; Xue Yun, X.Y. Occurrence of Pasteurella multocida among pigs with respiratory disease in China between 2011 and 2015. Ir. Vet. J. 2017, 70, 2. [Google Scholar] [CrossRef]
- Devi, L.B.; Bora, D.P.; Das, S.K.; Sharma, R.K.; Mukherjee, S.; Hazarika, R.A. Virulence gene profiling of porcine Pasteurella multocida isolates of Assam. Vet. World 2018, 11, 348. [Google Scholar] [CrossRef]
- Fernandez, S.; Galapero, J.; Gomez, L.; Perez, C.J.; Ramos, A.; Cid, D.; Garcia, A.; Rey, J. Identification, capsular typing and virulence factors of Pasteurella multocida isolates from Merino lambs in Extremadura (Southwestern Spain). Vet. Med. 2018, 63, 117–124. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, F.; Lan, S.; Guo, J.; Liu, W.; Li, X.; Luo, Z.; Zhang, M.; Wu, J.; Shi, Y. Investigation of genetic diversity and epidemiological characteristics of Pasteurella multocida isolates from poultry in southwest China by population structure, multi-locus sequence typing and virulence-associated gene profile analysis. J. Vet. Med. Sci. 2018, 80, 921–929. [Google Scholar] [CrossRef]
- Wang, J.; Sang, L.; Sun, S.; Chen, Y.; Chen, D.; Xie, X. Characterization of Pasteurella multocida isolated from dead rabbits with respiratory disease in Fujian, China. BMC Vet. Res. 2019, 15, 438. [Google Scholar] [CrossRef]
- Prajapati, A.; Chanda, M.M.; Yogisharadhya, R.; Parveen, A.; Ummer, J.; Dhayalan, A.; Mohanty, N.N.; Shivachandra, S.B. Comparative genetic diversity analysis based on virulence and repetitive genes profiling of circulating Pasteurella multocida isolates from animal hosts. Infect. Genet. Evol. 2020, 85, 104564. [Google Scholar] [CrossRef] [PubMed]
- Vu-Khac, H.; Trinh, T.H.; Nguyen, T.G.; Nguyen, X.T.; Nguyen, T.T. Prevalence of virulence factor, antibiotic resistance, and serotype genes of Pasteurella multocida strains isolated from pigs in Vietnam. Vet. World 2020, 13, 896. [Google Scholar] [CrossRef] [PubMed]
- Mombeni, E.G.; Gharibi, D.; Ghorbanpoor, M.; Jabbari, A.R.; Cid, D. Toxigenic and non-toxigenic Pasteurella multocida genotypes, based on capsular, LPS, and virulence profile typing, associated with pneumonic pasteurellosis in Iran. Vet. Microbiol. 2021, 257, 109077. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Abdolahi, F. Molecular evaluation of sheep and goats isolates of Pasteurella multocida and their antibiotic resistance. Vet. Res. Forum 2023, 14, 481–487. [Google Scholar] [CrossRef]
- D’Amico, F.; Messina, D.; Casalino, G.; Schiavitto, M.; Bove, A.; Romito, D.; D’Onghia, F.P.; Camarda, A.; Circella, E. Characterization of Pasteurella multocida Strains from Different Lesions in Rabbits. Animals 2024, 14, 1569. [Google Scholar] [CrossRef]
- Bostan, T.I.; Torky, H.A.; Ahmed, A.M.; Hassan, O.F. Phenotypic and genotyping characterization of Pasteurella multocida in farm animals. Kafrelsheikh Vet. Med. J. 2016, 14, 99–113. [Google Scholar] [CrossRef]
- Atashpaz, S.; Shayegh, J.; Hejazi, M.S. Rapid virulence typing of Pasteurella multocida by multiplex PCR. Res. Vet. Sci. 2009, 87, 355–357. [Google Scholar] [CrossRef]
- Shayegh, J.; Parvizi, M.; Hejazi, M.S. Diversity of caprine and ovine Pasteurella multocida isolates based on 16S rRNA gene sequencing. Iran. J. Vet. Res. 2010, 11, 373–378. [Google Scholar]
- Cao, X.; Gu, L.; Gao, Z.; Fan, W.; Zhang, Q.; Sheng, J.; Zhang, Y.; Sun, Y. Pathogenicity and Genomic Characteristics Analysis of Pasteurella multocida Serotype A Isolated from Argali Hybrid Sheep. Microorganisms 2024, 12, 1072. [Google Scholar] [CrossRef]
- Cid, D.; García-Alvarez, A.; Domínguez, L.; Fernández-Garayzábal, J.F.; Vela, A.I. Pasteurella multocida isolates associated with ovine pneumonia are toxigenic. Vet. Microbiol. 2019, 232, 70–73. [Google Scholar] [CrossRef]
- Furian, T.Q.; Borges, K.A.; Pilatti, R.M.; Almeida, C.; do Nascimento, V.P.; Salle, C.T.P.; Moraes, H.D.S. Identification of the capsule type of Pasteurella multocida isolates from cases of fowl cholera by multiplex PCR and comparison with phenotypic methods. Braz. J. Poult. Sci. 2014, 16, 31–36. [Google Scholar] [CrossRef]
- El-Demerdash, A.S.; Mowafy, R.E.; Fahmy, H.A.; Matter, A.A.; Samir, M. Pathognomonic features of Pasteurella multocida isolates among various avian species in Sharkia Governorate, Egypt. World J. Microbiol. Biotechnol. 2023, 39, 335. [Google Scholar] [CrossRef]
- Farahani, M.F.; Esmaelizad, M.; Jabbari, A.R. Investigation of iron uptake and virulence gene factors (fur, tonB, exbD, exbB, hgbA, hgbB1, hgbB2 and tbpA) among isolates of Pasteurella multocida from Iran. Iran. J. Microbiol. 2019, 11, 191. [Google Scholar] [PubMed] [PubMed Central]
- García, N.; Fernández-Garayzábal, J.F.; Goyache, J.; Domínguez, L.; Vela, A.I. Associations between biovar and virulence factor genes in Pasteurella multocida isolates from pigs in Spain. Vet. Rec. 2011, 169, 362. [Google Scholar] [CrossRef] [PubMed]
- Step, D.L.; Confer, A.W.; Kirkpatrick, J.G.; Richards, J.B.; Fulton, R.W.; Payton, M.E. Respiratory tract infections in dairy calves from birth to breeding age: Detection by laboratory isolation and antibody responses. Bov. Pract. 2005, 39, 44–53. [Google Scholar] [CrossRef]
- Durairajan, R.; Verma, H.; Prajapati, A.; Abbas, M.; Rawat, M.; Verma, R. Active immunization with Pasteurella multocida lysate elicits antibody that protects rabbits against virulent Pasteurella multocida and protects mice by passive immunization. Indian J. Anim. Res. 2023, 57, 231–235. [Google Scholar] [CrossRef]
- Adler, B.; Chancellor, R.; Homchampa, P.; Hunt, M.; Ruffolo, C.; Strugnell, R.; Wapling, D. Immunity and vaccine development in Pasteurella multocida infections. J. Biotechnol. 1996, 44, 139–144. [Google Scholar] [CrossRef]
- Liao, C.M.; Huang, C.; Hsuan, S.L.; Chen, Z.W.; Lee, W.C.; Liu, C.I.; Winton, J.R.; Chien, M.S. Immunogenicity and efficacy of three recombinant subunit Pasteurella multocida toxin vaccines against progressive atrophic rhinitis in pigs. Vaccine 2006, 24, 27–35. [Google Scholar] [CrossRef]
- Lee, J.; Kang, H.E.; Woo, H.J. Protective immunity conferred by the C-terminal fragment of recombinant Pasteurella multocida toxin. Clin. Vaccine Immunol. 2012, 19, 1526–1531. [Google Scholar] [CrossRef]
- Hsuan, S.L.; Liao, C.M.; Huang, C.; Winton, J.R.; Chen, Z.W.; Lee, W.C.; Liao, J.W.; Chen, T.H.; Chiou, C.J.; Yeh, K.S.; et al. Efficacy of a novel Pasteurella multocida vaccine against progressive atrophic rhinitis of swine. Vaccine 2009, 27, 2923–2929. [Google Scholar] [CrossRef]
- Vasfi Marandi, M.; Mittal, K.R. Role of outer membrane protein H (OmpH)- and OmpA-specific monoclonal antibodies from hybridoma tumors in the protection of mice against Pasteurella multocida. Infect. Immun. 1997, 65, 4502–4508. [Google Scholar] [CrossRef] [PubMed]
- Cameron, C.M.; Bester, F.J. Formulation of an effective Pasteurella multocida vaccine for sheep. Onderstepoort J. Vet. Res. 1984, 51, 189–191. [Google Scholar] [PubMed]
- Myint, A.; Nyunt, H.H.; Jones, T.O. Safety, efficacy and cross-protectivity of a live intranasal aerosol haemorrhagic septicaemia vaccine. Vet. Rec. 2005, 156, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Jaiswal, T.N. Haemorrhagic septicaemia vaccines. Vaccine 1998, 16, 1184–1192. [Google Scholar] [CrossRef]
- Almoheer, R.; Abd Wahid, M.E.; Zakaria, H.A.; Jonet, M.A.B.; Al-Shaibani, M.M.; Al-Gheethi, A.; Addis, S.N.K. Spatial, temporal, and demographic patterns in the prevalence of hemorrhagic septicemia in 41 countries in 2005–2019: A systematic analysis with Special Focus on the potential development of a New-Generation Vaccine. Vaccines 2022, 10, 315. [Google Scholar] [CrossRef]
- Domínguez-Odio, A.; Delgado, D.L.C. Global commercialization and research of veterinary vaccines against Pasteurella multocida: 2015–2022 technological surveillance. Vet. World 2023, 16, 946. [Google Scholar] [CrossRef]
- Shivachandra, S.B.; Viswas, K.N.; Kumar, A. A review of hemorrhagic septicemia in cattle and buffalo. Anim. Health Res. Rev. 2011, 12, 67–82. [Google Scholar] [CrossRef]
- Confer, A.W. Immunogens of pasteurella. Vet. Microbiol. 1993, 37, 353–368. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, F.; Shen, H.; Liao, Y.; Zhu, D.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Yang, Q.; et al. Immunogenicity and protection of a Pasteurella multocida strain with a truncated lipopolysaccharide outer core in ducks. Vet. Res. 2022, 53, 17. [Google Scholar] [CrossRef]
- He, F.; Xiong, P.; Zhang, H.; Yang, L.; Qiu, Y.; Li, P.; Zhao, G.; Li, N.; Peng, Y. Attenuated vaccine PmCQ2Δ4555–4580 effectively protects mice against Pasteurella multocida infection. BMC Vet. Res. 2024, 20, 94. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (OIE). Terrestrial Manual: Atrophic Rhinitis of Swine. Chapter 3.9.2. 2018. Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.09.02_ATROPHIC_RHINITIS.pdf (accessed on 4 February 2025).
- National Veterinary Institute Ethiopia (NVI). Vaccine Product Catalog. 2016. Available online: https://www.nvi.com.et/wp-content/uploads/2017/11/NVI-Product-catalog-4-1.pdf (accessed on 4 February 2025).
- Abbasi, K.; Tahamtan, Y.; Moazamian, E.; Hosseini, M.H. Formalin and ferric chloride inactivated Pasteurella multocida type adjuvanted with bacterial DNA and alum as a new vaccine candidate in sheep pasteurellosis. Microb. Pathog. 2023, 183, 106282. [Google Scholar] [CrossRef]
- Qasim, M.T.; Hachim, S.K.; Jabr, S.; Mohammed, K.A.; Hamood, S.A. Ovine Pasteurellosis Vaccine: Assessment of the Protective Antibody Titer and Recognition of the Prevailing Serotypes. Arch. Razi Inst. 2022, 77, 1207. [Google Scholar] [CrossRef]
- Guan, L.J.; Yang, J.Q.; Xu, Q.Y.; Feng, Y.F.; Zhang, X.C.; Tang, B.; Zhao, Z.Q. Immunogenicity and efficacy of serogroup A and D bacterins against Pasteurella multocida in mice. Front. Vet. Sci. 2023, 10, 1132536. [Google Scholar] [CrossRef]
- Herath, C.; Kumar, P.; Singh, M.; Kumar, D.; Ramakrishnan, S.; Goswami, T.K.; Singh, A.; Ram, G.C. Experimental iron-inactivated Pasteurella multocida A: 1 vaccine adjuvanted with bacterial DNA is safe and protects chickens from fowl cholera. Vaccine 2010, 28, 2284–2289. [Google Scholar] [CrossRef]
- Homayoon, M.; Tahamtan, Y.; Kargar, M.; Hosseini, S.M.H.; Akhavan Sepahy, A. Pasteurella multocida inactivated with ferric chloride and adjuvanted with bacterial DNA is a potent and efficacious vaccine in Balb/c mice. J. Med. Microbiol. 2018, 67, 1383–1390. [Google Scholar] [CrossRef]
- Rice, J.T.; Dick, J.W.; Bierer, B.W. Subcutaneous vaccination of chickens with a live, avirulent Pasteurella multocida, Vaccine. Poult. Sci. 1978, 57, 1514–1518. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, A.; Tariq, A. In-silico analysis of Pasteurella multocida to identify common epitopes between fowl, goat, and buffalo. Gene 2016, 580, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Mostaan, S.; Ghasemzadeh, A.; Ehsani, P.; Sardari, S.; Shokrgozar, M.A.; Abolhassani, M.; Brujeni, G.N. In silico analysis of Pasteurella multocida PlpE protein epitopes as novel subunit vaccine candidates. Iran. Biomed. J. 2020, 25, 41. [Google Scholar] [CrossRef] [PubMed]
- Fegan, J.E.; Waeckerlin, R.C.; Tesfaw, L.; Islam, E.A.; Deresse, G.; Dufera, D.; Assefa, E.; Woldemedhin, W.; Legesse, A.; Akalu, M.; et al. Developing a PmSLP3-based vaccine formulation that provides robust long-lasting protection against hemorrhagic septicemia–causing serogroup B and E strains of Pasteurella multocida in cattle. Front. Immunol. 2024, 15, 1392681. [Google Scholar] [CrossRef]
- Islam, E.A.; Fegan, J.E.; Tefera, T.A.; Curran, D.M.; Waeckerlin, R.C.; Ng, D.; Ahn, S.K.; Lai, C.H.R.; Nguyen, Q.H.; Shah, M.; et al. Reverse vaccinology-based identification of a novel surface lipoprotein that is an effective vaccine antigen against bovine infections caused by Pasteurella multocida. PLoS Pathog. 2023, 19, e1011249. [Google Scholar] [CrossRef]
- Singh, A.P.; Singh, S.; Ranjan, R.; Gupta, S.K.; Singh, V.P.; Sharma, B. Molecular heterogeneity of plpE gene in Indian isolates of Pasteurella multocida and expression of recombinant PlpE in vaccine strain of P. multocida serotype B: 2. J. Vet. Sci. 2010, 11, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.R.; Shien, J.H.; Shieh, H.K.; Chen, C.F.; Chang, P.C. Protective immunity conferred by recombinant Pasteurella multocida lipoprotein E (PlpE). Vaccine 2007, 25, 4140–4148. [Google Scholar] [CrossRef] [PubMed]
- Okay, S.; Özcengiz, E.; Gürsel, I.; Özcengiz, G. Immunogenicity and protective efficacy of the recombinant Pasteurella lipoprotein E and outer membrane protein H from Pasteurella multocida A:3 in mice. Res. Vet. Sci. 2012, 93, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiao, J.; Chang, Y.-F.; Zhang, H.; Teng, Y.; Lin, W.; Li, H.; Chen, W.; Zhang, X.; Xie, Q. Immunogenicity and protective efficacy of the recombinant Pasteurella multocida lipoproteins VacJ and PlpE, and outer membrane protein H from P. multocida A: 1 in ducks. Front. Immunol. 2022, 13, 985993. [Google Scholar] [CrossRef]
- Sthitmatee, N.; Numee, S.; Kawamoto, E.; Sasaki, H.; Yamashita, K.; Takahashi, N.; Kataoka, Y.; Sawada, T. Protection of chickens from fowl cholera by vaccination with recombinant adhesive protein of Pasteurella multocida. Vaccine 2008, 26, 2398–2407. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Ai, W.; Zeng, D.; Liang, W.; Hua, L.; Liu, H.; Wang, X.; Tian, Y.; Chen, H.; et al. Three novel immunogenic proteins determined through 2-Dimensional electrophoresis and mass spectrometry with immune serum confer protection against challenge with porcine Pasteurella multocida in mouse models. Res. Vet. Sci. 2021, 136, 303–309. [Google Scholar] [CrossRef]
- Jazayeri, S.D.; Poh, C.L. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet. Res. 2019, 50, 78. [Google Scholar] [CrossRef]
- Qiang, G.; Ming, C.; Ming-fu, N.I.U. Out membrane protein DNA vaccines for protective immunity against virulent avian Pasteurella multocida in chickens. Procedia Environ. Sci. 2011, 8, 723–729. [Google Scholar] [CrossRef]
- Yassein, A.A.; Teleb, A.A.; Hassan, G.M.; El Fiky, Z.A. The immune response and protective efficacy of a potential DNA vaccine against virulent Pasteurella multocida. J. Genet. Eng. Biotechnol. 2021, 19, 81. [Google Scholar] [CrossRef]
- Gong, Q.; Qu, N.; Niu, M.; Qin, C.; Cheng, M.; Sun, X.; Zhang, A. Immune responses and protective efficacy of a novel DNA vaccine encoding outer membrane protein of avian Pasteurella multocida. Vet. Immunol. Immunopathol. 2013, 152, 317–324. [Google Scholar] [CrossRef]
- Gong, Q.; Kong, L.Y.; Niu, M.F.; Qin, C.L.; Yang, Y.; Li, X.; Ruan, M.D.; Tian, Y.; Li, Z.L. Construction of a ptfA chitosan nanoparticle DNA vaccine against Pasteurella multocida and the immune response in chickens. Vet. J. 2018, 231, 1–7. [Google Scholar] [CrossRef]
- Chelliah, S.; Velappan, R.D.; Lim, K.T.; Swee, C.W.K.; Nor Rashid, N.; Rothan, H.A.; Kabir, N.; Ismail, S. Potential DNA vaccine for hemorrhagic septicemia disease. Mol. Biotechnol. 2020, 62, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Dagleish, M.P.; Hodgson, J.C.; Ataei, S.; Finucane, A.; Finlayson, J.; Sales, J.; Parton, R.; Coote, J.G. Safety and protective efficacy of intramuscular vaccination with a live aroA derivative of Pasteurella multocida B: 2 against experimental hemorrhagic septicemia in calves. Infect. Immun. 2007, 75, 5837–5844. [Google Scholar] [CrossRef] [PubMed]
- Chengappa, M.M.; McLaughlin, B.G.; Kadel, W.L.; Maddux, R.L.; Greer, S.C. Efficacy of a live Pasteurella multocida vaccine for the prevention of experimentally induced bovine pneumonic pasteurellosis. Vet. Microbiol. 1989, 21, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Tewari, K.; Singh, R. Comparative immunogenicity and protective efficacy of different preparations of outer membrane proteins of Pasteurella multocida (B:2) in a mouse model. Veterinarski Arhiv 2013, 83, 665–676. [Google Scholar]
- Arif, J.; Rahman, S.U.; Arshad, M.; Akhtar, P. Immunopotentiation of outer membrane protein through anti-idiotype Pasteurella multocida vaccine in rabbits. Biologicals 2013, 41, 339–344. [Google Scholar] [CrossRef]
- Du, H.; Wu, C.; Li, C.; Fang, R.; Ma, J.; Ji, J.; Li, Z.; Li, N.; Peng, Y.; Zhou, Z. Two novel cross-protective antigens for bovine Pasteurella multocida. Mol. Med. Rep. 2017, 16, 4627–4633. [Google Scholar] [CrossRef]
- Muangthai, K.; Tankaew, P.; Varinrak, T.; Uthi, R.; Rojanasthien, S.; Sawada, T.; Sthitmatee, N. Intranasal immunization with a recombinant outer membrane protein H based Haemorrhagic septicemia vaccine in dairy calves. J. Vet. Med. Sci. 2018, 80, 68–76. [Google Scholar] [CrossRef]
- Singh, S.; Singh, V.P.; Cheema, P.S.; Sandey, M.; Ranjan, R.; Gupta, S.K.; Sharma, B. Immune response to DNA vaccine expressing transferrin binding protein a gene of Pasteurella multocida. Braz. J. Microbiol. 2011, 42, 750–760. [Google Scholar] [CrossRef]
- Mohd Yasin, I.S.; Mohd Yusoff, S.; Mohd, Z.S.; Abd Wahid Mohd, E. Efficacy of an inactivated recombinant vaccine encoding a fimbrial protein of Pasteurella multocida B: 2 against hemorrhagic septicemia in goats. Trop. Anim. Health Prod. 2011, 43, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Tatum, F.M.; Tabatabai, L.B.; Briggs, R.E. Cross-protection against fowl cholera disease with the use of recombinant Pasteurella multocida FHAB2 peptides vaccine. Avian Dis. 2012, 56, 589–591. [Google Scholar] [CrossRef] [PubMed]
- Apinda, N.; Yao, Y.; Zhang, Y.; Muenthaisong, A.; Sangkaka, K.; Nambooppha, B.; Rittipornlertrak, A.; Koonyosying, P.; Nair, V.; Sthitmatee, N. Efficiency of NHEJ-CRISPR/Cas9 and Cre-LoxP Engineered Recombinant Turkey Herpesvirus Expressing Pasteurella multocida OmpH Protein for Fowl Cholera Prevention in Ducks. Vaccines 2023, 11, 1498. [Google Scholar] [CrossRef] [PubMed]
- Thanasarasakulpong, A.; Poolperm, P.; Tankaew, P.; Sawada, T.; Sthitmatee, N. Protectivity conferred by immunization with intranasal recombinant outer membrane protein H from Pasteurella multocida serovar A: 1 in chickens. J. Vet. Med. Sci. 2015, 77, 321–326. [Google Scholar] [CrossRef]
- Register, K.B.; Sacco, R.E.; Brockmeier, S.L. Immune response in mice and swine to DNA vaccines derived from the Pasteurella multocida toxin gene. Vaccine 2007, 25, 6118–6128. [Google Scholar] [CrossRef]
- Casalino, G.; D’Amico, F.; Bozzo, G.; Dinardo, F.R.; Schiavitto, M.; Galante, D.; Aceti, A.; Ceci, E.; Romito, D.; D’Onghia, F.P.; et al. In-field evaluation of the impact on clinical signs of an inactivated autogenous vaccine against Pasteurella multocida in rabbits. Int. J. Vet. Sci. Med. 2024, 12, 39–47. [Google Scholar] [CrossRef]
- Confer, A.W.; Suckow, M.A.; Montelongo, M.; Dabo, S.M.; Miloscio, L.J.; Gillespie, A.J.; Meredith, G.L. Intranasal vaccination of rabbits with Pasteurella multocida A: 3 outer membranes that express iron-regulated proteins. Am. J. Vet. Res. 2001, 62, 697–703. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, Y.B.; Kwon, M.S. Outer membrane protein H for protective immunity against Pasteurella multocida. J. Microbiol. 2007, 45, 179–184. [Google Scholar] [PubMed]
- Wu, M.C.; Wu, H.; Lee, J.W.; Chang, W.C.; Chu, C.Y. A protein-based subunit vaccine with biological adjuvants provides effective protection against Pasteurella multocida in pigs. Vet. Res. 2023, 54, 17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesfaye, A.B.; Werid, G.M.; Tao, Z.; You, L.; Han, R.; Zhu, J.; Fu, L.; Chu, Y. Advances in Pasteurella multocida Vaccine Development: From Conventional to Next-Generation Strategies. Vaccines 2025, 13, 1034. https://doi.org/10.3390/vaccines13101034
Tesfaye AB, Werid GM, Tao Z, You L, Han R, Zhu J, Fu L, Chu Y. Advances in Pasteurella multocida Vaccine Development: From Conventional to Next-Generation Strategies. Vaccines. 2025; 13(10):1034. https://doi.org/10.3390/vaccines13101034
Chicago/Turabian StyleTesfaye, Adehanom Baraki, Geberemeskel Mamu Werid, Zhengyu Tao, Liuchao You, Rui Han, Jiayao Zhu, Lei Fu, and Yuefeng Chu. 2025. "Advances in Pasteurella multocida Vaccine Development: From Conventional to Next-Generation Strategies" Vaccines 13, no. 10: 1034. https://doi.org/10.3390/vaccines13101034
APA StyleTesfaye, A. B., Werid, G. M., Tao, Z., You, L., Han, R., Zhu, J., Fu, L., & Chu, Y. (2025). Advances in Pasteurella multocida Vaccine Development: From Conventional to Next-Generation Strategies. Vaccines, 13(10), 1034. https://doi.org/10.3390/vaccines13101034