Geospatial Variation in Vaccination Coverage and Zero-Dose Prevalence at the District, Ward and Health Facility Levels Before and After a Measles Vaccination Campaign in Nigeria
Abstract
:1. Introduction
2. Methods
2.1. 2021 Measles Post-Campaign Coverage Survey Data
2.2. Geospatial Covariate Data, Population Data and Covariate Selection
2.3. Health Facility, Administrative Boundary and Building Footprint Data
2.4. Bayesian Geostatistical Model, Model Fitting and Prediction
2.5. Methodology for Health Facility Catchment Area Delineation
3. Results
3.1. 1 × 1 km and District Level Estimates of PCCS Indicators
3.2. Estimates of Numbers of Zero-Dose Children Before and After the Campaign at the LGA Level
3.3. Estimates of Numbers of Unvaccinated Children During the Campaign at the Ward and Health Facility Catchment Area Levels
3.4. Identification of Areas for Fixed and Outreach Services Within Health Facility Catchment Areas Using Building Footprint Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- World Health Organization. 2024. Available online: https://www.who.int/health-topics/meningitis/vaccines-and-immunization#tab=tab_1 (accessed on 1 October 2024).
- Shattock, A.J.; Johnson, H.C.; Sim, S.Y.; Carter, A.; Lambach, P.; Hutubessy, R.C.W.; Thompson, K.M.; Badizadegan, K.; Lambert, B.; Ferrari, M.J.; et al. Contribution of vaccination to improved survival and health: Modelling 50 years of the Expanded Programme on Immunization. Lancet 2024, 403, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- WHO/UNICEF Estimates of National Immunization Coverage (WUENIC) 2023 Revision. 2023. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/immunization-analysis-and-insights/global-monitoring/immunization-coverage/who-unicef-estimates-of-national-immunization-coverage (accessed on 24 September 2024).
- Ho, L.L.; Gurung, S.; Mirza, I.; Nicolas, H.D.; Steulet, C.; Burman, A.L.; Danovaro-Holliday, M.C.; Sodha, S.V.; Kretsinger, K. Impact of the SARS-CoV-2 pandemic on vaccine-preventable disease campaigns. Int. J. Infect. Dis. 2022, 119, 201–209. [Google Scholar] [CrossRef]
- Causey, K.; Fullman, N.; Sorensen, R.J.D.; Galles, N.C.; Zheng, P.; Aravkin, A.; Danovaro-Holliday, M.C.; Martinez-Piedra, R.; Sodha, S.V.; Velandia-González, M.P.; et al. Estimating global and regional disruptions to routine childhood vaccine coverage during the COVID-19 pandemic in 2020: A modelling study. Lancet 2021, 398, 522–534. [Google Scholar] [CrossRef]
- World Health Organization. Progress and Challenges with Achieving Universal Immunization Coverage—2023 WHO/UNICEF Estimates of National Immunization Coverage (WUENIC) 2024. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/immunization-analysis-and-insights/global-monitoring/immunization-coverage/who-unicef-estimates-of-national-immunization-coverage (accessed on 15 September 2024).
- World Health Organization. Immunization Agenda 2030: A Global Strategy to Leave No One Behind. 2020. Available online: https://www.who.int/immunization/immunization_agenda_2030/en/ (accessed on 25 June 2020).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 20 June 2017).
- Gavi The Vaccine Alliance. Gavi Strategy 5.0, 2021–2025. 2020. Available online: https://www.gavi.org/our-alliance/strategy/phase-5-2021-2025 (accessed on 25 June 2021).
- World Health Organization. The Global Vaccine Action Plan 2011–2020. 2013. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/strategies/global-vaccine-action-plan (accessed on 15 September 2024).
- World Health Organization. Reaching Every District (RED) Strategy. 2002. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/essential-programme-on-immunization/implementation/reaching-every-district-(red) (accessed on 15 September 2024).
- World Health Organization. Reaching Every District (RED): A Guide to Increasing Coverage and Equity in All Communities in the African Region. 2017. Available online: https://www.afro.who.int/publications (accessed on 15 September 2024).
- Cutts, F.T.; Claquin, P.; Danovaro-Holliday, M.C.; Rhoda, D.A. Monitoring vaccination coverage: Defining the role of surveys. Vaccine 2016, 34, 4103–4109. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Vaccination Coverage Cluster Surveys: Reference Manual; Contract No.: WHO/IVB/18.09; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Mosser, J.F.; Gagne-Maynard, W.; Rao, P.C.; Osgood-Zimmerman, A.; Fullman, N.; Graetz, N.; Burstein, R.; Updike, R.L.; Liu, P.Y.; Ray, S.E.; et al. Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000–2016: A spatial and temporal modelling study. Lancet 2019, 393, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Sbarra, A.N.; Rolfe, S.; Nguyen, J.Q.; Earl, L.; Galles, N.C.; Marks, A.; Abbas, K.M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; et al. Mapping routine measles vaccination in low- and middle-income countries. Nature 2021, 589, 415–419. [Google Scholar]
- Utazi, C.E.; Nilsen, K.; Pannell, O.; Dotse-Gborgbortsi, W.; Tatem, A.J. District-level estimation of vaccination coverage: Discrete vs continuous spatial models. Stat. Med. 2021, 40, 2197–2211. [Google Scholar] [CrossRef]
- Utazi, C.E.; Thorley, J.; Alegana, V.A.; Ferrari, M.J.; Takahashi, S.; Metcalf, C.J.E.; Lessler, J.; Cutts, F.T.; Tatem, A.J. Mapping vaccination coverage to explore the effects of delivery mechanisms and inform vaccination strategies. Nat. Commun. 2019, 10, 1633. [Google Scholar] [CrossRef]
- Utazi, C.E.; Wagai, J.; Pannell, O.; Cutts, F.T.; Rhoda, D.A.; Ferrari, M.J.; Dieng, B.; Oteri, J.; Danovaro-Holliday, M.C.; Adeniran, A.; et al. Geospatial variation in measles vaccine coverage through routine and campaign strategies in Nigeria: Analysis of recent household surveys. Vaccine 2020, 38, 3062–3071. [Google Scholar] [CrossRef]
- Utazi, C.E.; Aheto, J.M.K.; Wigley, A.; Tejedor-Garavito, N.; Bonnie, A.; Nnanatu, C.C.; Wagai, J.; Williams, C.; Setayesh, H.; Tatem, A.J.; et al. Mapping the distribution of zero-dose children to assess the performance of vaccine delivery strategies and their relationships with measles incidence in Nigeria. Vaccine 2023, 41, 170–181. [Google Scholar] [CrossRef]
- World Health Organization. Measles—Number of Reported Cases. 2024. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/measles---number-of-reported-cases (accessed on 15 September 2024).
- World Health Organization. Measles and Rubella Global Update September 2024. 2024. Available online: https://immunizationdata.who.int/global?topic=Provisional-measles-and-rubella-data&location= (accessed on 30 September 2024).
- World Health Organisation (WHO). Measles vaccines: WHO position paper—April 2017. Wkly. Epidemiol. Rec. 2017, 92, 205–227. [Google Scholar]
- Aheto, J.M.K.; Olowe, I.D.; Chan, H.M.T.; Ekeh, A.; Dieng, B.; Fafunmi, B.; Setayesh, H.; Atuhaire, B.; Crawford, J.; Tatem, A.J.; et al. Geospatial Analyses of Recent Household Surveys to Assess Changes in the Distribution of Zero-Dose Children and Their Associated Factors before and during the COVID-19 Pandemic in Nigeria. Vaccines 2023, 11, 1830. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics (NBS) Nigeria; National Primary Health Care Development Agency (NPHCDA); World Health Organisation (WHO). The 2021/2022 Integrated (Measles, Meningococcal and Yellow Fever) Post Campaign Coverage Survey Report; 2022. Available online: http://www.nigerianstat.gov.ng/ (accessed on 15 January 2024).
- Perez-Haydrich, C.; Warren, J.L.; Burgert, C.R.; Emch, M.E. Guidelines on the Use of DHS GPS Data; ICF International: Calverton, MD, USA, 2013. [Google Scholar]
- Utazi, C.E.; Aheto, J.M.K.; Chan, H.M.T.; Tatem, A.J.; Sahu, S.K. Conditional probability and ratio-based approaches for mapping the coverage of multi-dose vaccines. Stat. Med. 2022, 41, 5662–5678. [Google Scholar] [CrossRef] [PubMed]
- Utazi, C.E.; Thorley, J.; Alegana, V.A.; Ferrari, M.J.; Takahashi, S.; Metcalf, C.J.E.; Lessler, J.; Tatem, A.J. High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries. Vaccine 2018, 36, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Tatem, A.J. WorldPop, open data for spatial demography. Sci. Data 2017, 4, 170004. [Google Scholar] [CrossRef]
- World Health Organisation GIS Centre for Health. Detailed Boundary (ADM0, ADM1, ADM2). 2024. Available online: https://gis-who.hub.arcgis.com/pages/detailedboundary (accessed on 18 March 2024).
- GRID3. 2024. Available online: https://grid3.org/ (accessed on 20 January 2024).
- Weiss, D.J.; Nelson, A.; Gibson, H.S.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N.; et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 2018, 553, 333–336. [Google Scholar] [CrossRef]
- Google. Building Footprint Data. 2024. Available online: https://sites.research.google/gr/open-buildings/ (accessed on 20 June 2024).
- Matérn, B. Spatial Variation, 2nd ed.; Springer: Berlin, Germany, 1960. [Google Scholar]
- Lindgren, F.; Rue, H.; Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2011, 73, 423–498. [Google Scholar] [CrossRef]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2009, 71, 319–392. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Lindgren, F.; Rue, H.; Lindström, J. Bayesian Spatial Modelling with R-INLA. J. Stat. Softw. 2015, 63, 25. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System, Version 3.34.7. Open Source Geospatial Foundation Project. 2023. Available online: http://qgis.org (accessed on 3 October 2024).
- GRASS Development Team. r.cost: GRASS GIS Module for Cumulative Cost Calculation. Available Through QGIS 3.34.7, Open Source Geospatial Foundation Project. 2023. Available online: https://grass.osgeo.org/ (accessed on 30 September 2024).
- World Health Organization. Microplanning for Immunization Service Delivery Using the Reaching Every District (RED) Strategy. 2009. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/essential-programme-on-immunization/implementation/reaching-every-district-(red) (accessed on 28 September 2024).
- Qader, S.; Lefebvre, V.; Tatem, A.; Pape, U.; Himelein, K.; Ninneman, A.; Bengtsson, L.; Bird, T. Semi-automatic mapping of pre-census enumeration areas and population sampling frames. Humanit. Soc. Sci. Commun. 2021, 8, 3. [Google Scholar] [CrossRef]
- Jean Baptiste, A.E.; Wagai, J.; Hahné, S.; Adeniran, A.; Koko, R.I.; de Vos, S.; Shibeshi, M.; Sanders, E.A.M.; Masresha, B.; Hak, E. High-Resolution Geospatial Mapping of Zero-Dose and Underimmunized Children Following Nigeria’s 2021 Multiple Indicator Cluster Survey/National Immunization Coverage Survey. J. Infect. Dis. 2024, 230, e131–e138. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Metcalf, C.J.E.; Ferrari, M.J.; Tatem, A.J.; Lessler, J. The geography of measles vaccination in the African Great Lakes region. Nat. Commun. 2017, 8, 15585. [Google Scholar] [CrossRef] [PubMed]
- AFENET/AHBN (ZDLH). Closing the Immunization Gap: Enhancing Routine Immunization in Nigeria by Reaching Zero-Dose and Under Immunized Children in Marginalized Communities: Report of a Rapid Assessment. 2024. Available online: https://zdlh.gavi.org/ (accessed on 15 September 2024).
- National Bureau of Statistics (NBS), (UNICEF) UNCsF. Multiple Indicator Cluster Survey 2021—Survey Findings Report. 2022. Available online: https://www.unicef.org/nigeria/media/6316/file/2021%20MICS%20full%20report%20.pdf (accessed on 17 November 2024).
- Macharia, P.M.; Odhiambo, J.N.; Mumo, E.; Maina, A.; Giorgi, E.; Okiro, E.A. Approaches to Defining Health Facility Catchment Areas in Sub-Saharan Africa. In Health and Medical Geography in Africa: Methods, Applications and Development Linkages; Adewoyin, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 445–465. [Google Scholar]
- Leasure, D.R.; Jochem, W.C.; Weber, E.M.; Seaman, V.; Tatem, A.J. National population mapping from sparse survey data: A hierarchical Bayesian modeling framework to account for uncertainty. Proc. Natl. Acad. Sci. USA 2020, 117, 24173–24179. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, K.; Tejedor-Garavito, N.; Leasure, D.R.; Utazi, C.E.; Ruktanonchai, C.W.; Wigley, A.S.; Dooley, C.A.; Matthews, Z.; Tatem, A.J. A review of geospatial methods for population estimation and their use in constructing reproductive, maternal, newborn, child and adolescent health service indicators. BMC Health Serv. Res. 2021, 21, 370. [Google Scholar] [CrossRef]
- Yankey, O.; Utazi, C.E.; Nnanatu, C.C.; Gadiaga, A.N.; Abbot, T.; Lazar, A.N.; Tatem, A.J. Disaggregating census data for population mapping using a Bayesian Additive Regression Tree model. Appl. Geogr. 2024, 172, 103416. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utazi, C.E.; Olowe, I.D.; Chan, H.M.T.; Dotse-Gborgbortsi, W.; Wagai, J.; Umar, J.A.; Etamesor, S.; Atuhaire, B.; Fafunmi, B.; Crawford, J.; et al. Geospatial Variation in Vaccination Coverage and Zero-Dose Prevalence at the District, Ward and Health Facility Levels Before and After a Measles Vaccination Campaign in Nigeria. Vaccines 2024, 12, 1299. https://doi.org/10.3390/vaccines12121299
Utazi CE, Olowe ID, Chan HMT, Dotse-Gborgbortsi W, Wagai J, Umar JA, Etamesor S, Atuhaire B, Fafunmi B, Crawford J, et al. Geospatial Variation in Vaccination Coverage and Zero-Dose Prevalence at the District, Ward and Health Facility Levels Before and After a Measles Vaccination Campaign in Nigeria. Vaccines. 2024; 12(12):1299. https://doi.org/10.3390/vaccines12121299
Chicago/Turabian StyleUtazi, C. Edson, Iyanuloluwa D. Olowe, H. M. Theophilus Chan, Winfred Dotse-Gborgbortsi, John Wagai, Jamila A. Umar, Sulaiman Etamesor, Brian Atuhaire, Biyi Fafunmi, Jessica Crawford, and et al. 2024. "Geospatial Variation in Vaccination Coverage and Zero-Dose Prevalence at the District, Ward and Health Facility Levels Before and After a Measles Vaccination Campaign in Nigeria" Vaccines 12, no. 12: 1299. https://doi.org/10.3390/vaccines12121299
APA StyleUtazi, C. E., Olowe, I. D., Chan, H. M. T., Dotse-Gborgbortsi, W., Wagai, J., Umar, J. A., Etamesor, S., Atuhaire, B., Fafunmi, B., Crawford, J., Adeniran, A., & Tatem, A. J. (2024). Geospatial Variation in Vaccination Coverage and Zero-Dose Prevalence at the District, Ward and Health Facility Levels Before and After a Measles Vaccination Campaign in Nigeria. Vaccines, 12(12), 1299. https://doi.org/10.3390/vaccines12121299