Have Previous COVID-19 Vaccinations Shaped the Potential Enhancing Infection of Variant Strains?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Questionnaires
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics for Infection with SARS-CoV-2
3.2. Binary Regression Analysis of COVID-19 Vaccination and Infection Outcomes
3.3. Regression Analysis of COVID-19 Vaccination and Symptom Severity or Duration of Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. Available online: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 4 December 2023).
- Halperin, S.A.; Ye, L.; MacKinnon-Cameron, D.; Smith, B.; Cahn, P.E.; Ruiz-Palacios, G.M.; Ikram, A.; Lanas, F.; Lourdes Guerrero, M.; Muñoz Navarro, S.R.; et al. Final Efficacy Analysis, Interim Safety Analysis, and Immunogenicity of a Single Dose of Recombinant Novel Coronavirus Vaccine (Adenovirus Type 5 Vector) in Adults 18 Years and Older: An International, Multicentre, Randomised, Double-Blinded, Placebo-Controlled Phase 3 Trial. Lancet 2022, 399, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Gao, L.; Tao, L.; Hadinegoro, S.R.; Erkin, M.; Ying, Z.; He, P.; Girsang, R.T.; Vergara, H.; Akram, J.; et al. Efficacy and Safety of the RBD-Dimer–Based COVID-19 Vaccine ZF2001 in Adults. N. Engl. J. Med. 2022, 386, 2097–2111. [Google Scholar] [CrossRef] [PubMed]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, Ş.; Erdinç, F.Ş.; Akalın, E.H.; Tabak, Ö.F.; et al. Efficacy and Safety of an Inactivated Whole-Virion SARS-CoV-2 Vaccine (CoronaVac): Interim Results of a Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Al Kaabi, N.; Zhang, Y.; Xia, S.; Yang, Y.; Al Qahtani, M.M.; Abdulrazzaq, N.; Al Nusair, M.; Hassany, M.; Jawad, J.S.; Abdalla, J.; et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults. JAMA 2021, 326, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Araf, Y.; Akter, F.; Tang, Y.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron Variant of SARS-CoV-2: Genomics, Transmissibility, and Responses to Current COVID-19 Vaccines. J. Med. Virol. 2022, 94, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.; et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Munjal, A.; Dhama, K.; Karthik, K.; Tiwari, R.; Malik, Y.S.; Singh, R.K.; Chaicumpa, W. Modulation of Dengue/Zika Virus Pathogenicity by Antibody-Dependent Enhancement and Strategies to Protect Against Enhancement in Zika Virus Infection. Front. Immunol. 2018, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Eggink, D.; Andeweg, S.P.; Vennema, H.; van Maarseveen, N.; Vermaas, K.; Vlaemynck, B.; Schepers, R.; van Gageldonk-Lafeber, A.B.; van den Hof, S.; Reusken, C.B.; et al. Increased Risk of Infection with SARS-CoV-2 Omicron BA.1 Compared with Delta in Vaccinated and Previously Infected Individuals, the Netherlands, 22 November 2021 to 19 January 2022. Eurosurveillance 2022, 27, 2101196. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, T.; Zhang, Y.; Niu, W.; Nie, Q.; Yang, S.; Liu, P.; Pei, P.; Chen, L.; Li, H.; et al. ACE2 Can Act as the Secondary Receptor in the FcγR-Dependent ADE of SARS-CoV-2 Infection. iScience 2022, 25, 103720. [Google Scholar] [CrossRef]
- Shimizu, J.; Sasaki, T.; Koketsu, R.; Morita, R.; Yoshimura, Y.; Murakami, A.; Saito, Y.; Kusunoki, T.; Samune, Y.; Nakayama, E.E.; et al. Reevaluation of Antibody-Dependent Enhancement of Infection in Anti-SARS-CoV-2 Therapeutic Antibodies and MRNA-Vaccine Antisera Using FcR- and ACE2-Positive Cells. Sci. Rep. 2022, 12, 15612. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Yu, X.; Jiang, W.; Chen, S.; Wang, R.; Wang, M.; Jiao, S.; Yang, Y.; Wang, W.; et al. Antibody-Dependent Enhancement (ADE) of SARS-CoV-2 Pseudoviral Infection Requires FcγRIIB and Virus-Antibody Complex with Bivalent Interaction. Commun. Biol. 2022, 5, 262. [Google Scholar] [CrossRef]
- Zhang, K.; Chan, P.S.; Chen, S.; Fang, Y.; Cao, H.; Chen, H.; Hu, T.; Chen, Y.; Zhou, X.; Wang, Z. Factors Predicting COVID-19 Vaccination Uptake Among Men Who Have Sex with Men in China: An Observational Prospective Cohort Study. Front. Med. 2022, 9, 838973. [Google Scholar] [CrossRef]
- China CDC The Situation of the SARS-CoV-2 Infection in China. Available online: https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_13141/202304/t20230408_264979.html (accessed on 5 May 2024).
- Luo, M.; Gong, F.; Sun, J.; Gong, Z. For COVID-19, What Are the Priorities of Normalized Prevention and Control Strategies? BST 2023, 17, 63–67. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, S.; Ou, J.; Zhang, J.; Lan, W.; Guan, W.; Wu, X.; Yan, Y.; Zhao, W.; Wu, J.; et al. COVID-19: Coronavirus Vaccine Development Updates. Front. Immunol. 2020, 11, 602256. [Google Scholar] [CrossRef]
- Pérez-Then, E.; Lucas, C.; Monteiro, V.S.; Miric, M.; Brache, V.; Cochon, L.; Vogels, C.B.F.; Malik, A.A.; De la Cruz, E.; Jorge, A.; et al. Neutralizing Antibodies against the SARS-CoV-2 Delta and Omicron Variants Following Heterologous CoronaVac plus BNT162b2 Booster Vaccination. Nat. Med. 2022, 28, 481. [Google Scholar] [CrossRef]
- DiPiazza, A.T.; Graham, B.S.; Ruckwardt, T.J. T Cell Immunity to SARS-CoV-2 Following Natural Infection and Vaccination. Biochem. Biophys. Res. Commun. 2020, 538, 211–217. [Google Scholar] [CrossRef]
- Zhang, J.; He, Q.; An, C.; Mao, Q.; Gao, F.; Bian, L.; Wu, X.; Wang, Q.; Liu, P.; Song, L.; et al. Boosting with Heterologous Vaccines Effectively Improves Protective Immune Responses of the Inactivated SARS-CoV-2 Vaccine. Emerg. Microbes. Infect. 2021, 10, 1598–1608. [Google Scholar] [CrossRef]
- Karlsson, A.C.; Humbert, M.; Buggert, M. The Known Unknowns of T Cell Immunity to COVID-19. Sci. Immunol. 2020, 5, eabe8063. [Google Scholar] [CrossRef]
- McMahan, K.; Yu, J.; Mercado, N.B.; Loos, C.; Tostanoski, L.H.; Chandrashekar, A.; Liu, J.; Peter, L.; Atyeo, C.; Zhu, A.; et al. Correlates of Protection against SARS-CoV-2 in Rhesus Macaques. Nature 2020, 590, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhong, J.; Xiong, H.; Li, Y.; Guo, T.; Peng, B.; Fang, C.; Kang, Y.; Tan, J.; Ma, Y. Protective Effect of Inactivated COVID-19 Vaccines against Omicron BA.2 Infection in Guangzhou: A Test-Negative Case-Control Real-World Study. Vaccines 2023, 11, 566. [Google Scholar] [CrossRef]
- Remelli, F.; Volpato, S.; Trevisan, C. Clinical Features of SARS-CoV-2 Infection in Older Adults. Clin. Geriatr. Med. 2022, 38, 483–500. [Google Scholar] [CrossRef]
- Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 2020, 20, 442–447. [Google Scholar] [CrossRef]
Variables | Total Participants | Infection Outcome | p Value (χ2 Test of Fisher’s Exact Test) | OR (95% CI) (Univariable Regression Analysis) | p Value (Univariable Regression Analysis) | |
---|---|---|---|---|---|---|
(n/%) (n = 2007) | Infected (n/%) (n = 1663) | Uninfected (n/%) (n = 344) | ||||
Gender | 0.732 | 0.732 | ||||
Male | 841 (41.9) | 694 (41.7) | 147 (42.7) | 0.96 (0.759–1.214) | ||
Female | 1166 (58.1) | 969 (58.3) | 197 (57.3) | Reference | ||
Age (years) | 0.001 | 0.002 | ||||
Less than 18 | 23 (1.1) | 16 (1.0) | 7 (2.0) | 1.000 (0.370–2.699) | ||
18–39 | 1076 (53.6) | 896 (53.9) | 180 (52.3) | 2.178 (1.358–3.492) | ||
40–59 | 816 (40.7) | 687 (41.3) | 129 (37.5) | 2.330 (1.438–3.774) | ||
60 and older | 92 (4.6) | 64 (3.8) | 28 (8.1) | Reference | ||
Occupation | 0.001 | 0.001 | ||||
Hospital and CDC staffs | 369 (18.4) | 318 (19.1) | 51 (14.8) | Reference | ||
Teachers | 205 (10.2) | 184 (11.1) | 21 (6.1) | 1.405 (0.819–2.410) | ||
Students | 475 (23.7) | 376 (22.6) | 99 (28.8) | 0.609 (0.421–0.881) | ||
Staffs of government and the public sector | 245 (12.2) | 204 (12.3) | 41 (11.9) | 0.798 (0.510–1.248) | ||
Company employees | 282 (14.1) | 242 (14.6) | 40 (11.6) | 0.970 (0.621–1.516) | ||
Retired | 131 (6.5) | 99 (6.0) | 32 (9.3) | 0.496 (0.302–0.815) | ||
Others | 300 (14.9) | 240 (14.4) | 60 (17.4) | 0.642 (0.426–0.966) | ||
History of underlying disease | 0.786 | 0.787 | ||||
No prior medical history | 1716 (85.5) | 1421 (85.4) | 295 (85.8) | Reference | ||
Cerebral-cardiovascular diseases | 146 (7.3) | 124 (7.5) | 22 (6.4) | 1.170 (0.731–1.873) | ||
Pulmonary disease | 39 (1.9) | 33 (2.0) | 6 (1.7) | 1.142 (0.474–2.750) | ||
Others | 106 (5.3) | 85 (5.1) | 21 (6.1) | 0.840 (0.513–1.377) | ||
History of vaccination | 0.047 | 0.050 | ||||
Unvaccinated | 74 (3.7) | 55 (3.3) | 19 (5.5) | Reference | ||
Vaccinated | 1933 (96.3) | 1608 (96.7) | 325 (94.5) | 1.709 (1.001–2.918) |
Variables | Dependent Variable | β | Odds Ratio | 95% CI | p Value | |
---|---|---|---|---|---|---|
Infected (n/%) | Uninfected (n/%) | |||||
Type of vaccination | <0.001 | |||||
Unvaccinated | 46 (4.0) | 19 (6.4) | — | Reference | ||
Vaccinated only with inactivated vaccines | 1007 (88.4) | 203 (68.8) | 0.717 | 2.049 | 1.176–3.570 | |
At least one shot of non-inactivated vaccine | 86 (7.6) | 73 (24.7) | −0.720 | 0.487 | 0.262–0.904 | |
Vaccination status | 0.553 | |||||
Not completed first booster vaccination | 222 (19.5) | 53 (18.0) | — | Reference | ||
Completed first booster vaccination | 917 (80.5) | 242 (82.0) | −0.100 | 0.905 | 0.649–1.260 | |
Gender | 0.997 | |||||
Male | 470 (41.3) | 122 (41.4) | — | Reference | ||
Female | 669 (58.7) | 173 (58.6) | 0.004 | 1.004 | 0.774–1.302 | |
Age (years) | — | — | −0.001 | 0.999 | 0.989–1.009 | 0.871 |
Occupation | 0.004 | |||||
Hospital and CDC staffs | 241 (21.2) | 45 (15.3) | — | Reference | ||
Teachers | 116 (10.2) | 19 (6.4) | 0.131 | 1.140 | 0.638–2.036 | |
Students | 251 (22.0) | 87 (29.5) | −0.619 | 0.539 | 0.361–0.804 | |
Staffs of government and the public sector | 170 (14.9) | 38 (12.9) | −0.180 | 0.835 | 0.520–1.342 | |
Company employees | 168 (14.7) | 38 (12.9) | −0.192 | 0.826 | 0.514–1.327 | |
Retired | 61 (5.4) | 24 (8.1) | −0.745 | 0.475 | 0.269–0.839 | |
Others | 132 (11.6) | 44 (3.1) | −0.580 | 0.560 | 0.351–0.893 | |
History of underlying disease | 0.591 | |||||
No prior medical history | 966 (84.8) | 256 (86.8) | — | Reference | ||
Cerebral-cardiovascular diseases | 86 (7.6) | 16 (5.4) | 0.354 | 1.424 | 0.821–2.472 | |
Pulmonary disease | 24 (2.1) | 5 (1.7) | 0.241 | 1.272 | 0.481–3.367 | |
Others | 63 (5.5) | 18 (6.1) | −0.75 | 0.928 | 0.540–1.594 |
Variables | Dependent Variable | β | Odds Ratio | 95% CI | p Value | |
---|---|---|---|---|---|---|
Infected (n/%) | Uninfected (n/%) | |||||
Type of vaccination | <0.001 | |||||
Unvaccinated | 46 (6.9) | 19 (9.8) | — | Reference | ||
Vaccinated only with inactivated vaccines | 558 (84.0) | 122 (62.9) | 0.639 | 1.889 | 1.069–3.338 | |
At least one shot of non-inactivated vaccine | 60 (9.0) | 53 (27.3) | −0.760 | 0.468 | 0.244–0.895 | |
Vaccination status | 0.619 | |||||
Not completed first booster vaccination | 141 (21.2) | 38 (19.6) | — | Reference | ||
Completed first booster vaccination | 523 (78.8) | 156 (80.4) | −0.101 | 0.904 | 0.605–1.348 | |
Time interval | 0.352 | |||||
Unvaccinated | 46 (6.9) | 19 (9.8) | Reference | |||
<1 years | 344 (51.8) | 93 (47.9) | 0.424 | 1.528 | 0.854–2.733 | |
>1 years | 274 (41.3) | 82 (23.0) | 0.322 | 1.380 | 0.766–2.487 | |
Gender | 0.634 | |||||
Male | 251 (37.8) | 77 (39.7) | — | Reference | ||
Female | 413 (77.9) | 117 (60.3) | 0.080 | 1.083 | 0.780–1.503 | |
Age (years) | — | — | −0.005 | 0.995 | 0.983–1.007 | 0.422 |
Occupation | 0.339 | |||||
Hospital and CDC staffs | 132 (19.9) | 35 (18.0) | — | Reference | ||
Teachers | 67 (10.1) | 12 (6.2) | 0.392 | 1.480 | 0.722–3.037 | |
Students | 142 (21.4) | 48 (24.7) | −0.243 | 0.784 | 0.478–1.288 | |
Staffs of government and the public sector | 104 (15.1) | 27 (13.9) | 0.021 | 1.021 | 0.581–1.795 | |
Company employees | 100 (15.1) | 26 (13.4) | 0.020 | 1.020 | 0.577–1.803 | |
Retired | 50 (7.5) | 21 (10.8) | −0.460 | 0.631 | 0.366–1.187 | |
Others | 69 (10.4) | 25 (12.9) | −0.312 | 0.732 | 0.406–1.320 | |
History of underlying disease | 0.366 | |||||
No prior medical history | 545 (76.4) | 168 (86.6) | — | Reference | ||
Cerebral-cardiovascular diseases | 59 (8.9) | 12 (6.2) | 0.416 | 1.516 | 0.796–2.887 | |
Pulmonary disease | 17 (2.6) | 2 (1.0) | 0.963 | 2.620 | 0.599–11.457 | |
Others | 43 (6.5) | 12 (6.2) | 0.099 | 1.105 | 0.569–2.143 |
Variables | Dependent Variable | β | Odds Ratio | 95% CI | p Value | |
---|---|---|---|---|---|---|
Mild (n/%) | Severe (n/%) | |||||
Type of vaccination | 0.044 | |||||
Unvaccinated | 25 (5.2) | 15 (3.0) | — | Reference | ||
Vaccinated only with inactivated vaccines | 418 (86.2) | 457 (91.2) | 0.600 | 1.822 | 0.948–3.503 | |
At least one shot of non-inactivated vaccine | 42 (8.7) | 29 (5.8) | 0.140 | 1.151 | 0.519–2.551 | |
Vaccination status | 0.037 | |||||
Not completed first booster vaccination | 110 (22.7) | 87 (17.4) | — | Reference | ||
Completed first booster vaccination | 375 (77.3) | 414 (82.6) | 0.334 | 1.396 | 1.020–1.911 | |
Gender | <0.001 | |||||
Male | 246 (50.7) | 173 (34.5) | — | Reference | ||
Female | 239 (49.3) | 328 (65.5) | 0.669 | 1.951 | 1.511–2.521 | |
Age (years) | — | — | −0.027 | 0.973 | 0.963–0.984 | <0.001 |
Occupation | 0.002 | |||||
Hospital and CDC staffs | 91 (18.8) | 115 (23.0) | — | Reference | — | |
Teachers | 51 (10.5) | 51 (10.2) | −0.234 | 0.791 | 0.492–1.273 | |
Students | 85 (17.5) | 122 (24.4) | 0.127 | 1.136 | 0.769–1.678 | |
Staffs of government and the public sector | 73 (15.1) | 77 (15.4) | −0.181 | 0.835 | 0.547–1.273 | |
Company employees | 83 (17.1) | 63 (12.6) | −0.510 | 0.601 | 0.392–0.921 | |
Retired | 39 (8.0) | 17 (3.4) | −1.064 | 0.345 | 0.183–0.649 | |
Others | 63 (13.0) | 56 (11.2) | −0.352 | 0.703 | 0.447–1.106 | |
History of underlying disease | 0.123 | |||||
No prior medical history | 404 (83.3) | 433 (86.4) | — | Reference | — | |
Cerebral-cardiovascular diseases | 48 (9.9) | 31 (6.2) | −0.507 | 0.603 | 0.376–0.966 | |
Pulmonary disease | 6 (1.2) | 11 (2.2) | 0.537 | 1.711 | 0.627–4.668 | |
Others | 27 (5.6) | 26 (5.2) | −0.107 | 0.898 | 0.516–1.566 |
Variables | Dependent Variable (Days) | β | Odds Ratio | 95% CI | p Value | ||
---|---|---|---|---|---|---|---|
Less than 3 (n/%) | 4–6 (n/%) | 7 and More (n/%) | |||||
Type of vaccination | |||||||
Unvaccinated | 11 (6.9) | 11 (2.7) | 18 (4.2) | — | Reference | — | — |
Vaccinated only with inactivated vaccines | 135 (84.9) | 358 (89.3) | 382 (89.7) | 0.222 | 1.249 | 0.691–2.259 | 0.462 |
At least one shot of non-inactivated vaccine | 13 (8.2) | 32 (8.0) | 26 (6.1) | −0.039 | 0.962 | 0.466–1.984 | 0.915 |
Vaccination status | |||||||
Not completed first booster vaccination | 30 (18.9) | 80 (20.0) | 87 (20.4) | — | Reference | — | — |
Completed first booster vaccination | 129 (81.1) | 321 (80.0) | 339 (79.6) | −0.058 | 0.944 | 0.703–1.266 | 0.699 |
Age (years) | — | — | — | 0.018 | 1.018 | 1.008–1.028 | <0.001 |
Occupation | |||||||
Hospital and CDC staffs | 17 (10.7) | 92 (22.9) | 97 (22.8) | — | Reference | — | — |
Teachers | 14 (8.8) | 39 (9.7) | 49 (11.5) | −0.070 | 0.932 | 0.593–1.465 | 0.761 |
Students | 39 (24.5) | 96 (23.9) | 72 (16.9) | −0.564 | 0.569 | 0.395–0.820 | 0.002 |
Staffs of government and the public sector | 19 (11.9) | 64 (16.0) | 67 (15.7) | −0.154 | 0.857 | 0.575–1.279 | 0.451 |
Company employees | 31 (19.5) | 63 (15.7) | 52 (12.2) | −0.594 | 0.552 | 0.370–0.824 | 0.004 |
Retired | 10 (6.3) | 11 (2.7) | 35 (8.2) | 0.360 | 1.433 | 0.803–2.563 | 0.224 |
Others | 29 (18.2) | 36 (9.0) | 54 (12.7) | −0.376 | 0.687 | 0.448–1.051 | 0.084 |
History of underlying disease | |||||||
No prior medical history | 135 (84.9) | 355 (88.5) | 347 (81.5) | — | Reference | — | — |
Cerebral-cardiovascular diseases | 13 (8.2) | 26 (6.5) | 40 (9.4) | 0.276 | 1.318 | 0.850–2.044 | 0.217 |
Pulmonary disease | 3 (1.9) | 4 (1.0) | 10 (2.3) | 0.538 | 1.713 | 0.672–4.362 | 0.260 |
Others | 8 (5.0) | 16 (4.0) | 29 (6.8) | 0.439 | 1.551 | 0.908–2.649 | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, H.; Meng, X.; Song, Y.; Zhong, J.; Liu, S.; Zhu, X.; Ye, X.; Zhong, Y.; Zhang, D. Have Previous COVID-19 Vaccinations Shaped the Potential Enhancing Infection of Variant Strains? Vaccines 2024, 12, 567. https://doi.org/10.3390/vaccines12060567
Xiong H, Meng X, Song Y, Zhong J, Liu S, Zhu X, Ye X, Zhong Y, Zhang D. Have Previous COVID-19 Vaccinations Shaped the Potential Enhancing Infection of Variant Strains? Vaccines. 2024; 12(6):567. https://doi.org/10.3390/vaccines12060567
Chicago/Turabian StyleXiong, Husheng, Xiang Meng, Yanqin Song, Jiayi Zhong, Shuang Liu, Xun Zhu, Xin Ye, Yonghui Zhong, and Dingmei Zhang. 2024. "Have Previous COVID-19 Vaccinations Shaped the Potential Enhancing Infection of Variant Strains?" Vaccines 12, no. 6: 567. https://doi.org/10.3390/vaccines12060567
APA StyleXiong, H., Meng, X., Song, Y., Zhong, J., Liu, S., Zhu, X., Ye, X., Zhong, Y., & Zhang, D. (2024). Have Previous COVID-19 Vaccinations Shaped the Potential Enhancing Infection of Variant Strains? Vaccines, 12(6), 567. https://doi.org/10.3390/vaccines12060567