Assessment of Simplified Surveillance for Congenital Rubella Syndrome in Sudan, 2014–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. CRS Surveillance System
2.2. Data Analysis
2.3. Trend Analysis
3. Results
3.1. Suspected Cases and Reporting
3.2. System Performance
3.3. Trend Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vynnycky, E.; Knapp, J.K.; Papadopoulos, T.; Cutts, F.T.; Hachiya, M.; Miyano, S.; Reef, S.E. Estimates of the global burden of Congenital Rubella Syndrome, 1996–2019. Int. J. Infect. Dis. 2023, 137, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health Sudan. Measles and Rubella Surveillance Report; Ministry of Health Sudan: Khartoum, Sudan, 2014. [Google Scholar]
- Adam, O.; Ali, A.K.M.; Hubschen, J.M.; Muller, C.P. Identification of congenital rubella syndrome in Sudan. BMC Infect. Dis. 2014, 14, 305. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, H.Z.; Abdelbagi, I.E.; Nasser, N.M.; Adam, I. Seroprevalence of cytomegalovirus and rubella among pregnant women in western Sudan. Virol. J. 2011, 8, 217. [Google Scholar] [CrossRef]
- Omer, A.; Abdel Rahim, E.H.; Ali, E.E.; Jin, L. Primary investigation of 31 infants with suspected congenital rubella syndrome in Sudan. Clin. Microbiol. Infect. 2010, 16, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Khalfallah, E.A.A. Serodetection of Rubella IgM Antibodies among Newborns delivered at Omdurman Maternity Hospital. Master’s Thesis, Sudan University of Science and Technology, Khartoum, Sudan, 2012. [Google Scholar]
- World Health Organization. Congenital Rubella Syndrome: Surveillance Standards for Vaccine-Preventable Diseases; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Bloom, S.; Rguig, A.; Berraho, A.; Zniber, L.; Bouazzaoui, N.; Zaghloul, Z.; Reef, S.; Zidouh, A.; Papania, M.; Seward, J. Congenital rubella syndrome burden in Morocco: A rapid retrospective assessment. Lancet 2005, 365, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Reef, S.E.; Plotkin, S.A. Chapter 54-Rubella Vaccines. In Plotkin’s Vaccines, 8th ed.; Orenstein, W., Offit, P., Edwards, K.M., Plotkin, S., Eds.; Elsevier: Philadelphia, PA, USA, 2023; pp. 1025–1056.e1019. [Google Scholar]
- Simons, E.A.; Reef, S.E.; Cooper, L.Z.; Zimmerman, L.; Thompson, K.M. Systematic Review of the Manifestations of Congenital Rubella Syndrome in Infants and Characterization of Disability-Adjusted Life Years (DALYs). Risk Anal. 2016, 36, 1332–1356. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Long, E.; Lin, H.; Liu, Y. Prevalence and epidemiological characteristics of congenital cataract: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 28564. [Google Scholar] [CrossRef]
- World Health Organization. WHO-Recommended Surveillance Standards Congenital Rubella Syndrome; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Murray, J.; Cohen, A.L. Infectious disease surveillance. In International Encyclopedia of Public Health; Elsevier: Amsterdam, The Netherlands, 2017; pp. 222–229. [Google Scholar]
- Macrotrends. Sudan Population 1950–2024. Available online: https://www.macrotrends.net/global-metrics/countries/SDN/sudan/population (accessed on 17 July 2024).
- Halees, M.H.; Saleem, M.; Abdalla, A. Rubella Virus in Association with Congenital Cataract at Makkah Eye Complex. Al-Basar Int. J. Ophthalmol. 2020, 7, 16–20. [Google Scholar] [CrossRef]
- Töndury, G.; Smith, D.W. Fetal rubella pathology. J. Pediatr. 1966, 68, 867–879. [Google Scholar] [CrossRef]
- Wondimeneh, Y.; Tiruneh, M.; Ferede, G.; Denekew, K.; Admassu, F.; Tessema, B. Hospital based surveillance of congenital rubella syndrome cases in the pre-vaccine era in Amhara Regional State, Ethiopia: A base line information for the country. PLoS ONE 2018, 13, e0207095. [Google Scholar] [CrossRef] [PubMed]
- Thant, K.Z.; Oo, W.M.; Myint, T.T.; Shwe, T.N.; Han, A.M.; Aye, K.M.; Aye, K.T.; Moe, K.; Thein, S.; Robertson, S.E. Active surveillance for congenital rubella syndrome in Yangon, Myanmar. Bull. World Health Organ. 2006, 84, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Murhekar, M.; Verma, S.; Singh, K.; Bavdekar, A.; Benakappa, N.; Santhanam, S.; Sapkal, G.; Viswanathan, R.; Singh, M.P.; Nag, V.L.; et al. Epidemiology of Congenital Rubella Syndrome (CRS) in India, 2016–2018, based on data from sentinel surveillance. PLoS Neglected Trop. Dis. 2020, 14, e0007982. [Google Scholar] [CrossRef] [PubMed]
- Motaze, N.V.; Manamela, J.; Smit, S.; Rabie, H.; Harper, K.; duPlessis, N.; Reubenson, G.; Coetzee, M.; Ballot, D.; Moore, D.; et al. Congenital Rubella Syndrome Surveillance in South Africa Using a Sentinel Site Approach: A Cross-sectional Study. Clin. Infect. Dis. 2019, 68, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Masresha, B.; Shibeshi, M.; Kaiser, R.; Luce, R.; Katsande, R.; Mihigo, R. Congenital Rubella Syndrome in The African Region—Data from Sentinel Surveillance. J. Immunol. Sci. 2018, 2, 146–150. [Google Scholar] [CrossRef]
- Herini, E.S.; Triono, A.; Iskandar, K.; Prasetyo, A.; Nugrahanto, A.P.; Gunadi. Congenital Rubella Syndrome Surveillance After Measles Rubella Vaccination Introduction in Yogyakarta, Indonesia. Pediatr. Infect. Dis. J. 2021, 40, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Sheeladevi, S.; Lawrenson, J.; Fielder, A.; Suttle, C. Global prevalence of childhood cataract: A systematic review. Eye 2016, 30, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Samy El Gendy, N.M.; Abdel-Kader, A.A. Prevalence of Selected Eye Diseases Using Data Harvested from Ophthalmic Checkup Examination of a Cohort of Two Thousand Middle Eastern and North African Subjects. J. Ophthalmol. 2018, 2018, 8049475. [Google Scholar] [CrossRef] [PubMed]
Final Case Classification | Definition |
---|---|
Laboratory-confirmed CRS | A suspected case 1 with one or more Group A symptoms and laboratory confirmation. |
Clinically compatible CRS | A suspected case 1 with either (1) two or more Group A symptoms, or (2) one Group A and one or more Group B symptoms and inadequate laboratory testing. |
Discarded case | A suspected case 1 with adequate laboratory testing and no laboratory confirmation, or a case that does not meet the clinically compatible case definition. |
Congenital rubella infection | A suspected case 1 with no Group A symptoms and laboratory confirmation. |
Group A symptoms: congenital cataracts, congenital glaucoma, congenital heart disease, hearing impairment, or pigmentary retinopathy. Group B symptoms: purpura, splenomegaly, microcephaly, developmental delay, meningoencephalitis, radiolucent bone disease, and jaundice that begins within 24 h after birth. | |
Adequate laboratory testing: a single IgM specimen result for <6 months of age, or two sequential IgG test results (at least 2 weeks apart) for children 6 m–<12 m of age. Laboratory confirmation: occurs when an infant has (1) a positive rubella IgM, (2) positive RT-PCR test <12 months of age (no vaccination history), and/or (3) two sequential specimens with stable or increasing IgG levels. |
Total/ Comprehensive n = 179 | Heart Hospitals n = 31 | Eye Hospitals n = 133 | Pediatric Hospitals n = 15 | Test Statistic | |
---|---|---|---|---|---|
Age at notification, median days (IQR) | 140 (86, 212) | 155 (87, 236) | 154 (96, 214) | 9 (5, 16.5) | p < 0.001 |
Male Sex, n (%) | 94 (53%) | 14 (45%) | 70 (53%) | 10 (67%) | p = 0.391 |
Place of delivery, n (%) | |||||
Health facility | 90 (51%) | 20 (67%) | 59 (45%) | 11 (73%) | p = 0.0043 |
Home | 81 (46%) | 8 (27%) | 70 (53%) | 3 (20%) | |
Not reported | 5 (3%) | 2 (7%) | 2 (2%) | 1 (7%) | |
Eye findings, n (%) | 136 (77%) | 7 (23%) | 127 (97%) | 2 (13%) | p < 0.0001 |
Hearing impairment, n (%) | 1 (1%) | 0 (0%) | 0 (0%) | 1 (7%) | p < 0.085 |
Congenital heart disease, n (%) | 47 (27%) | 30 (97%) | 11 (8%) | 6 (40%) | p < 0.001 |
Suspected n = 179 | All Confirmed n = 31 | Lab-Confirmed n = 25 | Clinically Compatible n = 6 | Discarded n = 148 | |
---|---|---|---|---|---|
Days of age at reporting Median (IQR) | 140 (87–216) | 154 (88–234) | 145 (64–218) | 233 (174–263) | 129 (86–198) |
Male sex (n, %) | 94 (53%) | 12 (39%) | 11 (44%) | 1 (17%) | 82 (55%) |
Eye findings (n, %) | 136 (77%) | 24 (77%) | 19 (76%) | 5 (83%) | 102 (77%) |
Cataracts | 79 (44%) | 22 (71%) | 19 (76%) | 3 (50%) | 58 (38%) |
Glaucoma | 57 (32%) | 2 (6%) | 0 (0%) | 2 (33%) | 55 (36%) |
Pigmentary retinopathy | 4 (2%) | 0 (0%) | 0 (0%) | 0 (0%) | 4 (2%) |
Hearing Impairment (n, %) | 1 (1%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (1%) |
Heart findings | 47 (27%) | 19 (61%) | 13 (52%) | 6 (100%) | 28 (19%) |
Patent ductus arteriosus | 30 (17%) | 14 (45%) | 10 (40%) | 4 (67%) | 16 (11%) |
Primary pulmonary stenosis | 4 (2%) | 1 (3%) | 1 (4%) | 0 (0%) | 3 (2%) |
Ventral septal defect | 6 (3%) | 1 (3%) | 1 (4%) | 0 (0%) | 5 (3%) |
Other defect | 2 (1%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (1%) |
Clinical criteria reported | |||||
2 “A” | 18 (10%) | 13 (43%) | 8(32%) | 5 (83%) | 5 (3%) |
1 “A” and ≥1 “B” | 10 (6%) | 3 (10%) | 2 (8%) | 1 (17%) | 7 (5%) |
1 “A” and 0 “B” | 137 (78%) | 13 (43%) | 13 (54%) | 0 (0%) | 124 (85%) |
None of the above | 11 (6%) | 1 (3%) | 1 (4%) | 0 (0%) | 10 (7%) |
Reporting site | |||||
Cardiology hospital | 31 (17%) | 8 (26%) | 5 (20%) | 3 (50%) | 23 (16%) |
Eye hospital | 133 (74%) | 19 (61%) | 16 (64%) | 3 (50%) | 114 (77%) |
Pediatric hospital | 15 (8%) | 4 (13%) | 4 (16%) | 0 (0%) | 11 (7%) |
Type of CRS Surveillance | Comprehensive | Simplified Site | Simplified Manifestation | |
---|---|---|---|---|
Indicator | All cases (n = 179) | Simplified-cardiac surveillance (n = 31) | Simplified- ophthalmic surveillance (n = 132) | Simplified-cataract surveillance (n = 79) |
Number of reporting sites/sentinel sites | 7 | 1 | 3 | 5 |
Sensitivity—national annual rate of suspected CRS cases. Target ≥ 1 per 10,000 live births | 1.32 | 0.23 | 0.98 | 0.58 |
Case confirmation rate (% efficiency, confirmed cases) | 14% (n = 25) | 16% (n = 5) | 12% (n = 16) | 24% (n = 19) |
Confirmed CRS cases detected within 3 months of birth (%, confirmed cases) | 23% (n = 47) | 23% (n = 8) | 16% (n = 25) | 13% (n = 14) |
Suspected case with adequate blood specimens for serology testing (%, cases) | 95% (n = 170) | 87% (n = 27) | 96% (n = 128) | 95% (n = 75) |
Proportion of serological samples from suspected cases received within 5 days of collection | 95% (n = 157) | 96% (n = 27) | 95% (n = 116) | 96% (n = 67) |
The proportion of suspected cases with an adequate virological specimen | 44% (n = 79) | 45% (n = 14) | 42% (n = 56) | 61% (n = 48) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, O.; Ahmed, N.; El-Hag Mukhtar, H.A.; Reef, S.; Hagan, J.; Grant, G. Assessment of Simplified Surveillance for Congenital Rubella Syndrome in Sudan, 2014–2017. Vaccines 2024, 12, 1447. https://doi.org/10.3390/vaccines12121447
Abdalla O, Ahmed N, El-Hag Mukhtar HA, Reef S, Hagan J, Grant G. Assessment of Simplified Surveillance for Congenital Rubella Syndrome in Sudan, 2014–2017. Vaccines. 2024; 12(12):1447. https://doi.org/10.3390/vaccines12121447
Chicago/Turabian StyleAbdalla, Omayma, Nada Ahmed, Hanan Abdo El-Hag Mukhtar, Susan Reef, Jose Hagan, and Gavin Grant. 2024. "Assessment of Simplified Surveillance for Congenital Rubella Syndrome in Sudan, 2014–2017" Vaccines 12, no. 12: 1447. https://doi.org/10.3390/vaccines12121447
APA StyleAbdalla, O., Ahmed, N., El-Hag Mukhtar, H. A., Reef, S., Hagan, J., & Grant, G. (2024). Assessment of Simplified Surveillance for Congenital Rubella Syndrome in Sudan, 2014–2017. Vaccines, 12(12), 1447. https://doi.org/10.3390/vaccines12121447