The Real-World Effectiveness of Inactivated COVID-19 Vaccines in Zimbabwe During the Omicron Variant Dominance: A Test-Negative Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhadoria, P.; Gupta, G.; Agarwal, A. Viral Pandemics in the Past Two Decades: An Overview. J. Fam. Med. Prim. Care 2021, 10, 2745–2750. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease (COVID-19). 9 August 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/coronavirus-disease-(covid-19) (accessed on 30 October 2023).
- Li, X.; Wang, W.; Zhao, X.; Zai, J.; Zhao, Q.; Li, Y.; Chaillon, A. Transmission dynamics and evolutionary history of 2019-nCoV. J. Med. Virol. 2020, 92, 501–511. [Google Scholar] [CrossRef]
- Lamptey, E.; Senkyire, E.K.; Benita, D.A.; Boakye, E.O. COVID-19 vaccines development in Africa: A review of current situation and existing challenges of vaccine production. Clin. Exp. Vaccine Res. 2022, 11, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Al Kaabi, N.; Zhang, Y.; Xia, S.; Yang, Y.; Al Qahtani, M.M.; Abdulrazzaq, N.; Al Nusair, M.; Hassany, M.; Jawad, J.S.; Abdalla, J.; et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. JAMA 2021, 326, 35–45. [Google Scholar] [CrossRef]
- Palacios, R.; Batista, A.; Albuquerque, C.; Patiño, E.; Santos, J.; Conde, M.; Piorelli, R.; Júnior, L.; Raboni, S.; Ramos, F.; et al. Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, Ş.; Erdinç, F.; Akalın, E.H.; Tabak, Ö.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- Fadlyana, E.; Rusmil, K.; Tarigan, R.; Rahmadi, A.R.; Prodjosoewojo, S.; Sofiatin, Y.; Khrisna, C.V.; Sari, R.M.; Setyaningsih, L.; Surachman, F.; et al. A phase III, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: An interim analysis in Indonesia. Vaccine 2021, 39, 6520–6528. [Google Scholar] [CrossRef]
- Mengstu, S.; Beyene Berha, A. Safety and Efficacy of COVID-19 Vaccine in Africa: Systematic Review. Infect. Drug Resist. 2023, 16, 3085–3100. [Google Scholar] [CrossRef]
- Ashmawy, R.; Kamal, E.; Amin, W.; Sharaf, S.; Kabeel, S.; Albiheyri, R.; El-Maradny, Y.A.; Hassanin, E.; Elsaka, N.; Fahmy, O.; et al. Effectiveness and Safety of Inactivated SARS-CoV-2 Vaccine (BBIBP-CorV) among Healthcare Workers: A Seven-Month Follow-Up Study at Fifteen Central Hospitals. Vaccines 2023, 11, 892. [Google Scholar] [CrossRef]
- Belayachi, J.; Obtel, M.; Mhayi, A.; Razine, R.; Abouqal, R. Long term effectiveness of inactivated vaccine BBIBP-CorV (Vero Cells) against COVID-19 associated severe and critical hospitalization in Morocco. PLoS ONE 2022, 17, e0278546. [Google Scholar] [CrossRef]
- Zhang, Y.; Belayachi, J.; Yang, Y.; Fu, Q.; Rodewald, L.; Li, H.; Yan, B.; Wang, Y.; Shen, Y.; Yang, Q.; et al. Real-world study of the effectiveness of BBIBP-CorV (Sinopharm) COVID-19 vaccine in the Kingdom of Morocco. BMC Public Health 2022, 22, 1584. [Google Scholar] [CrossRef] [PubMed]
- Africa Centres for Disease Control and Prevention (Africa CDC). Proportion of Vaccine Type Acquired by Member States in Africa. 2021. Available online: https://africacdc.org/covid-19/covid-19-vaccination/ (accessed on 8 November 2024).
- Flores-Vega, V.R.; Monroy-Molina, J.V.; Jiménez-Hernández, L.E.; Torres, A.G.; Santos-Preciado, J.I.; Rosales-Reyes, R. SARS-CoV-2: Evolution and Emergence of New Viral Variants. Viruses 2022, 14, 653. [Google Scholar] [CrossRef] [PubMed]
- Dean, N.E.; Hogan, J.W.; Schnitzer, M.E. Covid-19 Vaccine Effectiveness and the Test-Negative Design. N. Engl. J. Med. 2021, 385, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Evaluation of COVID-19 Vaccine Effectiveness. 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccine_effectiveness-measurement-2021.1 (accessed on 30 January 2023).
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef]
- World Health Organization. WHO COVID-19 Case Definition. 2022. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Surveillance_Case_Definition-2022.1 (accessed on 8 November 2024).
- Huang, Z.; Xu, S.; Liu, J.; Wu, L.; Qiu, J.; Wang, N.; Ren, J.; Li, Z.; Guo, X.; Tao, F.; et al. Effectiveness of inactivated and Ad5-nCoV COVID-19 vaccines against SARS-CoV-2 Omicron BA. 2 variant infection, severe illness, and death. BMC Med. 2022, 20, 400. [Google Scholar] [CrossRef]
- Rana, R.; Kant, R.; Huirem, R.S.; Bohra, D.; Ganguly, N.K. Omicron variant: Current insights and future directions. Microbiol. Res. 2022, 265, 127204. [Google Scholar] [CrossRef]
- Xu, S.; Li, J.; Wang, H.; Wang, F.; Yin, Z.; Wang, Z. Real-world effectiveness and factors associated with effectiveness of inactivated SARS-CoV-2 vaccines: A systematic review and meta-regression analysis. BMC Med. 2023, 21, 160. [Google Scholar] [CrossRef] [PubMed]
- Madhi, S.A.; Kwatra, G.; Myers, J.E.; Jassat, W.; Dhar, N.; Mukendi, C.K.; Nana, A.J.; Blumberg, L.; Welch, R.; Ngorima-Mabhena, N.; et al. Population Immunity and Covid-19 Severity with Omicron Variant in South Africa. N. Engl. J. Med. 2022, 386, 1314–1326. [Google Scholar] [CrossRef]
- Madhi, S.A.; Kwatra, G.; Richardson, S.I.; Koen, A.L.; Baillie, V.; Cutland, C.L.; Fairlie, L.; Padayachee, S.D.; Dheda, K.; Barnabas, S.L.; et al. Durability of ChAdOx1 nCoV-19 (AZD1222) vaccine and hybrid humoral immunity against variants including omicron BA.1 and BA.4 6 months after vaccination (COV005): A post-hoc analysis of a randomised, phase 1b-2a trial. Lancet Infect. Dis. 2023, 23, 295–306. [Google Scholar] [CrossRef]
- Davies, M.-A.; Morden, E.; Rousseau, P.; Arendse, J.; Bam, J.-L.; Boloko, L.; Cloete, K.; Cohen, C.; Chetty, N.; Dane, P.; et al. Outcomes of laboratory-confirmed SARS-CoV-2 infection during resurgence driven by Omicron lineages BA.4 and BA.5 compared with previous waves in the Western Cape Province, South Africa. Int. J. Infect. Dis. 2023, 127, 63–68. [Google Scholar] [CrossRef]
- Abdullah, F.; Myers, J.; Basu, D.; Tintinger, G.; Ueckermann, V.; Mathebula, M.; Ramlall, R.; Spoor, S.; de Villiers, T.; Van der Walt, Z.; et al. Decreased severity of disease during the first global omicron variant covid-19 outbreak in a large hospital in tshwane, south africa. Int. J. Infect. Dis. 2022, 116, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zhang, Y.; Wang, F.; Wu, D.; Qian, Z.H.; Zhang, R.; Wang, A.B.; Huang, C.; Wang, H.; Ye, Y.; et al. Relative vaccine effectiveness against Delta and Omicron COVID-19 after homologous inactivated vaccine boosting: A retrospective cohort study. BMJ Open 2022, 12, e063919. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; May, A.; Polidori, L.; Louca, P.; Wolf, J.; Capdevila, J.; Hu, C.; Ourselin, S.; Steves, C.J.; Valdes, A.M.; et al. COVID-19 vaccine waning and effectiveness and side-effects of boosters: A prospective community study from the ZOE COVID Study. Lancet Infect. Dis. 2022, 22, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Ferdinands, J.M.; Rao, S.; Dixon, B.E.; Mitchell, P.K.; DeSilva, M.B.; Irving, S.A.; Lewis, N.; Natarajan, K.; Stenehjem, E.; Grannis, S.J.; et al. Waning of vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: Test negative, case-control study. BMJ 2022, 379, e072141. [Google Scholar] [CrossRef]
- Hitchings, M.D.T.; Ranzani, O.T.; Dorion, M.; D’Agostini, T.L.; de Paula, R.C.; de Paula, O.F.P.; de Moura Villela, E.F.; Torres, M.S.S.; de Oliveira, S.B.; Schulz, W.; et al. Effectiveness of ChAdOx1 vaccine in older adults during SARS-CoV-2 Gamma variant circulation in São Paulo. Nat. Commun. 2021, 12, 6220. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.-M.; et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Trust, F. FinScope Consumer Survey Report. 2022. Available online: https://www.rbz.co.zw/documents/BLSS/2022/Zimbabwe_FinScope_Consumer_2022_Survey_Report.pdf (accessed on 8 November 2024).
- Hamisu, M.; Dieng, B.; Taiwo, L.; Jean Baptiste, A.E.; Bawa, S.; Wagai, J.; Ibizugbe, S.; Braka, F.; Nsubuga, P.; Shuaib, F.; et al. Microplanning verification and 2017/2018 measles vaccination campaign in Nigeria: Lessons learnt. Vaccine 2021, 39 (Suppl. S3), C46–C53. [Google Scholar] [CrossRef]
- Yeatman, S.; Chamberlin, S.; Dovel, K. Women’s (health) work: A population-based, cross-sectional study of gender differences in time spent seeking health care in Malawi. PLoS ONE 2018, 13, e0209586. [Google Scholar] [CrossRef]
Variable | Controls | Cases | Total | p-Value |
---|---|---|---|---|
Age (median, IQR) | 36 (26–44) | 37 (27–48) | 36 (27–45) | 0.001 |
Age group | n = 4474 | n = 701 | n = 5175 | |
18–49 | 3805 (85.05) | 547 (78.03) | 4352 (84.10) | <0.001 |
50–64 | 555 (12.41) | 105 (14.98) | 660 (12.75) | |
65+ | 114 (2.55) | 49 (6.99) | 163 (3.15) | |
Sex | n = 4474 | n = 701 | n = 5175 | |
Male | 1437 (32.12) | 200 (28.53) | 1637 (31.63) | 0.057 |
Female | 3037 (67.88) | 501 (71.47) | 3538 (68.37) | |
Enrolment site | n = 4474 | n = 701 | n = 5175 | |
Hospital outpatient or ER | 2955 (66.05) | 498 (71.04) | 3453 (66.72) | <0.001 |
Hospitalized In-patient | 17 (0.38) | 54 (7.70) | 71 (1.37) | |
Community Outpatient | 1502 (33.57) | 149 (21.26) | 1651 (31.90) | |
Socio-economic status | n = 4458 | n = 700 | n = 5158 | |
Low | 2378 (53.34) | 391 (55.86) | 2769 (53.68) | 0.366 |
Middle | 1972 (44.24) | 290 (41.43) | 2262 (43.85) | |
High | 108 (2.42) | 19 (2.71) | 127 (2.46) | |
Ethnicity | n = 4463 | n = 699 | n = 5162 | |
Asian, not Indian | 7 (0.16) | 1 (0.14) | 8 (0.15) | 0.007 |
Black | 4444 (99.57) | 689 (98.57) | 5133 (99.44) | |
Indian | 2 (0.04) | 2 (0.29) | 4 (0.08) | |
Mixed | 3 (0.07) | 3 (0.43) | 6 (0.12) | |
White | 5 (0.11) | 3 (0.43) | 8 (0.15) | |
Other | 2 (0.04) | 1 (0.14) | 3 (0.06) | |
Highest level of education | n = 4474 | n = 701 | n = 5175 | |
Not attended school | 17 (0.4) | 5 (0.7) | 22 (0.4) | 0.004 |
Primary | 223 (5.0) | 59 (8.4) | 282 (5.5) | |
Secondary | 2861 (64.0) | 426 (60.8) | 3287 (63.5) | |
Tertiary | 959 (21.4) | 141 (20.1) | 1100 (21.3) | |
Degree | 390 (8.7) | 64 (9.1) | 454 (8.8) | |
Missing | 24 (0.5) | 6 (0.9) | 30 (0.6) | |
Province | n = 4474 | n = 701 | n = 5175 | |
Harare | 3120 (69.7) | 549 (78.3) | 3669 (70.9) | <0.001 |
Manicaland | 215 (4.8) | 7 (1.0) | 222 (4.3) | |
Mashonaland Central | 152 (3.4) | 3 (0.4) | 155 (3.0) | |
Mashonaland East | 465 (10.4) | 70 (10.0) | 535 (10.3) | |
Mashonaland West | 372 (8.3) | 46 (6.6) | 418 (8.1) | |
Masvingo | 150 (3.4) | 26 (3.7) | 176 (3.4) |
Variable | Controls (%) | Cases (%) | Total (%) | p-Value |
---|---|---|---|---|
BMI (median, IQR) | 25 (22–29) | 26 (23–30) | 25 (22–30) | 0.005 |
BMI range | n = 4474 | n = 701 | n = 5175 | |
<18 | 103 (2.30) | 21 (3.00) | 124 (2.40) | 0.013 |
18–24.9 | 1899 (42.45) | 249 (35.52) | 2148 (41.51) | |
25–29.9 | 1285 (28.72) | 226 (32.24) | 1511 (29.20) | |
≥30 | 1094 (24.45) | 191 (27.25) | 1285 (24.83) | |
Missing | 93 (2.08) | 14 (2.00) | 107 (2.07) | |
Medical comorbidities | ||||
Hypertension | 631/4458 (14.15) | 133/694 (19.16) | 764/5152 (14.83) | 0.001 |
Diabetes | 128/4457 (2.87) | 26/694 (3.75) | 154/5151 (2.99) | 0.208 |
Dementia | 5/4457 (0.11) | 1/694 (0.14) | 6/5151 (0.12) | 0.819 |
Chronic kidney disease | 10/4457 (0.22) | 3/694 (0.43) | 13/5151 (0.25) | 0.309 |
Asthma | 112/4467 (2.51) | 27/700 (3.86) | 139/5167 (2.69) | 0.039 |
Tuberculosis | 29/3719 (0.78) | 10/602 (1.66) | 39/4321 (0.9) | 0.034 |
HIV | 992/4361 (22.75) | 149/675 (22.07) | 1141/5036 (22.66) | 0.698 |
On ART | 831/992 (83.8) | 121/149 (81.2) | 952/1141 (83.4) | 0.424 |
Currently smoking | 287/4424 (6.49) | 25/693 (3.61) | 312/5117 (6.1) | 0.003 |
Cancer | 20/4458 (0.45) | 7/694 (1.01) | 27/5152 (0.52) | 0.057 |
Pregnancy | 218/2511 (8.68) | 68/420 (16.19) | 286/2931 (9.76) | <0.001 |
High-risk occupation | 1986/4462 (44.51) | 251/701(35.81) | 2237/5163 (43.33) | <0.001 |
Previous COVID diagnosis | 1436/4408 (32.58) | 254/691 (36.76) | 1690/5099 (33.14) | 0.03 |
Variable | Controls | Cases | Total | p-Value |
---|---|---|---|---|
Vaccinated | 3720/4474 (83.1) | 572/701 (81.6) | 4292/5175 (82.9) | 0.276 |
Verified | 2879/3618 (79.6) | 418/544 (76.8) | 3297/4162 (79.2) | 0.143 |
Vaccine Brand | n = 3720 | n = 572 | n = 4292 | |
BBIBP-CorV (Sinopharm) | 2128 (57.2) | 337 (58.9) | 2465 (57.4) | 0.601 |
Coronovac (Sinovac) | 1483 (39.9) | 212 (37.1) | 1695 (39.5) | |
BBV152 (Covaxin) | 16 (0.4) | 3 (0.5) | 19 (0.4) | |
Other * | 16 (0.4) | 2 (0.3) | 18 (0.4) | |
Unknown/not sure ** | 77 (1.8) | 18 (2.8) | 95 (2.2) | |
Vaccination status *** | n = 4372 | n = 675 | n = 5047 | |
Unvaccinated | 748 (17.1) | 129 (19.1) | 877(17.4) | 0.057 |
Partial vaccination | 309 (7.1) | 55 (8.2) | 364 (7.2) | |
Fully vaccinated | 1827 (41.8) | 296 (43.9) | 2123 (42.1) | |
Boosted | 1488 (34.0) | 195 (28.9) | 1683 (33.4) |
Total (%) | Age (18–49 Y) | Age (50–64 Y) | Age ≥ 65 Years | |
---|---|---|---|---|
Vaccination status | n = 5047 | n = 4244 | n = 645 | n = 158 |
Partial vaccination | 364 (7.2) | 338 (8.0) | 23 (3.6) | 3 (1.9) |
Full vaccination | 2123 (42.1) | 1827 (43.1) | 246 (38.1) | 50 (31.7) |
Booster vaccination | 1683 (33.4) | 1279 (30.1) | 322 (49.9) | 82 (51.9) |
List of vaccine brands | n = 4292 | n = 3547 | n = 605 | n = 140 |
BBIBP-CorV (Sinopharm) | 2465 (57.4) | 2054 (57.9) | 338 (55.9) | 73 (52.1) |
Coronovac (Sinovac) | 1695 (39.5) | 1382 (39.0) | 251 (41.5) | 62 (44.7) |
BBV152 (Covaxin) | 19 (0.4) | 15 (0.4) | 4 (0.7) | 0 (0.0) |
Other * | 18 (0.4%) | 16 (0.5) | 2 (0.3) | 0 |
Unknown/not sure | 95 (2.2%) | 80 (2.3) | 10 (1.7) | 5 (3.6) |
Time since vaccination | ||||
Days since last vaccine dose (median, IQR) | 434 (266–616) | 433 (260–620.5) | 440 (294–602) | 403 (312–543) |
Days since booster vaccine dose (median, IQR) | 310(205–409) | 300 (193–399) | 335 (244–438) | 368 (307–467) |
Total 1 | Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|---|
Variable | OR | 95% CI | p-Value | aOR | 95% CI | p-Value | |
Sex (ref female) | 1630 | 0.99 | 0.850–1.162 | 0.937 | |||
BMI (ref 18–24.9) | |||||||
<18 | 124 | 0.61 | 0.409–0.907 | 0.015 | 0.50 | 0.312–0.814 | 0.006 |
25–29.9 | 1506 | 1.31 | 1.101–1.552 | 0.002 | 1.19 | 0.965–1.455 | 0.112 |
≥30 | 1281 | 2.00 | 1.634–2.443 | <0.001 | 1.44 | 1.127–1.835 | 0.004 |
Clinic type (ref outpatient) | |||||||
Hospital | 3448 | 2.42 | 2.088–2.817 | <0.001 | 1.49 | 1.231–1.791 | <0.001 |
In-patient | 71 | 0.78 | 0.463–1.297 | 0.333 | 0.58 | 0.316–1.051 | 0.065 |
Previous COVID diagnosis | 1684 | 1.49 | 1.265–1.756 | <0.001 | 2.85 | 2.051–3.952 | <0.001 |
HIV-positive | 1136 | 0.89 | 0.745–1.049 | 0.159 | |||
Active TB | 39 | 0.37 | 0.187–0.717 | 0.003 | 0.44 | 0.211–0.904 | 0.026 |
Asthma | 139 | 1.59 | 0.942–2.699 | 0.082 | |||
Hypertension | 762 | 1.96 | 1.532–2.509 | <0.001 | 1.64 | 1.225–2.206 | 0.001 |
Diabetes mellitus | 153 | 2.08 | 1.195–3.623 | 0.010 | |||
PCR-positive | 699 | 0.89 | 0.725–1.097 | 0.280 | |||
High-risk occupation | 2234 | 3.83 | 3.200–4.574 | <0.001 | 2.98 | 2.430–3.643 | <0.001 |
Age group | |||||||
50–64 years | 658 | 2.53 | 1.895–3.377 | <0.001 | |||
65+ years | 163 | 1.38 | 0.881–2.158 | 0.159 |
Verified Participants | All Participants | |||||
---|---|---|---|---|---|---|
Subgroup | Total (n) | Case (n, %) | Adjusted VE, % (95% CI) | Total (n) | Case (n, %) | Adjusted VE, % (95% CI) |
Overall | 4184 | 547 (13.1) | 31 (5.3%, 49.7%) | 5175 | 701 (13.5) | 30 (8.6%, 48.2%) |
Hospital-enrolled | 2848 | 429 (15.1) | 42 (17.4%, 58.9%) | 3524 | 552 (15.7) | 31.3 (8.0%, 48.7%) |
Vaccine Brand | ||||||
Sinopharm | 1877 | 240 (12.8) | 36.8 (11.4%, 54.9%) | 2469 | 338 (13.7) | 28.6 (5.9%, 45.8%) |
Sinovac | 1392 | 175 (12.6) | 38.1 (16.3%, 54.2%) | 1702 | 213 (12.5) | 28.3 (4.3%, 46.3%) |
Vaccination status | ||||||
Partially | 220 | 28 (12.7) | 24.6 (−21.6%, 52.3%) | 364 | 55 (15.1) | 16.2 (−27%, 44.8%) |
Fully | 1627 | 225 (13.8) | 21.4 (−8.5%, 43%) | 2123 | 296 (13.9) | 21.2 (−6.7%, 41.8%) |
Boosted | 1446 | 165 (11.4) | 59.8 (40.3%, 72.9%) | 1683 | 195 (11.6) | 51.2 (29.4%, 66.2%) |
Time since vaccination | ||||||
<1 year | 1346 | 148 (11.0) | 47 (21.9%, 62.8%) | 1718 | 208 (12.1) | 38 (13.7%, 55.2%) |
>1 year | 1947 | 270 (13.9) | 24 (−4.1%, 44.8%) | 2452 | 338 (13.8) | 28 (4%, 44.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makadzange, A.T.; Gundidza, P.; Konono, K.C.C.; Gurumani, M.; Ndhlovu, C. The Real-World Effectiveness of Inactivated COVID-19 Vaccines in Zimbabwe During the Omicron Variant Dominance: A Test-Negative Case–Control Study. Vaccines 2024, 12, 1303. https://doi.org/10.3390/vaccines12121303
Makadzange AT, Gundidza P, Konono KCC, Gurumani M, Ndhlovu C. The Real-World Effectiveness of Inactivated COVID-19 Vaccines in Zimbabwe During the Omicron Variant Dominance: A Test-Negative Case–Control Study. Vaccines. 2024; 12(12):1303. https://doi.org/10.3390/vaccines12121303
Chicago/Turabian StyleMakadzange, Azure Tariro, Patricia Gundidza, Kimberly Cheryl Chido Konono, Margaret Gurumani, and Chiratidzo Ndhlovu. 2024. "The Real-World Effectiveness of Inactivated COVID-19 Vaccines in Zimbabwe During the Omicron Variant Dominance: A Test-Negative Case–Control Study" Vaccines 12, no. 12: 1303. https://doi.org/10.3390/vaccines12121303
APA StyleMakadzange, A. T., Gundidza, P., Konono, K. C. C., Gurumani, M., & Ndhlovu, C. (2024). The Real-World Effectiveness of Inactivated COVID-19 Vaccines in Zimbabwe During the Omicron Variant Dominance: A Test-Negative Case–Control Study. Vaccines, 12(12), 1303. https://doi.org/10.3390/vaccines12121303